• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2006-2008 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #ifndef V8_UTILS_H_
29 #define V8_UTILS_H_
30 
31 #include <stdlib.h>
32 
33 namespace v8 {
34 namespace internal {
35 
36 // ----------------------------------------------------------------------------
37 // General helper functions
38 
39 // Returns true iff x is a power of 2 (or zero). Cannot be used with the
40 // maximally negative value of the type T (the -1 overflows).
41 template <typename T>
IsPowerOf2(T x)42 static inline bool IsPowerOf2(T x) {
43   return (x & (x - 1)) == 0;
44 }
45 
46 
47 // The C++ standard leaves the semantics of '>>' undefined for
48 // negative signed operands. Most implementations do the right thing,
49 // though.
ArithmeticShiftRight(int x,int s)50 static inline int ArithmeticShiftRight(int x, int s) {
51   return x >> s;
52 }
53 
54 
55 // Compute the 0-relative offset of some absolute value x of type T.
56 // This allows conversion of Addresses and integral types into
57 // 0-relative int offsets.
58 template <typename T>
OffsetFrom(T x)59 static inline intptr_t OffsetFrom(T x) {
60   return x - static_cast<T>(0);
61 }
62 
63 
64 // Compute the absolute value of type T for some 0-relative offset x.
65 // This allows conversion of 0-relative int offsets into Addresses and
66 // integral types.
67 template <typename T>
AddressFrom(intptr_t x)68 static inline T AddressFrom(intptr_t x) {
69   return static_cast<T>(static_cast<T>(0) + x);
70 }
71 
72 
73 // Return the largest multiple of m which is <= x.
74 template <typename T>
RoundDown(T x,int m)75 static inline T RoundDown(T x, int m) {
76   ASSERT(IsPowerOf2(m));
77   return AddressFrom<T>(OffsetFrom(x) & -m);
78 }
79 
80 
81 // Return the smallest multiple of m which is >= x.
82 template <typename T>
RoundUp(T x,int m)83 static inline T RoundUp(T x, int m) {
84   return RoundDown(x + m - 1, m);
85 }
86 
87 
88 template <typename T>
Compare(const T & a,const T & b)89 static int Compare(const T& a, const T& b) {
90   if (a == b)
91     return 0;
92   else if (a < b)
93     return -1;
94   else
95     return 1;
96 }
97 
98 
99 template <typename T>
PointerValueCompare(const T * a,const T * b)100 static int PointerValueCompare(const T* a, const T* b) {
101   return Compare<T>(*a, *b);
102 }
103 
104 
105 // Returns the smallest power of two which is >= x. If you pass in a
106 // number that is already a power of two, it is returned as is.
107 uint32_t RoundUpToPowerOf2(uint32_t x);
108 
109 
110 template <typename T>
IsAligned(T value,T alignment)111 static inline bool IsAligned(T value, T alignment) {
112   ASSERT(IsPowerOf2(alignment));
113   return (value & (alignment - 1)) == 0;
114 }
115 
116 
117 // Returns true if (addr + offset) is aligned.
IsAddressAligned(Address addr,intptr_t alignment,int offset)118 static inline bool IsAddressAligned(Address addr,
119                                     intptr_t alignment,
120                                     int offset) {
121   intptr_t offs = OffsetFrom(addr + offset);
122   return IsAligned(offs, alignment);
123 }
124 
125 
126 // Returns the maximum of the two parameters.
127 template <typename T>
Max(T a,T b)128 static T Max(T a, T b) {
129   return a < b ? b : a;
130 }
131 
132 
133 // Returns the minimum of the two parameters.
134 template <typename T>
Min(T a,T b)135 static T Min(T a, T b) {
136   return a < b ? a : b;
137 }
138 
139 
StrLength(const char * string)140 inline int StrLength(const char* string) {
141   size_t length = strlen(string);
142   ASSERT(length == static_cast<size_t>(static_cast<int>(length)));
143   return static_cast<int>(length);
144 }
145 
146 
147 // ----------------------------------------------------------------------------
148 // BitField is a help template for encoding and decode bitfield with
149 // unsigned content.
150 template<class T, int shift, int size>
151 class BitField {
152  public:
153   // Tells whether the provided value fits into the bit field.
is_valid(T value)154   static bool is_valid(T value) {
155     return (static_cast<uint32_t>(value) & ~((1U << (size)) - 1)) == 0;
156   }
157 
158   // Returns a uint32_t mask of bit field.
mask()159   static uint32_t mask() {
160     // To use all bits of a uint32 in a bitfield without compiler warnings we
161     // have to compute 2^32 without using a shift count of 32.
162     return ((1U << shift) << size) - (1U << shift);
163   }
164 
165   // Returns a uint32_t with the bit field value encoded.
encode(T value)166   static uint32_t encode(T value) {
167     ASSERT(is_valid(value));
168     return static_cast<uint32_t>(value) << shift;
169   }
170 
171   // Extracts the bit field from the value.
decode(uint32_t value)172   static T decode(uint32_t value) {
173     return static_cast<T>((value & mask()) >> shift);
174   }
175 };
176 
177 
178 // ----------------------------------------------------------------------------
179 // Hash function.
180 
181 uint32_t ComputeIntegerHash(uint32_t key);
182 
183 
184 // ----------------------------------------------------------------------------
185 // I/O support.
186 
187 // Our version of printf(). Avoids compilation errors that we get
188 // with standard printf when attempting to print pointers, etc.
189 // (the errors are due to the extra compilation flags, which we
190 // want elsewhere).
191 void PrintF(const char* format, ...);
192 
193 // Our version of fflush.
194 void Flush();
195 
196 
197 // Read a line of characters after printing the prompt to stdout. The resulting
198 // char* needs to be disposed off with DeleteArray by the caller.
199 char* ReadLine(const char* prompt);
200 
201 
202 // Read and return the raw bytes in a file. the size of the buffer is returned
203 // in size.
204 // The returned buffer must be freed by the caller.
205 byte* ReadBytes(const char* filename, int* size, bool verbose = true);
206 
207 
208 // Write size chars from str to the file given by filename.
209 // The file is overwritten. Returns the number of chars written.
210 int WriteChars(const char* filename,
211                const char* str,
212                int size,
213                bool verbose = true);
214 
215 
216 // Write size bytes to the file given by filename.
217 // The file is overwritten. Returns the number of bytes written.
218 int WriteBytes(const char* filename,
219                const byte* bytes,
220                int size,
221                bool verbose = true);
222 
223 
224 // Write the C code
225 // const char* <varname> = "<str>";
226 // const int <varname>_len = <len>;
227 // to the file given by filename. Only the first len chars are written.
228 int WriteAsCFile(const char* filename, const char* varname,
229                  const char* str, int size, bool verbose = true);
230 
231 
232 // ----------------------------------------------------------------------------
233 // Miscellaneous
234 
235 // A static resource holds a static instance that can be reserved in
236 // a local scope using an instance of Access.  Attempts to re-reserve
237 // the instance will cause an error.
238 template <typename T>
239 class StaticResource {
240  public:
StaticResource()241   StaticResource() : is_reserved_(false)  {}
242 
243  private:
244   template <typename S> friend class Access;
245   T instance_;
246   bool is_reserved_;
247 };
248 
249 
250 // Locally scoped access to a static resource.
251 template <typename T>
252 class Access {
253  public:
Access(StaticResource<T> * resource)254   explicit Access(StaticResource<T>* resource)
255     : resource_(resource)
256     , instance_(&resource->instance_) {
257     ASSERT(!resource->is_reserved_);
258     resource->is_reserved_ = true;
259   }
260 
~Access()261   ~Access() {
262     resource_->is_reserved_ = false;
263     resource_ = NULL;
264     instance_ = NULL;
265   }
266 
value()267   T* value()  { return instance_; }
268   T* operator -> ()  { return instance_; }
269 
270  private:
271   StaticResource<T>* resource_;
272   T* instance_;
273 };
274 
275 
276 template <typename T>
277 class Vector {
278  public:
Vector()279   Vector() : start_(NULL), length_(0) {}
Vector(T * data,int length)280   Vector(T* data, int length) : start_(data), length_(length) {
281     ASSERT(length == 0 || (length > 0 && data != NULL));
282   }
283 
New(int length)284   static Vector<T> New(int length) {
285     return Vector<T>(NewArray<T>(length), length);
286   }
287 
288   // Returns a vector using the same backing storage as this one,
289   // spanning from and including 'from', to but not including 'to'.
SubVector(int from,int to)290   Vector<T> SubVector(int from, int to) {
291     ASSERT(from < length_);
292     ASSERT(to <= length_);
293     ASSERT(from < to);
294     return Vector<T>(start() + from, to - from);
295   }
296 
297   // Returns the length of the vector.
length()298   int length() const { return length_; }
299 
300   // Returns whether or not the vector is empty.
is_empty()301   bool is_empty() const { return length_ == 0; }
302 
303   // Returns the pointer to the start of the data in the vector.
start()304   T* start() const { return start_; }
305 
306   // Access individual vector elements - checks bounds in debug mode.
307   T& operator[](int index) const {
308     ASSERT(0 <= index && index < length_);
309     return start_[index];
310   }
311 
first()312   T& first() { return start_[0]; }
313 
last()314   T& last() { return start_[length_ - 1]; }
315 
316   // Returns a clone of this vector with a new backing store.
Clone()317   Vector<T> Clone() const {
318     T* result = NewArray<T>(length_);
319     for (int i = 0; i < length_; i++) result[i] = start_[i];
320     return Vector<T>(result, length_);
321   }
322 
Sort(int (* cmp)(const T *,const T *))323   void Sort(int (*cmp)(const T*, const T*)) {
324     typedef int (*RawComparer)(const void*, const void*);
325     qsort(start(),
326           length(),
327           sizeof(T),
328           reinterpret_cast<RawComparer>(cmp));
329   }
330 
Sort()331   void Sort() {
332     Sort(PointerValueCompare<T>);
333   }
334 
Truncate(int length)335   void Truncate(int length) {
336     ASSERT(length <= length_);
337     length_ = length;
338   }
339 
340   // Releases the array underlying this vector. Once disposed the
341   // vector is empty.
Dispose()342   void Dispose() {
343     if (is_empty()) return;
344     DeleteArray(start_);
345     start_ = NULL;
346     length_ = 0;
347   }
348 
349   inline Vector<T> operator+(int offset) {
350     ASSERT(offset < length_);
351     return Vector<T>(start_ + offset, length_ - offset);
352   }
353 
354   // Factory method for creating empty vectors.
empty()355   static Vector<T> empty() { return Vector<T>(NULL, 0); }
356 
357  protected:
set_start(T * start)358   void set_start(T* start) { start_ = start; }
359 
360  private:
361   T* start_;
362   int length_;
363 };
364 
365 
366 // A temporary assignment sets a (non-local) variable to a value on
367 // construction and resets it the value on destruction.
368 template <typename T>
369 class TempAssign {
370  public:
TempAssign(T * var,T value)371   TempAssign(T* var, T value): var_(var), old_value_(*var) {
372     *var = value;
373   }
374 
~TempAssign()375   ~TempAssign() { *var_ = old_value_; }
376 
377  private:
378   T* var_;
379   T old_value_;
380 };
381 
382 
383 template <typename T, int kSize>
384 class EmbeddedVector : public Vector<T> {
385  public:
EmbeddedVector()386   EmbeddedVector() : Vector<T>(buffer_, kSize) { }
387 
388   // When copying, make underlying Vector to reference our buffer.
EmbeddedVector(const EmbeddedVector & rhs)389   EmbeddedVector(const EmbeddedVector& rhs)
390       : Vector<T>(rhs) {
391     memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
392     set_start(buffer_);
393   }
394 
395   EmbeddedVector& operator=(const EmbeddedVector& rhs) {
396     if (this == &rhs) return *this;
397     Vector<T>::operator=(rhs);
398     memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
399     set_start(buffer_);
400     return *this;
401   }
402 
403  private:
404   T buffer_[kSize];
405 };
406 
407 
408 template <typename T>
409 class ScopedVector : public Vector<T> {
410  public:
ScopedVector(int length)411   explicit ScopedVector(int length) : Vector<T>(NewArray<T>(length), length) { }
~ScopedVector()412   ~ScopedVector() {
413     DeleteArray(this->start());
414   }
415 };
416 
417 
CStrVector(const char * data)418 inline Vector<const char> CStrVector(const char* data) {
419   return Vector<const char>(data, StrLength(data));
420 }
421 
MutableCStrVector(char * data)422 inline Vector<char> MutableCStrVector(char* data) {
423   return Vector<char>(data, StrLength(data));
424 }
425 
MutableCStrVector(char * data,int max)426 inline Vector<char> MutableCStrVector(char* data, int max) {
427   int length = StrLength(data);
428   return Vector<char>(data, (length < max) ? length : max);
429 }
430 
431 template <typename T>
HandleVector(v8::internal::Handle<T> * elms,int length)432 inline Vector< Handle<Object> > HandleVector(v8::internal::Handle<T>* elms,
433                                              int length) {
434   return Vector< Handle<Object> >(
435       reinterpret_cast<v8::internal::Handle<Object>*>(elms), length);
436 }
437 
438 
439 // Simple support to read a file into a 0-terminated C-string.
440 // The returned buffer must be freed by the caller.
441 // On return, *exits tells whether the file existed.
442 Vector<const char> ReadFile(const char* filename,
443                             bool* exists,
444                             bool verbose = true);
445 
446 
447 // Simple wrapper that allows an ExternalString to refer to a
448 // Vector<const char>. Doesn't assume ownership of the data.
449 class AsciiStringAdapter: public v8::String::ExternalAsciiStringResource {
450  public:
AsciiStringAdapter(Vector<const char> data)451   explicit AsciiStringAdapter(Vector<const char> data) : data_(data) {}
452 
data()453   virtual const char* data() const { return data_.start(); }
454 
length()455   virtual size_t length() const { return data_.length(); }
456 
457  private:
458   Vector<const char> data_;
459 };
460 
461 
462 // Helper class for building result strings in a character buffer. The
463 // purpose of the class is to use safe operations that checks the
464 // buffer bounds on all operations in debug mode.
465 class StringBuilder {
466  public:
467   // Create a string builder with a buffer of the given size. The
468   // buffer is allocated through NewArray<char> and must be
469   // deallocated by the caller of Finalize().
470   explicit StringBuilder(int size);
471 
StringBuilder(char * buffer,int size)472   StringBuilder(char* buffer, int size)
473       : buffer_(buffer, size), position_(0) { }
474 
~StringBuilder()475   ~StringBuilder() { if (!is_finalized()) Finalize(); }
476 
size()477   int size() const { return buffer_.length(); }
478 
479   // Get the current position in the builder.
position()480   int position() const {
481     ASSERT(!is_finalized());
482     return position_;
483   }
484 
485   // Reset the position.
Reset()486   void Reset() { position_ = 0; }
487 
488   // Add a single character to the builder. It is not allowed to add
489   // 0-characters; use the Finalize() method to terminate the string
490   // instead.
AddCharacter(char c)491   void AddCharacter(char c) {
492     ASSERT(c != '\0');
493     ASSERT(!is_finalized() && position_ < buffer_.length());
494     buffer_[position_++] = c;
495   }
496 
497   // Add an entire string to the builder. Uses strlen() internally to
498   // compute the length of the input string.
499   void AddString(const char* s);
500 
501   // Add the first 'n' characters of the given string 's' to the
502   // builder. The input string must have enough characters.
503   void AddSubstring(const char* s, int n);
504 
505   // Add formatted contents to the builder just like printf().
506   void AddFormatted(const char* format, ...);
507 
508   // Add character padding to the builder. If count is non-positive,
509   // nothing is added to the builder.
510   void AddPadding(char c, int count);
511 
512   // Finalize the string by 0-terminating it and returning the buffer.
513   char* Finalize();
514 
515  private:
516   Vector<char> buffer_;
517   int position_;
518 
is_finalized()519   bool is_finalized() const { return position_ < 0; }
520 
521   DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder);
522 };
523 
524 
525 // Copy from ASCII/16bit chars to ASCII/16bit chars.
526 template <typename sourcechar, typename sinkchar>
CopyChars(sinkchar * dest,const sourcechar * src,int chars)527 static inline void CopyChars(sinkchar* dest, const sourcechar* src, int chars) {
528   sinkchar* limit = dest + chars;
529 #ifdef V8_HOST_CAN_READ_UNALIGNED
530   if (sizeof(*dest) == sizeof(*src)) {
531     // Number of characters in a uint32_t.
532     static const int kStepSize = sizeof(uint32_t) / sizeof(*dest);  // NOLINT
533     while (dest <= limit - kStepSize) {
534       *reinterpret_cast<uint32_t*>(dest) =
535           *reinterpret_cast<const uint32_t*>(src);
536       dest += kStepSize;
537       src += kStepSize;
538     }
539   }
540 #endif
541   while (dest < limit) {
542     *dest++ = static_cast<sinkchar>(*src++);
543   }
544 }
545 
546 
547 // Calculate 10^exponent.
548 int TenToThe(int exponent);
549 
550 } }  // namespace v8::internal
551 
552 #endif  // V8_UTILS_H_
553