1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc. All rights reserved.
3 // http://code.google.com/p/protobuf/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 // * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 // * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // Author: kenton@google.com (Kenton Varda)
32 // Based on original Protocol Buffers design by
33 // Sanjay Ghemawat, Jeff Dean, and others.
34
35 #include <google/protobuf/stubs/hash.h>
36 #include <map>
37 #include <set>
38 #include <vector>
39 #include <algorithm>
40 #include <limits>
41
42 #include <google/protobuf/descriptor.h>
43 #include <google/protobuf/descriptor_database.h>
44 #include <google/protobuf/descriptor.pb.h>
45 #include <google/protobuf/text_format.h>
46 #include <google/protobuf/unknown_field_set.h>
47 #include <google/protobuf/wire_format.h>
48 #include <google/protobuf/io/coded_stream.h>
49 #include <google/protobuf/io/zero_copy_stream_impl.h>
50 #include <google/protobuf/stubs/common.h>
51 #include <google/protobuf/stubs/once.h>
52 #include <google/protobuf/stubs/strutil.h>
53 #include <google/protobuf/stubs/substitute.h>
54 #include <google/protobuf/stubs/map-util.h>
55 #include <google/protobuf/stubs/stl_util-inl.h>
56
57 #undef PACKAGE // autoheader #defines this. :(
58
59 namespace google {
60 namespace protobuf {
61
62 const FieldDescriptor::CppType
63 FieldDescriptor::kTypeToCppTypeMap[MAX_TYPE + 1] = {
64 static_cast<CppType>(0), // 0 is reserved for errors
65
66 CPPTYPE_DOUBLE, // TYPE_DOUBLE
67 CPPTYPE_FLOAT, // TYPE_FLOAT
68 CPPTYPE_INT64, // TYPE_INT64
69 CPPTYPE_UINT64, // TYPE_UINT64
70 CPPTYPE_INT32, // TYPE_INT32
71 CPPTYPE_UINT64, // TYPE_FIXED64
72 CPPTYPE_UINT32, // TYPE_FIXED32
73 CPPTYPE_BOOL, // TYPE_BOOL
74 CPPTYPE_STRING, // TYPE_STRING
75 CPPTYPE_MESSAGE, // TYPE_GROUP
76 CPPTYPE_MESSAGE, // TYPE_MESSAGE
77 CPPTYPE_STRING, // TYPE_BYTES
78 CPPTYPE_UINT32, // TYPE_UINT32
79 CPPTYPE_ENUM, // TYPE_ENUM
80 CPPTYPE_INT32, // TYPE_SFIXED32
81 CPPTYPE_INT64, // TYPE_SFIXED64
82 CPPTYPE_INT32, // TYPE_SINT32
83 CPPTYPE_INT64, // TYPE_SINT64
84 };
85
86 const char * const FieldDescriptor::kTypeToName[MAX_TYPE + 1] = {
87 "ERROR", // 0 is reserved for errors
88
89 "double", // TYPE_DOUBLE
90 "float", // TYPE_FLOAT
91 "int64", // TYPE_INT64
92 "uint64", // TYPE_UINT64
93 "int32", // TYPE_INT32
94 "fixed64", // TYPE_FIXED64
95 "fixed32", // TYPE_FIXED32
96 "bool", // TYPE_BOOL
97 "string", // TYPE_STRING
98 "group", // TYPE_GROUP
99 "message", // TYPE_MESSAGE
100 "bytes", // TYPE_BYTES
101 "uint32", // TYPE_UINT32
102 "enum", // TYPE_ENUM
103 "sfixed32", // TYPE_SFIXED32
104 "sfixed64", // TYPE_SFIXED64
105 "sint32", // TYPE_SINT32
106 "sint64", // TYPE_SINT64
107 };
108
109 const char * const FieldDescriptor::kLabelToName[MAX_LABEL + 1] = {
110 "ERROR", // 0 is reserved for errors
111
112 "optional", // LABEL_OPTIONAL
113 "required", // LABEL_REQUIRED
114 "repeated", // LABEL_REPEATED
115 };
116
117 #ifndef _MSC_VER // MSVC doesn't need these and won't even accept them.
118 const int FieldDescriptor::kMaxNumber;
119 const int FieldDescriptor::kFirstReservedNumber;
120 const int FieldDescriptor::kLastReservedNumber;
121 #endif
122
123 namespace {
124
125 const string kEmptyString;
126
ToCamelCase(const string & input)127 string ToCamelCase(const string& input) {
128 bool capitalize_next = false;
129 string result;
130 result.reserve(input.size());
131
132 for (int i = 0; i < input.size(); i++) {
133 if (input[i] == '_') {
134 capitalize_next = true;
135 } else if (capitalize_next) {
136 // Note: I distrust ctype.h due to locales.
137 if ('a' <= input[i] && input[i] <= 'z') {
138 result.push_back(input[i] - 'a' + 'A');
139 } else {
140 result.push_back(input[i]);
141 }
142 capitalize_next = false;
143 } else {
144 result.push_back(input[i]);
145 }
146 }
147
148 // Lower-case the first letter.
149 if (!result.empty() && 'A' <= result[0] && result[0] <= 'Z') {
150 result[0] = result[0] - 'A' + 'a';
151 }
152
153 return result;
154 }
155
156 // A DescriptorPool contains a bunch of hash_maps to implement the
157 // various Find*By*() methods. Since hashtable lookups are O(1), it's
158 // most efficient to construct a fixed set of large hash_maps used by
159 // all objects in the pool rather than construct one or more small
160 // hash_maps for each object.
161 //
162 // The keys to these hash_maps are (parent, name) or (parent, number)
163 // pairs. Unfortunately STL doesn't provide hash functions for pair<>,
164 // so we must invent our own.
165 //
166 // TODO(kenton): Use StringPiece rather than const char* in keys? It would
167 // be a lot cleaner but we'd just have to convert it back to const char*
168 // for the open source release.
169
170 typedef pair<const void*, const char*> PointerStringPair;
171
172 struct PointerStringPairEqual {
operator ()google::protobuf::__anona61a9b310111::PointerStringPairEqual173 inline bool operator()(const PointerStringPair& a,
174 const PointerStringPair& b) const {
175 return a.first == b.first && strcmp(a.second, b.second) == 0;
176 }
177 };
178
179 template<typename PairType>
180 struct PointerIntegerPairHash {
operator ()google::protobuf::__anona61a9b310111::PointerIntegerPairHash181 size_t operator()(const PairType& p) const {
182 // FIXME(kenton): What is the best way to compute this hash? I have
183 // no idea! This seems a bit better than an XOR.
184 return reinterpret_cast<intptr_t>(p.first) * ((1 << 16) - 1) + p.second;
185 }
186
187 // Used only by MSVC and platforms where hash_map is not available.
188 static const size_t bucket_size = 4;
189 static const size_t min_buckets = 8;
operator ()google::protobuf::__anona61a9b310111::PointerIntegerPairHash190 inline bool operator()(const PairType& a, const PairType& b) const {
191 return a.first < b.first ||
192 (a.first == b.first && a.second < b.second);
193 }
194 };
195
196 typedef pair<const Descriptor*, int> DescriptorIntPair;
197 typedef pair<const EnumDescriptor*, int> EnumIntPair;
198
199 struct PointerStringPairHash {
operator ()google::protobuf::__anona61a9b310111::PointerStringPairHash200 size_t operator()(const PointerStringPair& p) const {
201 // FIXME(kenton): What is the best way to compute this hash? I have
202 // no idea! This seems a bit better than an XOR.
203 hash<const char*> cstring_hash;
204 return reinterpret_cast<intptr_t>(p.first) * ((1 << 16) - 1) +
205 cstring_hash(p.second);
206 }
207
208 // Used only by MSVC and platforms where hash_map is not available.
209 static const size_t bucket_size = 4;
210 static const size_t min_buckets = 8;
operator ()google::protobuf::__anona61a9b310111::PointerStringPairHash211 inline bool operator()(const PointerStringPair& a,
212 const PointerStringPair& b) const {
213 if (a.first < b.first) return true;
214 if (a.first > b.first) return false;
215 return strcmp(a.second, b.second) < 0;
216 }
217 };
218
219
220 struct Symbol {
221 enum Type {
222 NULL_SYMBOL, MESSAGE, FIELD, ENUM, ENUM_VALUE, SERVICE, METHOD, PACKAGE
223 };
224 Type type;
225 union {
226 const Descriptor* descriptor;
227 const FieldDescriptor* field_descriptor;
228 const EnumDescriptor* enum_descriptor;
229 const EnumValueDescriptor* enum_value_descriptor;
230 const ServiceDescriptor* service_descriptor;
231 const MethodDescriptor* method_descriptor;
232 const FileDescriptor* package_file_descriptor;
233 };
234
Symbolgoogle::protobuf::__anona61a9b310111::Symbol235 inline Symbol() : type(NULL_SYMBOL) { descriptor = NULL; }
IsNullgoogle::protobuf::__anona61a9b310111::Symbol236 inline bool IsNull() const { return type == NULL_SYMBOL; }
IsTypegoogle::protobuf::__anona61a9b310111::Symbol237 inline bool IsType() const {
238 return type == MESSAGE || type == ENUM;
239 }
IsAggregategoogle::protobuf::__anona61a9b310111::Symbol240 inline bool IsAggregate() const {
241 return type == MESSAGE || type == PACKAGE
242 || type == ENUM || type == SERVICE;
243 }
244
245 #define CONSTRUCTOR(TYPE, TYPE_CONSTANT, FIELD) \
246 inline explicit Symbol(const TYPE* value) { \
247 type = TYPE_CONSTANT; \
248 this->FIELD = value; \
249 }
250
CONSTRUCTORgoogle::protobuf::__anona61a9b310111::Symbol251 CONSTRUCTOR(Descriptor , MESSAGE , descriptor )
252 CONSTRUCTOR(FieldDescriptor , FIELD , field_descriptor )
253 CONSTRUCTOR(EnumDescriptor , ENUM , enum_descriptor )
254 CONSTRUCTOR(EnumValueDescriptor, ENUM_VALUE, enum_value_descriptor )
255 CONSTRUCTOR(ServiceDescriptor , SERVICE , service_descriptor )
256 CONSTRUCTOR(MethodDescriptor , METHOD , method_descriptor )
257 CONSTRUCTOR(FileDescriptor , PACKAGE , package_file_descriptor)
258 #undef CONSTRUCTOR
259
260 const FileDescriptor* GetFile() const {
261 switch (type) {
262 case NULL_SYMBOL: return NULL;
263 case MESSAGE : return descriptor ->file();
264 case FIELD : return field_descriptor ->file();
265 case ENUM : return enum_descriptor ->file();
266 case ENUM_VALUE : return enum_value_descriptor->type()->file();
267 case SERVICE : return service_descriptor ->file();
268 case METHOD : return method_descriptor ->service()->file();
269 case PACKAGE : return package_file_descriptor;
270 }
271 return NULL;
272 }
273 };
274
275 const Symbol kNullSymbol;
276
277 typedef hash_map<const char*, Symbol,
278 hash<const char*>, streq>
279 SymbolsByNameMap;
280 typedef hash_map<PointerStringPair, Symbol,
281 PointerStringPairHash, PointerStringPairEqual>
282 SymbolsByParentMap;
283 typedef hash_map<const char*, const FileDescriptor*,
284 hash<const char*>, streq>
285 FilesByNameMap;
286 typedef hash_map<PointerStringPair, const FieldDescriptor*,
287 PointerStringPairHash, PointerStringPairEqual>
288 FieldsByNameMap;
289 typedef hash_map<DescriptorIntPair, const FieldDescriptor*,
290 PointerIntegerPairHash<DescriptorIntPair> >
291 FieldsByNumberMap;
292 typedef hash_map<EnumIntPair, const EnumValueDescriptor*,
293 PointerIntegerPairHash<EnumIntPair> >
294 EnumValuesByNumberMap;
295 // This is a map rather than a hash_map, since we use it to iterate
296 // through all the extensions that extend a given Descriptor, and an
297 // ordered data structure that implements lower_bound is convenient
298 // for that.
299 typedef map<DescriptorIntPair, const FieldDescriptor*>
300 ExtensionsGroupedByDescriptorMap;
301
302 } // anonymous namespace
303
304 // ===================================================================
305 // DescriptorPool::Tables
306
307 class DescriptorPool::Tables {
308 public:
309 Tables();
310 ~Tables();
311
312 // Checkpoint the state of the tables. Future calls to Rollback() will
313 // return the Tables to this state. This is used when building files, since
314 // some kinds of validation errors cannot be detected until the file's
315 // descriptors have already been added to the tables. BuildFile() calls
316 // Checkpoint() before it starts building and Rollback() if it encounters
317 // an error.
318 void Checkpoint();
319
320 // Roll back the Tables to the state of the last Checkpoint(), removing
321 // everything that was added after that point.
322 void Rollback();
323
324 // The stack of files which are currently being built. Used to detect
325 // cyclic dependencies when loading files from a DescriptorDatabase. Not
326 // used when fallback_database_ == NULL.
327 vector<string> pending_files_;
328
329 // A set of files which we have tried to load from the fallback database
330 // and encountered errors. We will not attempt to load them again.
331 // Not used when fallback_database_ == NULL.
332 hash_set<string> known_bad_files_;
333
334 // The set of descriptors for which we've already loaded the full
335 // set of extensions numbers from fallback_database_.
336 hash_set<const Descriptor*> extensions_loaded_from_db_;
337
338 // -----------------------------------------------------------------
339 // Finding items.
340
341 // Find symbols. This returns a null Symbol (symbol.IsNull() is true)
342 // if not found.
343 inline Symbol FindSymbol(const string& key) const;
344
345 // This implements the body of DescriptorPool::Find*ByName(). It should
346 // really be a private method of DescriptorPool, but that would require
347 // declaring Symbol in descriptor.h, which would drag all kinds of other
348 // stuff into the header. Yay C++.
349 Symbol FindByNameHelper(
350 const DescriptorPool* pool, const string& name) const;
351
352 // These return NULL if not found.
353 inline const FileDescriptor* FindFile(const string& key) const;
354 inline const FieldDescriptor* FindExtension(const Descriptor* extendee,
355 int number);
356 inline void FindAllExtensions(const Descriptor* extendee,
357 vector<const FieldDescriptor*>* out) const;
358
359 // -----------------------------------------------------------------
360 // Adding items.
361
362 // These add items to the corresponding tables. They return false if
363 // the key already exists in the table. For AddSymbol(), the string passed
364 // in must be one that was constructed using AllocateString(), as it will
365 // be used as a key in the symbols_by_name_ map without copying.
366 bool AddSymbol(const string& full_name, Symbol symbol);
367 bool AddFile(const FileDescriptor* file);
368 bool AddExtension(const FieldDescriptor* field);
369
370 // -----------------------------------------------------------------
371 // Allocating memory.
372
373 // Allocate an object which will be reclaimed when the pool is
374 // destroyed. Note that the object's destructor will never be called,
375 // so its fields must be plain old data (primitive data types and
376 // pointers). All of the descriptor types are such objects.
377 template<typename Type> Type* Allocate();
378
379 // Allocate an array of objects which will be reclaimed when the
380 // pool in destroyed. Again, destructors are never called.
381 template<typename Type> Type* AllocateArray(int count);
382
383 // Allocate a string which will be destroyed when the pool is destroyed.
384 // The string is initialized to the given value for convenience.
385 string* AllocateString(const string& value);
386
387 // Allocate a protocol message object. Some older versions of GCC have
388 // trouble understanding explicit template instantiations in some cases, so
389 // in those cases we have to pass a dummy pointer of the right type as the
390 // parameter instead of specifying the type explicitly.
391 template<typename Type> Type* AllocateMessage(Type* dummy = NULL);
392
393 // Allocate a FileDescriptorTables object.
394 FileDescriptorTables* AllocateFileTables();
395
396 private:
397 vector<string*> strings_; // All strings in the pool.
398 vector<Message*> messages_; // All messages in the pool.
399 vector<FileDescriptorTables*> file_tables_; // All file tables in the pool.
400 vector<void*> allocations_; // All other memory allocated in the pool.
401
402 SymbolsByNameMap symbols_by_name_;
403 FilesByNameMap files_by_name_;
404 ExtensionsGroupedByDescriptorMap extensions_;
405
406 int strings_before_checkpoint_;
407 int messages_before_checkpoint_;
408 int file_tables_before_checkpoint_;
409 int allocations_before_checkpoint_;
410 vector<const char* > symbols_after_checkpoint_;
411 vector<const char* > files_after_checkpoint_;
412 vector<DescriptorIntPair> extensions_after_checkpoint_;
413
414 // Allocate some bytes which will be reclaimed when the pool is
415 // destroyed.
416 void* AllocateBytes(int size);
417 };
418
419 // Contains tables specific to a particular file. These tables are not
420 // modified once the file has been constructed, so they need not be
421 // protected by a mutex. This makes operations that depend only on the
422 // contents of a single file -- e.g. Descriptor::FindFieldByName() --
423 // lock-free.
424 //
425 // For historical reasons, the definitions of the methods of
426 // FileDescriptorTables and DescriptorPool::Tables are interleaved below.
427 // These used to be a single class.
428 class FileDescriptorTables {
429 public:
430 FileDescriptorTables();
431 ~FileDescriptorTables();
432
433 // Empty table, used with placeholder files.
434 static const FileDescriptorTables kEmpty;
435
436 // -----------------------------------------------------------------
437 // Finding items.
438
439 // Find symbols. These return a null Symbol (symbol.IsNull() is true)
440 // if not found.
441 inline Symbol FindNestedSymbol(const void* parent,
442 const string& name) const;
443 inline Symbol FindNestedSymbolOfType(const void* parent,
444 const string& name,
445 const Symbol::Type type) const;
446
447 // These return NULL if not found.
448 inline const FieldDescriptor* FindFieldByNumber(
449 const Descriptor* parent, int number) const;
450 inline const FieldDescriptor* FindFieldByLowercaseName(
451 const void* parent, const string& lowercase_name) const;
452 inline const FieldDescriptor* FindFieldByCamelcaseName(
453 const void* parent, const string& camelcase_name) const;
454 inline const EnumValueDescriptor* FindEnumValueByNumber(
455 const EnumDescriptor* parent, int number) const;
456
457 // -----------------------------------------------------------------
458 // Adding items.
459
460 // These add items to the corresponding tables. They return false if
461 // the key already exists in the table. For AddAliasUnderParent(), the
462 // string passed in must be one that was constructed using AllocateString(),
463 // as it will be used as a key in the symbols_by_parent_ map without copying.
464 bool AddAliasUnderParent(const void* parent, const string& name,
465 Symbol symbol);
466 bool AddFieldByNumber(const FieldDescriptor* field);
467 bool AddEnumValueByNumber(const EnumValueDescriptor* value);
468
469 // Adds the field to the lowercase_name and camelcase_name maps. Never
470 // fails because we allow duplicates; the first field by the name wins.
471 void AddFieldByStylizedNames(const FieldDescriptor* field);
472
473 private:
474 SymbolsByParentMap symbols_by_parent_;
475 FieldsByNameMap fields_by_lowercase_name_;
476 FieldsByNameMap fields_by_camelcase_name_;
477 FieldsByNumberMap fields_by_number_; // Not including extensions.
478 EnumValuesByNumberMap enum_values_by_number_;
479 };
480
Tables()481 DescriptorPool::Tables::Tables()
482 : strings_before_checkpoint_(0),
483 messages_before_checkpoint_(0),
484 allocations_before_checkpoint_(0) {}
485
~Tables()486 DescriptorPool::Tables::~Tables() {
487 // Note that the deletion order is important, since the destructors of some
488 // messages may refer to objects in allocations_.
489 STLDeleteElements(&messages_);
490 for (int i = 0; i < allocations_.size(); i++) {
491 operator delete(allocations_[i]);
492 }
493 STLDeleteElements(&strings_);
494 STLDeleteElements(&file_tables_);
495 }
496
FileDescriptorTables()497 FileDescriptorTables::FileDescriptorTables() {}
~FileDescriptorTables()498 FileDescriptorTables::~FileDescriptorTables() {}
499
500 const FileDescriptorTables FileDescriptorTables::kEmpty;
501
Checkpoint()502 void DescriptorPool::Tables::Checkpoint() {
503 strings_before_checkpoint_ = strings_.size();
504 messages_before_checkpoint_ = messages_.size();
505 file_tables_before_checkpoint_ = file_tables_.size();
506 allocations_before_checkpoint_ = allocations_.size();
507
508 symbols_after_checkpoint_.clear();
509 files_after_checkpoint_.clear();
510 extensions_after_checkpoint_.clear();
511 }
512
Rollback()513 void DescriptorPool::Tables::Rollback() {
514 for (int i = 0; i < symbols_after_checkpoint_.size(); i++) {
515 symbols_by_name_.erase(symbols_after_checkpoint_[i]);
516 }
517 for (int i = 0; i < files_after_checkpoint_.size(); i++) {
518 files_by_name_.erase(files_after_checkpoint_[i]);
519 }
520 for (int i = 0; i < extensions_after_checkpoint_.size(); i++) {
521 extensions_.erase(extensions_after_checkpoint_[i]);
522 }
523
524 symbols_after_checkpoint_.clear();
525 files_after_checkpoint_.clear();
526 extensions_after_checkpoint_.clear();
527
528 STLDeleteContainerPointers(
529 strings_.begin() + strings_before_checkpoint_, strings_.end());
530 STLDeleteContainerPointers(
531 messages_.begin() + messages_before_checkpoint_, messages_.end());
532 STLDeleteContainerPointers(
533 file_tables_.begin() + file_tables_before_checkpoint_, file_tables_.end());
534 for (int i = allocations_before_checkpoint_; i < allocations_.size(); i++) {
535 operator delete(allocations_[i]);
536 }
537
538 strings_.resize(strings_before_checkpoint_);
539 messages_.resize(messages_before_checkpoint_);
540 file_tables_.resize(file_tables_before_checkpoint_);
541 allocations_.resize(allocations_before_checkpoint_);
542 }
543
544 // -------------------------------------------------------------------
545
FindSymbol(const string & key) const546 inline Symbol DescriptorPool::Tables::FindSymbol(const string& key) const {
547 const Symbol* result = FindOrNull(symbols_by_name_, key.c_str());
548 if (result == NULL) {
549 return kNullSymbol;
550 } else {
551 return *result;
552 }
553 }
554
FindNestedSymbol(const void * parent,const string & name) const555 inline Symbol FileDescriptorTables::FindNestedSymbol(
556 const void* parent, const string& name) const {
557 const Symbol* result =
558 FindOrNull(symbols_by_parent_, PointerStringPair(parent, name.c_str()));
559 if (result == NULL) {
560 return kNullSymbol;
561 } else {
562 return *result;
563 }
564 }
565
FindNestedSymbolOfType(const void * parent,const string & name,const Symbol::Type type) const566 inline Symbol FileDescriptorTables::FindNestedSymbolOfType(
567 const void* parent, const string& name, const Symbol::Type type) const {
568 Symbol result = FindNestedSymbol(parent, name);
569 if (result.type != type) return kNullSymbol;
570 return result;
571 }
572
FindByNameHelper(const DescriptorPool * pool,const string & name) const573 Symbol DescriptorPool::Tables::FindByNameHelper(
574 const DescriptorPool* pool, const string& name) const {
575 MutexLockMaybe lock(pool->mutex_);
576 Symbol result = FindSymbol(name);
577
578 if (result.IsNull() && pool->underlay_ != NULL) {
579 // Symbol not found; check the underlay.
580 result =
581 pool->underlay_->tables_->FindByNameHelper(pool->underlay_, name);
582 }
583
584 if (result.IsNull()) {
585 // Symbol still not found, so check fallback database.
586 if (pool->TryFindSymbolInFallbackDatabase(name)) {
587 result = FindSymbol(name);
588 }
589 }
590
591 return result;
592 }
593
FindFile(const string & key) const594 inline const FileDescriptor* DescriptorPool::Tables::FindFile(
595 const string& key) const {
596 return FindPtrOrNull(files_by_name_, key.c_str());
597 }
598
FindFieldByNumber(const Descriptor * parent,int number) const599 inline const FieldDescriptor* FileDescriptorTables::FindFieldByNumber(
600 const Descriptor* parent, int number) const {
601 return FindPtrOrNull(fields_by_number_, make_pair(parent, number));
602 }
603
FindFieldByLowercaseName(const void * parent,const string & lowercase_name) const604 inline const FieldDescriptor* FileDescriptorTables::FindFieldByLowercaseName(
605 const void* parent, const string& lowercase_name) const {
606 return FindPtrOrNull(fields_by_lowercase_name_,
607 PointerStringPair(parent, lowercase_name.c_str()));
608 }
609
FindFieldByCamelcaseName(const void * parent,const string & camelcase_name) const610 inline const FieldDescriptor* FileDescriptorTables::FindFieldByCamelcaseName(
611 const void* parent, const string& camelcase_name) const {
612 return FindPtrOrNull(fields_by_camelcase_name_,
613 PointerStringPair(parent, camelcase_name.c_str()));
614 }
615
FindEnumValueByNumber(const EnumDescriptor * parent,int number) const616 inline const EnumValueDescriptor* FileDescriptorTables::FindEnumValueByNumber(
617 const EnumDescriptor* parent, int number) const {
618 return FindPtrOrNull(enum_values_by_number_, make_pair(parent, number));
619 }
620
FindExtension(const Descriptor * extendee,int number)621 inline const FieldDescriptor* DescriptorPool::Tables::FindExtension(
622 const Descriptor* extendee, int number) {
623 return FindPtrOrNull(extensions_, make_pair(extendee, number));
624 }
625
FindAllExtensions(const Descriptor * extendee,vector<const FieldDescriptor * > * out) const626 inline void DescriptorPool::Tables::FindAllExtensions(
627 const Descriptor* extendee, vector<const FieldDescriptor*>* out) const {
628 ExtensionsGroupedByDescriptorMap::const_iterator it =
629 extensions_.lower_bound(make_pair(extendee, 0));
630 for (; it != extensions_.end() && it->first.first == extendee; ++it) {
631 out->push_back(it->second);
632 }
633 }
634
635 // -------------------------------------------------------------------
636
AddSymbol(const string & full_name,Symbol symbol)637 bool DescriptorPool::Tables::AddSymbol(
638 const string& full_name, Symbol symbol) {
639 if (InsertIfNotPresent(&symbols_by_name_, full_name.c_str(), symbol)) {
640 symbols_after_checkpoint_.push_back(full_name.c_str());
641 return true;
642 } else {
643 return false;
644 }
645 }
646
AddAliasUnderParent(const void * parent,const string & name,Symbol symbol)647 bool FileDescriptorTables::AddAliasUnderParent(
648 const void* parent, const string& name, Symbol symbol) {
649 PointerStringPair by_parent_key(parent, name.c_str());
650 return InsertIfNotPresent(&symbols_by_parent_, by_parent_key, symbol);
651 }
652
AddFile(const FileDescriptor * file)653 bool DescriptorPool::Tables::AddFile(const FileDescriptor* file) {
654 if (InsertIfNotPresent(&files_by_name_, file->name().c_str(), file)) {
655 files_after_checkpoint_.push_back(file->name().c_str());
656 return true;
657 } else {
658 return false;
659 }
660 }
661
AddFieldByStylizedNames(const FieldDescriptor * field)662 void FileDescriptorTables::AddFieldByStylizedNames(
663 const FieldDescriptor* field) {
664 const void* parent;
665 if (field->is_extension()) {
666 if (field->extension_scope() == NULL) {
667 parent = field->file();
668 } else {
669 parent = field->extension_scope();
670 }
671 } else {
672 parent = field->containing_type();
673 }
674
675 PointerStringPair lowercase_key(parent, field->lowercase_name().c_str());
676 InsertIfNotPresent(&fields_by_lowercase_name_, lowercase_key, field);
677
678 PointerStringPair camelcase_key(parent, field->camelcase_name().c_str());
679 InsertIfNotPresent(&fields_by_camelcase_name_, camelcase_key, field);
680 }
681
AddFieldByNumber(const FieldDescriptor * field)682 bool FileDescriptorTables::AddFieldByNumber(const FieldDescriptor* field) {
683 DescriptorIntPair key(field->containing_type(), field->number());
684 return InsertIfNotPresent(&fields_by_number_, key, field);
685 }
686
AddEnumValueByNumber(const EnumValueDescriptor * value)687 bool FileDescriptorTables::AddEnumValueByNumber(
688 const EnumValueDescriptor* value) {
689 EnumIntPair key(value->type(), value->number());
690 return InsertIfNotPresent(&enum_values_by_number_, key, value);
691 }
692
AddExtension(const FieldDescriptor * field)693 bool DescriptorPool::Tables::AddExtension(const FieldDescriptor* field) {
694 DescriptorIntPair key(field->containing_type(), field->number());
695 if (InsertIfNotPresent(&extensions_, key, field)) {
696 extensions_after_checkpoint_.push_back(key);
697 return true;
698 } else {
699 return false;
700 }
701 }
702
703 // -------------------------------------------------------------------
704
705 template<typename Type>
Allocate()706 Type* DescriptorPool::Tables::Allocate() {
707 return reinterpret_cast<Type*>(AllocateBytes(sizeof(Type)));
708 }
709
710 template<typename Type>
AllocateArray(int count)711 Type* DescriptorPool::Tables::AllocateArray(int count) {
712 return reinterpret_cast<Type*>(AllocateBytes(sizeof(Type) * count));
713 }
714
AllocateString(const string & value)715 string* DescriptorPool::Tables::AllocateString(const string& value) {
716 string* result = new string(value);
717 strings_.push_back(result);
718 return result;
719 }
720
721 template<typename Type>
AllocateMessage(Type * dummy)722 Type* DescriptorPool::Tables::AllocateMessage(Type* dummy) {
723 Type* result = new Type;
724 messages_.push_back(result);
725 return result;
726 }
727
AllocateFileTables()728 FileDescriptorTables* DescriptorPool::Tables::AllocateFileTables() {
729 FileDescriptorTables* result = new FileDescriptorTables;
730 file_tables_.push_back(result);
731 return result;
732 }
733
AllocateBytes(int size)734 void* DescriptorPool::Tables::AllocateBytes(int size) {
735 // TODO(kenton): Would it be worthwhile to implement this in some more
736 // sophisticated way? Probably not for the open source release, but for
737 // internal use we could easily plug in one of our existing memory pool
738 // allocators...
739 if (size == 0) return NULL;
740
741 void* result = operator new(size);
742 allocations_.push_back(result);
743 return result;
744 }
745
746 // ===================================================================
747 // DescriptorPool
748
~ErrorCollector()749 DescriptorPool::ErrorCollector::~ErrorCollector() {}
750
DescriptorPool()751 DescriptorPool::DescriptorPool()
752 : mutex_(NULL),
753 fallback_database_(NULL),
754 default_error_collector_(NULL),
755 underlay_(NULL),
756 tables_(new Tables),
757 enforce_dependencies_(true),
758 allow_unknown_(false) {}
759
DescriptorPool(DescriptorDatabase * fallback_database,ErrorCollector * error_collector)760 DescriptorPool::DescriptorPool(DescriptorDatabase* fallback_database,
761 ErrorCollector* error_collector)
762 : mutex_(new Mutex),
763 fallback_database_(fallback_database),
764 default_error_collector_(error_collector),
765 underlay_(NULL),
766 tables_(new Tables),
767 enforce_dependencies_(true),
768 allow_unknown_(false) {
769 }
770
DescriptorPool(const DescriptorPool * underlay)771 DescriptorPool::DescriptorPool(const DescriptorPool* underlay)
772 : mutex_(NULL),
773 fallback_database_(NULL),
774 default_error_collector_(NULL),
775 underlay_(underlay),
776 tables_(new Tables),
777 enforce_dependencies_(true),
778 allow_unknown_(false) {}
779
~DescriptorPool()780 DescriptorPool::~DescriptorPool() {
781 if (mutex_ != NULL) delete mutex_;
782 }
783
784 // DescriptorPool::BuildFile() defined later.
785 // DescriptorPool::BuildFileCollectingErrors() defined later.
786
InternalDontEnforceDependencies()787 void DescriptorPool::InternalDontEnforceDependencies() {
788 enforce_dependencies_ = false;
789 }
790
InternalIsFileLoaded(const string & filename) const791 bool DescriptorPool::InternalIsFileLoaded(const string& filename) const {
792 MutexLockMaybe lock(mutex_);
793 return tables_->FindFile(filename) != NULL;
794 }
795
796 // generated_pool ====================================================
797
798 namespace {
799
800
801 EncodedDescriptorDatabase* generated_database_ = NULL;
802 DescriptorPool* generated_pool_ = NULL;
803 GOOGLE_PROTOBUF_DECLARE_ONCE(generated_pool_init_);
804
DeleteGeneratedPool()805 void DeleteGeneratedPool() {
806 delete generated_database_;
807 generated_database_ = NULL;
808 delete generated_pool_;
809 generated_pool_ = NULL;
810 }
811
InitGeneratedPool()812 void InitGeneratedPool() {
813 generated_database_ = new EncodedDescriptorDatabase;
814 generated_pool_ = new DescriptorPool(generated_database_);
815
816 internal::OnShutdown(&DeleteGeneratedPool);
817 }
818
InitGeneratedPoolOnce()819 inline void InitGeneratedPoolOnce() {
820 ::google::protobuf::GoogleOnceInit(&generated_pool_init_, &InitGeneratedPool);
821 }
822
823 } // anonymous namespace
824
generated_pool()825 const DescriptorPool* DescriptorPool::generated_pool() {
826 InitGeneratedPoolOnce();
827 return generated_pool_;
828 }
829
internal_generated_pool()830 DescriptorPool* DescriptorPool::internal_generated_pool() {
831 InitGeneratedPoolOnce();
832 return generated_pool_;
833 }
834
InternalAddGeneratedFile(const void * encoded_file_descriptor,int size)835 void DescriptorPool::InternalAddGeneratedFile(
836 const void* encoded_file_descriptor, int size) {
837 // So, this function is called in the process of initializing the
838 // descriptors for generated proto classes. Each generated .pb.cc file
839 // has an internal procedure called AddDescriptors() which is called at
840 // process startup, and that function calls this one in order to register
841 // the raw bytes of the FileDescriptorProto representing the file.
842 //
843 // We do not actually construct the descriptor objects right away. We just
844 // hang on to the bytes until they are actually needed. We actually construct
845 // the descriptor the first time one of the following things happens:
846 // * Someone calls a method like descriptor(), GetDescriptor(), or
847 // GetReflection() on the generated types, which requires returning the
848 // descriptor or an object based on it.
849 // * Someone looks up the descriptor in DescriptorPool::generated_pool().
850 //
851 // Once one of these happens, the DescriptorPool actually parses the
852 // FileDescriptorProto and generates a FileDescriptor (and all its children)
853 // based on it.
854 //
855 // Note that FileDescriptorProto is itself a generated protocol message.
856 // Therefore, when we parse one, we have to be very careful to avoid using
857 // any descriptor-based operations, since this might cause infinite recursion
858 // or deadlock.
859 InitGeneratedPoolOnce();
860 GOOGLE_CHECK(generated_database_->Add(encoded_file_descriptor, size));
861 }
862
863
864 // Find*By* methods ==================================================
865
866 // TODO(kenton): There's a lot of repeated code here, but I'm not sure if
867 // there's any good way to factor it out. Think about this some time when
868 // there's nothing more important to do (read: never).
869
FindFileByName(const string & name) const870 const FileDescriptor* DescriptorPool::FindFileByName(const string& name) const {
871 MutexLockMaybe lock(mutex_);
872 const FileDescriptor* result = tables_->FindFile(name);
873 if (result != NULL) return result;
874 if (underlay_ != NULL) {
875 const FileDescriptor* result = underlay_->FindFileByName(name);
876 if (result != NULL) return result;
877 }
878 if (TryFindFileInFallbackDatabase(name)) {
879 const FileDescriptor* result = tables_->FindFile(name);
880 if (result != NULL) return result;
881 }
882 return NULL;
883 }
884
FindFileContainingSymbol(const string & symbol_name) const885 const FileDescriptor* DescriptorPool::FindFileContainingSymbol(
886 const string& symbol_name) const {
887 MutexLockMaybe lock(mutex_);
888 Symbol result = tables_->FindSymbol(symbol_name);
889 if (!result.IsNull()) return result.GetFile();
890 if (underlay_ != NULL) {
891 const FileDescriptor* result =
892 underlay_->FindFileContainingSymbol(symbol_name);
893 if (result != NULL) return result;
894 }
895 if (TryFindSymbolInFallbackDatabase(symbol_name)) {
896 Symbol result = tables_->FindSymbol(symbol_name);
897 if (!result.IsNull()) return result.GetFile();
898 }
899 return NULL;
900 }
901
FindMessageTypeByName(const string & name) const902 const Descriptor* DescriptorPool::FindMessageTypeByName(
903 const string& name) const {
904 Symbol result = tables_->FindByNameHelper(this, name);
905 return (result.type == Symbol::MESSAGE) ? result.descriptor : NULL;
906 }
907
FindFieldByName(const string & name) const908 const FieldDescriptor* DescriptorPool::FindFieldByName(
909 const string& name) const {
910 Symbol result = tables_->FindByNameHelper(this, name);
911 if (result.type == Symbol::FIELD &&
912 !result.field_descriptor->is_extension()) {
913 return result.field_descriptor;
914 } else {
915 return NULL;
916 }
917 }
918
FindExtensionByName(const string & name) const919 const FieldDescriptor* DescriptorPool::FindExtensionByName(
920 const string& name) const {
921 Symbol result = tables_->FindByNameHelper(this, name);
922 if (result.type == Symbol::FIELD &&
923 result.field_descriptor->is_extension()) {
924 return result.field_descriptor;
925 } else {
926 return NULL;
927 }
928 }
929
FindEnumTypeByName(const string & name) const930 const EnumDescriptor* DescriptorPool::FindEnumTypeByName(
931 const string& name) const {
932 Symbol result = tables_->FindByNameHelper(this, name);
933 return (result.type == Symbol::ENUM) ? result.enum_descriptor : NULL;
934 }
935
FindEnumValueByName(const string & name) const936 const EnumValueDescriptor* DescriptorPool::FindEnumValueByName(
937 const string& name) const {
938 Symbol result = tables_->FindByNameHelper(this, name);
939 return (result.type == Symbol::ENUM_VALUE) ?
940 result.enum_value_descriptor : NULL;
941 }
942
FindServiceByName(const string & name) const943 const ServiceDescriptor* DescriptorPool::FindServiceByName(
944 const string& name) const {
945 Symbol result = tables_->FindByNameHelper(this, name);
946 return (result.type == Symbol::SERVICE) ? result.service_descriptor : NULL;
947 }
948
FindMethodByName(const string & name) const949 const MethodDescriptor* DescriptorPool::FindMethodByName(
950 const string& name) const {
951 Symbol result = tables_->FindByNameHelper(this, name);
952 return (result.type == Symbol::METHOD) ? result.method_descriptor : NULL;
953 }
954
FindExtensionByNumber(const Descriptor * extendee,int number) const955 const FieldDescriptor* DescriptorPool::FindExtensionByNumber(
956 const Descriptor* extendee, int number) const {
957 MutexLockMaybe lock(mutex_);
958 const FieldDescriptor* result = tables_->FindExtension(extendee, number);
959 if (result != NULL) {
960 return result;
961 }
962 if (underlay_ != NULL) {
963 const FieldDescriptor* result =
964 underlay_->FindExtensionByNumber(extendee, number);
965 if (result != NULL) return result;
966 }
967 if (TryFindExtensionInFallbackDatabase(extendee, number)) {
968 const FieldDescriptor* result = tables_->FindExtension(extendee, number);
969 if (result != NULL) {
970 return result;
971 }
972 }
973 return NULL;
974 }
975
FindAllExtensions(const Descriptor * extendee,vector<const FieldDescriptor * > * out) const976 void DescriptorPool::FindAllExtensions(
977 const Descriptor* extendee, vector<const FieldDescriptor*>* out) const {
978 MutexLockMaybe lock(mutex_);
979
980 // Initialize tables_->extensions_ from the fallback database first
981 // (but do this only once per descriptor).
982 if (fallback_database_ != NULL &&
983 tables_->extensions_loaded_from_db_.count(extendee) == 0) {
984 vector<int> numbers;
985 if (fallback_database_->FindAllExtensionNumbers(extendee->full_name(),
986 &numbers)) {
987 for (int i = 0; i < numbers.size(); ++i) {
988 int number = numbers[i];
989 if (tables_->FindExtension(extendee, number) == NULL) {
990 TryFindExtensionInFallbackDatabase(extendee, number);
991 }
992 }
993 tables_->extensions_loaded_from_db_.insert(extendee);
994 }
995 }
996
997 tables_->FindAllExtensions(extendee, out);
998 if (underlay_ != NULL) {
999 underlay_->FindAllExtensions(extendee, out);
1000 }
1001 }
1002
1003 // -------------------------------------------------------------------
1004
1005 const FieldDescriptor*
FindFieldByNumber(int key) const1006 Descriptor::FindFieldByNumber(int key) const {
1007 const FieldDescriptor* result =
1008 file()->tables_->FindFieldByNumber(this, key);
1009 if (result == NULL || result->is_extension()) {
1010 return NULL;
1011 } else {
1012 return result;
1013 }
1014 }
1015
1016 const FieldDescriptor*
FindFieldByLowercaseName(const string & key) const1017 Descriptor::FindFieldByLowercaseName(const string& key) const {
1018 const FieldDescriptor* result =
1019 file()->tables_->FindFieldByLowercaseName(this, key);
1020 if (result == NULL || result->is_extension()) {
1021 return NULL;
1022 } else {
1023 return result;
1024 }
1025 }
1026
1027 const FieldDescriptor*
FindFieldByCamelcaseName(const string & key) const1028 Descriptor::FindFieldByCamelcaseName(const string& key) const {
1029 const FieldDescriptor* result =
1030 file()->tables_->FindFieldByCamelcaseName(this, key);
1031 if (result == NULL || result->is_extension()) {
1032 return NULL;
1033 } else {
1034 return result;
1035 }
1036 }
1037
1038 const FieldDescriptor*
FindFieldByName(const string & key) const1039 Descriptor::FindFieldByName(const string& key) const {
1040 Symbol result =
1041 file()->tables_->FindNestedSymbolOfType(this, key, Symbol::FIELD);
1042 if (!result.IsNull() && !result.field_descriptor->is_extension()) {
1043 return result.field_descriptor;
1044 } else {
1045 return NULL;
1046 }
1047 }
1048
1049 const FieldDescriptor*
FindExtensionByName(const string & key) const1050 Descriptor::FindExtensionByName(const string& key) const {
1051 Symbol result =
1052 file()->tables_->FindNestedSymbolOfType(this, key, Symbol::FIELD);
1053 if (!result.IsNull() && result.field_descriptor->is_extension()) {
1054 return result.field_descriptor;
1055 } else {
1056 return NULL;
1057 }
1058 }
1059
1060 const FieldDescriptor*
FindExtensionByLowercaseName(const string & key) const1061 Descriptor::FindExtensionByLowercaseName(const string& key) const {
1062 const FieldDescriptor* result =
1063 file()->tables_->FindFieldByLowercaseName(this, key);
1064 if (result == NULL || !result->is_extension()) {
1065 return NULL;
1066 } else {
1067 return result;
1068 }
1069 }
1070
1071 const FieldDescriptor*
FindExtensionByCamelcaseName(const string & key) const1072 Descriptor::FindExtensionByCamelcaseName(const string& key) const {
1073 const FieldDescriptor* result =
1074 file()->tables_->FindFieldByCamelcaseName(this, key);
1075 if (result == NULL || !result->is_extension()) {
1076 return NULL;
1077 } else {
1078 return result;
1079 }
1080 }
1081
1082 const Descriptor*
FindNestedTypeByName(const string & key) const1083 Descriptor::FindNestedTypeByName(const string& key) const {
1084 Symbol result =
1085 file()->tables_->FindNestedSymbolOfType(this, key, Symbol::MESSAGE);
1086 if (!result.IsNull()) {
1087 return result.descriptor;
1088 } else {
1089 return NULL;
1090 }
1091 }
1092
1093 const EnumDescriptor*
FindEnumTypeByName(const string & key) const1094 Descriptor::FindEnumTypeByName(const string& key) const {
1095 Symbol result =
1096 file()->tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM);
1097 if (!result.IsNull()) {
1098 return result.enum_descriptor;
1099 } else {
1100 return NULL;
1101 }
1102 }
1103
1104 const EnumValueDescriptor*
FindEnumValueByName(const string & key) const1105 Descriptor::FindEnumValueByName(const string& key) const {
1106 Symbol result =
1107 file()->tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM_VALUE);
1108 if (!result.IsNull()) {
1109 return result.enum_value_descriptor;
1110 } else {
1111 return NULL;
1112 }
1113 }
1114
1115 const EnumValueDescriptor*
FindValueByName(const string & key) const1116 EnumDescriptor::FindValueByName(const string& key) const {
1117 Symbol result =
1118 file()->tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM_VALUE);
1119 if (!result.IsNull()) {
1120 return result.enum_value_descriptor;
1121 } else {
1122 return NULL;
1123 }
1124 }
1125
1126 const EnumValueDescriptor*
FindValueByNumber(int key) const1127 EnumDescriptor::FindValueByNumber(int key) const {
1128 return file()->tables_->FindEnumValueByNumber(this, key);
1129 }
1130
1131 const MethodDescriptor*
FindMethodByName(const string & key) const1132 ServiceDescriptor::FindMethodByName(const string& key) const {
1133 Symbol result =
1134 file()->tables_->FindNestedSymbolOfType(this, key, Symbol::METHOD);
1135 if (!result.IsNull()) {
1136 return result.method_descriptor;
1137 } else {
1138 return NULL;
1139 }
1140 }
1141
1142 const Descriptor*
FindMessageTypeByName(const string & key) const1143 FileDescriptor::FindMessageTypeByName(const string& key) const {
1144 Symbol result = tables_->FindNestedSymbolOfType(this, key, Symbol::MESSAGE);
1145 if (!result.IsNull()) {
1146 return result.descriptor;
1147 } else {
1148 return NULL;
1149 }
1150 }
1151
1152 const EnumDescriptor*
FindEnumTypeByName(const string & key) const1153 FileDescriptor::FindEnumTypeByName(const string& key) const {
1154 Symbol result = tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM);
1155 if (!result.IsNull()) {
1156 return result.enum_descriptor;
1157 } else {
1158 return NULL;
1159 }
1160 }
1161
1162 const EnumValueDescriptor*
FindEnumValueByName(const string & key) const1163 FileDescriptor::FindEnumValueByName(const string& key) const {
1164 Symbol result =
1165 tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM_VALUE);
1166 if (!result.IsNull()) {
1167 return result.enum_value_descriptor;
1168 } else {
1169 return NULL;
1170 }
1171 }
1172
1173 const ServiceDescriptor*
FindServiceByName(const string & key) const1174 FileDescriptor::FindServiceByName(const string& key) const {
1175 Symbol result = tables_->FindNestedSymbolOfType(this, key, Symbol::SERVICE);
1176 if (!result.IsNull()) {
1177 return result.service_descriptor;
1178 } else {
1179 return NULL;
1180 }
1181 }
1182
1183 const FieldDescriptor*
FindExtensionByName(const string & key) const1184 FileDescriptor::FindExtensionByName(const string& key) const {
1185 Symbol result = tables_->FindNestedSymbolOfType(this, key, Symbol::FIELD);
1186 if (!result.IsNull() && result.field_descriptor->is_extension()) {
1187 return result.field_descriptor;
1188 } else {
1189 return NULL;
1190 }
1191 }
1192
1193 const FieldDescriptor*
FindExtensionByLowercaseName(const string & key) const1194 FileDescriptor::FindExtensionByLowercaseName(const string& key) const {
1195 const FieldDescriptor* result = tables_->FindFieldByLowercaseName(this, key);
1196 if (result == NULL || !result->is_extension()) {
1197 return NULL;
1198 } else {
1199 return result;
1200 }
1201 }
1202
1203 const FieldDescriptor*
FindExtensionByCamelcaseName(const string & key) const1204 FileDescriptor::FindExtensionByCamelcaseName(const string& key) const {
1205 const FieldDescriptor* result = tables_->FindFieldByCamelcaseName(this, key);
1206 if (result == NULL || !result->is_extension()) {
1207 return NULL;
1208 } else {
1209 return result;
1210 }
1211 }
1212
IsExtensionNumber(int number) const1213 bool Descriptor::IsExtensionNumber(int number) const {
1214 // Linear search should be fine because we don't expect a message to have
1215 // more than a couple extension ranges.
1216 for (int i = 0; i < extension_range_count(); i++) {
1217 if (number >= extension_range(i)->start &&
1218 number < extension_range(i)->end) {
1219 return true;
1220 }
1221 }
1222 return false;
1223 }
1224
1225 // -------------------------------------------------------------------
1226
TryFindFileInFallbackDatabase(const string & name) const1227 bool DescriptorPool::TryFindFileInFallbackDatabase(const string& name) const {
1228 if (fallback_database_ == NULL) return false;
1229
1230 if (tables_->known_bad_files_.count(name) > 0) return false;
1231
1232 FileDescriptorProto file_proto;
1233 if (!fallback_database_->FindFileByName(name, &file_proto) ||
1234 BuildFileFromDatabase(file_proto) == NULL) {
1235 tables_->known_bad_files_.insert(name);
1236 return false;
1237 }
1238
1239 return true;
1240 }
1241
TryFindSymbolInFallbackDatabase(const string & name) const1242 bool DescriptorPool::TryFindSymbolInFallbackDatabase(const string& name) const {
1243 if (fallback_database_ == NULL) return false;
1244
1245 FileDescriptorProto file_proto;
1246 if (!fallback_database_->FindFileContainingSymbol(name, &file_proto)) {
1247 return false;
1248 }
1249
1250 if (tables_->FindFile(file_proto.name()) != NULL) {
1251 // We've already loaded this file, and it apparently doesn't contain the
1252 // symbol we're looking for. Some DescriptorDatabases return false
1253 // positives.
1254 return false;
1255 }
1256
1257 if (BuildFileFromDatabase(file_proto) == NULL) {
1258 return false;
1259 }
1260
1261 return true;
1262 }
1263
TryFindExtensionInFallbackDatabase(const Descriptor * containing_type,int field_number) const1264 bool DescriptorPool::TryFindExtensionInFallbackDatabase(
1265 const Descriptor* containing_type, int field_number) const {
1266 if (fallback_database_ == NULL) return false;
1267
1268 FileDescriptorProto file_proto;
1269 if (!fallback_database_->FindFileContainingExtension(
1270 containing_type->full_name(), field_number, &file_proto)) {
1271 return false;
1272 }
1273
1274 if (tables_->FindFile(file_proto.name()) != NULL) {
1275 // We've already loaded this file, and it apparently doesn't contain the
1276 // extension we're looking for. Some DescriptorDatabases return false
1277 // positives.
1278 return false;
1279 }
1280
1281 if (BuildFileFromDatabase(file_proto) == NULL) {
1282 return false;
1283 }
1284
1285 return true;
1286 }
1287
1288 // ===================================================================
1289
DefaultValueAsString(bool quote_string_type) const1290 string FieldDescriptor::DefaultValueAsString(bool quote_string_type) const {
1291 GOOGLE_CHECK(has_default_value()) << "No default value";
1292 switch (cpp_type()) {
1293 case CPPTYPE_INT32:
1294 return SimpleItoa(default_value_int32());
1295 break;
1296 case CPPTYPE_INT64:
1297 return SimpleItoa(default_value_int64());
1298 break;
1299 case CPPTYPE_UINT32:
1300 return SimpleItoa(default_value_uint32());
1301 break;
1302 case CPPTYPE_UINT64:
1303 return SimpleItoa(default_value_uint64());
1304 break;
1305 case CPPTYPE_FLOAT:
1306 return SimpleFtoa(default_value_float());
1307 break;
1308 case CPPTYPE_DOUBLE:
1309 return SimpleDtoa(default_value_double());
1310 break;
1311 case CPPTYPE_BOOL:
1312 return default_value_bool() ? "true" : "false";
1313 break;
1314 case CPPTYPE_STRING:
1315 if (quote_string_type) {
1316 return "\"" + CEscape(default_value_string()) + "\"";
1317 } else {
1318 if (type() == TYPE_BYTES) {
1319 return CEscape(default_value_string());
1320 } else {
1321 return default_value_string();
1322 }
1323 }
1324 break;
1325 case CPPTYPE_ENUM:
1326 return default_value_enum()->name();
1327 break;
1328 case CPPTYPE_MESSAGE:
1329 GOOGLE_LOG(DFATAL) << "Messages can't have default values!";
1330 break;
1331 }
1332 GOOGLE_LOG(FATAL) << "Can't get here: failed to get default value as string";
1333 return "";
1334 }
1335
1336 // CopyTo methods ====================================================
1337
CopyTo(FileDescriptorProto * proto) const1338 void FileDescriptor::CopyTo(FileDescriptorProto* proto) const {
1339 proto->set_name(name());
1340 if (!package().empty()) proto->set_package(package());
1341
1342 for (int i = 0; i < dependency_count(); i++) {
1343 proto->add_dependency(dependency(i)->name());
1344 }
1345
1346 for (int i = 0; i < message_type_count(); i++) {
1347 message_type(i)->CopyTo(proto->add_message_type());
1348 }
1349 for (int i = 0; i < enum_type_count(); i++) {
1350 enum_type(i)->CopyTo(proto->add_enum_type());
1351 }
1352 for (int i = 0; i < service_count(); i++) {
1353 service(i)->CopyTo(proto->add_service());
1354 }
1355 for (int i = 0; i < extension_count(); i++) {
1356 extension(i)->CopyTo(proto->add_extension());
1357 }
1358
1359 if (&options() != &FileOptions::default_instance()) {
1360 proto->mutable_options()->CopyFrom(options());
1361 }
1362 }
1363
CopyTo(DescriptorProto * proto) const1364 void Descriptor::CopyTo(DescriptorProto* proto) const {
1365 proto->set_name(name());
1366
1367 for (int i = 0; i < field_count(); i++) {
1368 field(i)->CopyTo(proto->add_field());
1369 }
1370 for (int i = 0; i < nested_type_count(); i++) {
1371 nested_type(i)->CopyTo(proto->add_nested_type());
1372 }
1373 for (int i = 0; i < enum_type_count(); i++) {
1374 enum_type(i)->CopyTo(proto->add_enum_type());
1375 }
1376 for (int i = 0; i < extension_range_count(); i++) {
1377 DescriptorProto::ExtensionRange* range = proto->add_extension_range();
1378 range->set_start(extension_range(i)->start);
1379 range->set_end(extension_range(i)->end);
1380 }
1381 for (int i = 0; i < extension_count(); i++) {
1382 extension(i)->CopyTo(proto->add_extension());
1383 }
1384
1385 if (&options() != &MessageOptions::default_instance()) {
1386 proto->mutable_options()->CopyFrom(options());
1387 }
1388 }
1389
CopyTo(FieldDescriptorProto * proto) const1390 void FieldDescriptor::CopyTo(FieldDescriptorProto* proto) const {
1391 proto->set_name(name());
1392 proto->set_number(number());
1393
1394 // Some compilers do not allow static_cast directly between two enum types,
1395 // so we must cast to int first.
1396 proto->set_label(static_cast<FieldDescriptorProto::Label>(
1397 implicit_cast<int>(label())));
1398 proto->set_type(static_cast<FieldDescriptorProto::Type>(
1399 implicit_cast<int>(type())));
1400
1401 if (is_extension()) {
1402 if (!containing_type()->is_unqualified_placeholder_) {
1403 proto->set_extendee(".");
1404 }
1405 proto->mutable_extendee()->append(containing_type()->full_name());
1406 }
1407
1408 if (cpp_type() == CPPTYPE_MESSAGE) {
1409 if (message_type()->is_placeholder_) {
1410 // We don't actually know if the type is a message type. It could be
1411 // an enum.
1412 proto->clear_type();
1413 }
1414
1415 if (!message_type()->is_unqualified_placeholder_) {
1416 proto->set_type_name(".");
1417 }
1418 proto->mutable_type_name()->append(message_type()->full_name());
1419 } else if (cpp_type() == CPPTYPE_ENUM) {
1420 if (!enum_type()->is_unqualified_placeholder_) {
1421 proto->set_type_name(".");
1422 }
1423 proto->mutable_type_name()->append(enum_type()->full_name());
1424 }
1425
1426 if (has_default_value()) {
1427 proto->set_default_value(DefaultValueAsString(false));
1428 }
1429
1430 if (&options() != &FieldOptions::default_instance()) {
1431 proto->mutable_options()->CopyFrom(options());
1432 }
1433 }
1434
CopyTo(EnumDescriptorProto * proto) const1435 void EnumDescriptor::CopyTo(EnumDescriptorProto* proto) const {
1436 proto->set_name(name());
1437
1438 for (int i = 0; i < value_count(); i++) {
1439 value(i)->CopyTo(proto->add_value());
1440 }
1441
1442 if (&options() != &EnumOptions::default_instance()) {
1443 proto->mutable_options()->CopyFrom(options());
1444 }
1445 }
1446
CopyTo(EnumValueDescriptorProto * proto) const1447 void EnumValueDescriptor::CopyTo(EnumValueDescriptorProto* proto) const {
1448 proto->set_name(name());
1449 proto->set_number(number());
1450
1451 if (&options() != &EnumValueOptions::default_instance()) {
1452 proto->mutable_options()->CopyFrom(options());
1453 }
1454 }
1455
CopyTo(ServiceDescriptorProto * proto) const1456 void ServiceDescriptor::CopyTo(ServiceDescriptorProto* proto) const {
1457 proto->set_name(name());
1458
1459 for (int i = 0; i < method_count(); i++) {
1460 method(i)->CopyTo(proto->add_method());
1461 }
1462
1463 if (&options() != &ServiceOptions::default_instance()) {
1464 proto->mutable_options()->CopyFrom(options());
1465 }
1466 }
1467
CopyTo(MethodDescriptorProto * proto) const1468 void MethodDescriptor::CopyTo(MethodDescriptorProto* proto) const {
1469 proto->set_name(name());
1470
1471 if (!input_type()->is_unqualified_placeholder_) {
1472 proto->set_input_type(".");
1473 }
1474 proto->mutable_input_type()->append(input_type()->full_name());
1475
1476 if (!output_type()->is_unqualified_placeholder_) {
1477 proto->set_output_type(".");
1478 }
1479 proto->mutable_output_type()->append(output_type()->full_name());
1480
1481 if (&options() != &MethodOptions::default_instance()) {
1482 proto->mutable_options()->CopyFrom(options());
1483 }
1484 }
1485
1486 // DebugString methods ===============================================
1487
1488 namespace {
1489
1490 // Used by each of the option formatters.
RetrieveOptions(const Message & options,vector<string> * option_entries)1491 bool RetrieveOptions(const Message &options, vector<string> *option_entries) {
1492 option_entries->clear();
1493 const Reflection* reflection = options.GetReflection();
1494 vector<const FieldDescriptor*> fields;
1495 reflection->ListFields(options, &fields);
1496 for (int i = 0; i < fields.size(); i++) {
1497 // Doesn't make sense to have message type fields here
1498 if (fields[i]->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
1499 continue;
1500 }
1501 int count = 1;
1502 bool repeated = false;
1503 if (fields[i]->is_repeated()) {
1504 count = reflection->FieldSize(options, fields[i]);
1505 repeated = true;
1506 }
1507 for (int j = 0; j < count; j++) {
1508 string fieldval;
1509 TextFormat::PrintFieldValueToString(options, fields[i],
1510 repeated ? count : -1, &fieldval);
1511 option_entries->push_back(fields[i]->name() + " = " + fieldval);
1512 }
1513 }
1514 return !option_entries->empty();
1515 }
1516
1517 // Formats options that all appear together in brackets. Does not include
1518 // brackets.
FormatBracketedOptions(const Message & options,string * output)1519 bool FormatBracketedOptions(const Message &options, string *output) {
1520 vector<string> all_options;
1521 if (RetrieveOptions(options, &all_options)) {
1522 output->append(JoinStrings(all_options, ", "));
1523 }
1524 return !all_options.empty();
1525 }
1526
1527 // Formats options one per line
FormatLineOptions(int depth,const Message & options,string * output)1528 bool FormatLineOptions(int depth, const Message &options, string *output) {
1529 string prefix(depth * 2, ' ');
1530 vector<string> all_options;
1531 if (RetrieveOptions(options, &all_options)) {
1532 for (int i = 0; i < all_options.size(); i++) {
1533 strings::SubstituteAndAppend(output, "$0option $1;\n",
1534 prefix, all_options[i]);
1535 }
1536 }
1537 return !all_options.empty();
1538 }
1539
1540 } // anonymous namespace
1541
DebugString() const1542 string FileDescriptor::DebugString() const {
1543 string contents = "syntax = \"proto2\";\n\n";
1544
1545 for (int i = 0; i < dependency_count(); i++) {
1546 strings::SubstituteAndAppend(&contents, "import \"$0\";\n",
1547 dependency(i)->name());
1548 }
1549
1550 if (!package().empty()) {
1551 strings::SubstituteAndAppend(&contents, "package $0;\n\n", package());
1552 }
1553
1554 if (FormatLineOptions(0, options(), &contents)) {
1555 contents.append("\n"); // add some space if we had options
1556 }
1557
1558 for (int i = 0; i < enum_type_count(); i++) {
1559 enum_type(i)->DebugString(0, &contents);
1560 contents.append("\n");
1561 }
1562
1563 // Find all the 'group' type extensions; we will not output their nested
1564 // definitions (those will be done with their group field descriptor).
1565 set<const Descriptor*> groups;
1566 for (int i = 0; i < extension_count(); i++) {
1567 if (extension(i)->type() == FieldDescriptor::TYPE_GROUP) {
1568 groups.insert(extension(i)->message_type());
1569 }
1570 }
1571
1572 for (int i = 0; i < message_type_count(); i++) {
1573 if (groups.count(message_type(i)) == 0) {
1574 strings::SubstituteAndAppend(&contents, "message $0",
1575 message_type(i)->name());
1576 message_type(i)->DebugString(0, &contents);
1577 contents.append("\n");
1578 }
1579 }
1580
1581 for (int i = 0; i < service_count(); i++) {
1582 service(i)->DebugString(&contents);
1583 contents.append("\n");
1584 }
1585
1586 const Descriptor* containing_type = NULL;
1587 for (int i = 0; i < extension_count(); i++) {
1588 if (extension(i)->containing_type() != containing_type) {
1589 if (i > 0) contents.append("}\n\n");
1590 containing_type = extension(i)->containing_type();
1591 strings::SubstituteAndAppend(&contents, "extend .$0 {\n",
1592 containing_type->full_name());
1593 }
1594 extension(i)->DebugString(1, &contents);
1595 }
1596 if (extension_count() > 0) contents.append("}\n\n");
1597
1598 return contents;
1599 }
1600
DebugString() const1601 string Descriptor::DebugString() const {
1602 string contents;
1603 strings::SubstituteAndAppend(&contents, "message $0", name());
1604 DebugString(0, &contents);
1605 return contents;
1606 }
1607
DebugString(int depth,string * contents) const1608 void Descriptor::DebugString(int depth, string *contents) const {
1609 string prefix(depth * 2, ' ');
1610 ++depth;
1611 contents->append(" {\n");
1612
1613 FormatLineOptions(depth, options(), contents);
1614
1615 // Find all the 'group' types for fields and extensions; we will not output
1616 // their nested definitions (those will be done with their group field
1617 // descriptor).
1618 set<const Descriptor*> groups;
1619 for (int i = 0; i < field_count(); i++) {
1620 if (field(i)->type() == FieldDescriptor::TYPE_GROUP) {
1621 groups.insert(field(i)->message_type());
1622 }
1623 }
1624 for (int i = 0; i < extension_count(); i++) {
1625 if (extension(i)->type() == FieldDescriptor::TYPE_GROUP) {
1626 groups.insert(extension(i)->message_type());
1627 }
1628 }
1629
1630 for (int i = 0; i < nested_type_count(); i++) {
1631 if (groups.count(nested_type(i)) == 0) {
1632 strings::SubstituteAndAppend(contents, "$0 message $1",
1633 prefix, nested_type(i)->name());
1634 nested_type(i)->DebugString(depth, contents);
1635 }
1636 }
1637 for (int i = 0; i < enum_type_count(); i++) {
1638 enum_type(i)->DebugString(depth, contents);
1639 }
1640 for (int i = 0; i < field_count(); i++) {
1641 field(i)->DebugString(depth, contents);
1642 }
1643
1644 for (int i = 0; i < extension_range_count(); i++) {
1645 strings::SubstituteAndAppend(contents, "$0 extensions $1 to $2;\n",
1646 prefix,
1647 extension_range(i)->start,
1648 extension_range(i)->end - 1);
1649 }
1650
1651 // Group extensions by what they extend, so they can be printed out together.
1652 const Descriptor* containing_type = NULL;
1653 for (int i = 0; i < extension_count(); i++) {
1654 if (extension(i)->containing_type() != containing_type) {
1655 if (i > 0) strings::SubstituteAndAppend(contents, "$0 }\n", prefix);
1656 containing_type = extension(i)->containing_type();
1657 strings::SubstituteAndAppend(contents, "$0 extend .$1 {\n",
1658 prefix, containing_type->full_name());
1659 }
1660 extension(i)->DebugString(depth + 1, contents);
1661 }
1662 if (extension_count() > 0)
1663 strings::SubstituteAndAppend(contents, "$0 }\n", prefix);
1664
1665 strings::SubstituteAndAppend(contents, "$0}\n", prefix);
1666 }
1667
DebugString() const1668 string FieldDescriptor::DebugString() const {
1669 string contents;
1670 int depth = 0;
1671 if (is_extension()) {
1672 strings::SubstituteAndAppend(&contents, "extend .$0 {\n",
1673 containing_type()->full_name());
1674 depth = 1;
1675 }
1676 DebugString(depth, &contents);
1677 if (is_extension()) {
1678 contents.append("}\n");
1679 }
1680 return contents;
1681 }
1682
DebugString(int depth,string * contents) const1683 void FieldDescriptor::DebugString(int depth, string *contents) const {
1684 string prefix(depth * 2, ' ');
1685 string field_type;
1686 switch (type()) {
1687 case TYPE_MESSAGE:
1688 field_type = "." + message_type()->full_name();
1689 break;
1690 case TYPE_ENUM:
1691 field_type = "." + enum_type()->full_name();
1692 break;
1693 default:
1694 field_type = kTypeToName[type()];
1695 }
1696
1697 strings::SubstituteAndAppend(contents, "$0$1 $2 $3 = $4",
1698 prefix,
1699 kLabelToName[label()],
1700 field_type,
1701 type() == TYPE_GROUP ? message_type()->name() :
1702 name(),
1703 number());
1704
1705 bool bracketed = false;
1706 if (has_default_value()) {
1707 bracketed = true;
1708 strings::SubstituteAndAppend(contents, " [default = $0",
1709 DefaultValueAsString(true));
1710 }
1711
1712 string formatted_options;
1713 if (FormatBracketedOptions(options(), &formatted_options)) {
1714 contents->append(bracketed ? ", " : " [");
1715 bracketed = true;
1716 contents->append(formatted_options);
1717 }
1718
1719 if (bracketed) {
1720 contents->append("]");
1721 }
1722
1723 if (type() == TYPE_GROUP) {
1724 message_type()->DebugString(depth, contents);
1725 } else {
1726 contents->append(";\n");
1727 }
1728 }
1729
DebugString() const1730 string EnumDescriptor::DebugString() const {
1731 string contents;
1732 DebugString(0, &contents);
1733 return contents;
1734 }
1735
DebugString(int depth,string * contents) const1736 void EnumDescriptor::DebugString(int depth, string *contents) const {
1737 string prefix(depth * 2, ' ');
1738 ++depth;
1739 strings::SubstituteAndAppend(contents, "$0enum $1 {\n",
1740 prefix, name());
1741
1742 FormatLineOptions(depth, options(), contents);
1743
1744 for (int i = 0; i < value_count(); i++) {
1745 value(i)->DebugString(depth, contents);
1746 }
1747 strings::SubstituteAndAppend(contents, "$0}\n", prefix);
1748 }
1749
DebugString() const1750 string EnumValueDescriptor::DebugString() const {
1751 string contents;
1752 DebugString(0, &contents);
1753 return contents;
1754 }
1755
DebugString(int depth,string * contents) const1756 void EnumValueDescriptor::DebugString(int depth, string *contents) const {
1757 string prefix(depth * 2, ' ');
1758 strings::SubstituteAndAppend(contents, "$0$1 = $2",
1759 prefix, name(), number());
1760
1761 string formatted_options;
1762 if (FormatBracketedOptions(options(), &formatted_options)) {
1763 strings::SubstituteAndAppend(contents, " [$0]", formatted_options);
1764 }
1765 contents->append(";\n");
1766 }
1767
DebugString() const1768 string ServiceDescriptor::DebugString() const {
1769 string contents;
1770 DebugString(&contents);
1771 return contents;
1772 }
1773
DebugString(string * contents) const1774 void ServiceDescriptor::DebugString(string *contents) const {
1775 strings::SubstituteAndAppend(contents, "service $0 {\n", name());
1776
1777 FormatLineOptions(1, options(), contents);
1778
1779 for (int i = 0; i < method_count(); i++) {
1780 method(i)->DebugString(1, contents);
1781 }
1782
1783 contents->append("}\n");
1784 }
1785
DebugString() const1786 string MethodDescriptor::DebugString() const {
1787 string contents;
1788 DebugString(0, &contents);
1789 return contents;
1790 }
1791
DebugString(int depth,string * contents) const1792 void MethodDescriptor::DebugString(int depth, string *contents) const {
1793 string prefix(depth * 2, ' ');
1794 ++depth;
1795 strings::SubstituteAndAppend(contents, "$0rpc $1(.$2) returns (.$3)",
1796 prefix, name(),
1797 input_type()->full_name(),
1798 output_type()->full_name());
1799
1800 string formatted_options;
1801 if (FormatLineOptions(depth, options(), &formatted_options)) {
1802 strings::SubstituteAndAppend(contents, " {\n$0$1}\n",
1803 formatted_options, prefix);
1804 } else {
1805 contents->append(";\n");
1806 }
1807 }
1808 // ===================================================================
1809
1810 namespace {
1811
1812 // Represents an options message to interpret. Extension names in the option
1813 // name are respolved relative to name_scope. element_name and orig_opt are
1814 // used only for error reporting (since the parser records locations against
1815 // pointers in the original options, not the mutable copy). The Message must be
1816 // one of the Options messages in descriptor.proto.
1817 struct OptionsToInterpret {
OptionsToInterpretgoogle::protobuf::__anona61a9b310511::OptionsToInterpret1818 OptionsToInterpret(const string& ns,
1819 const string& el,
1820 const Message* orig_opt,
1821 Message* opt)
1822 : name_scope(ns),
1823 element_name(el),
1824 original_options(orig_opt),
1825 options(opt) {
1826 }
1827 string name_scope;
1828 string element_name;
1829 const Message* original_options;
1830 Message* options;
1831 };
1832
1833 } // namespace
1834
1835 class DescriptorBuilder {
1836 public:
1837 DescriptorBuilder(const DescriptorPool* pool,
1838 DescriptorPool::Tables* tables,
1839 DescriptorPool::ErrorCollector* error_collector);
1840 ~DescriptorBuilder();
1841
1842 const FileDescriptor* BuildFile(const FileDescriptorProto& proto);
1843
1844 private:
1845 friend class OptionInterpreter;
1846
1847 const DescriptorPool* pool_;
1848 DescriptorPool::Tables* tables_; // for convenience
1849 DescriptorPool::ErrorCollector* error_collector_;
1850
1851 // As we build descriptors we store copies of the options messages in
1852 // them. We put pointers to those copies in this vector, as we build, so we
1853 // can later (after cross-linking) interpret those options.
1854 vector<OptionsToInterpret> options_to_interpret_;
1855
1856 bool had_errors_;
1857 string filename_;
1858 FileDescriptor* file_;
1859 FileDescriptorTables* file_tables_;
1860
1861 // If LookupSymbol() finds a symbol that is in a file which is not a declared
1862 // dependency of this file, it will fail, but will set
1863 // possible_undeclared_dependency_ to point at that file. This is only used
1864 // by AddNotDefinedError() to report a more useful error message.
1865 // possible_undeclared_dependency_name_ is the name of the symbol that was
1866 // actually found in possible_undeclared_dependency_, which may be a parent
1867 // of the symbol actually looked for.
1868 const FileDescriptor* possible_undeclared_dependency_;
1869 string possible_undeclared_dependency_name_;
1870
1871 void AddError(const string& element_name,
1872 const Message& descriptor,
1873 DescriptorPool::ErrorCollector::ErrorLocation location,
1874 const string& error);
1875
1876 // Adds an error indicating that undefined_symbol was not defined. Must
1877 // only be called after LookupSymbol() fails.
1878 void AddNotDefinedError(
1879 const string& element_name,
1880 const Message& descriptor,
1881 DescriptorPool::ErrorCollector::ErrorLocation location,
1882 const string& undefined_symbol);
1883
1884 // Silly helper which determines if the given file is in the given package.
1885 // I.e., either file->package() == package_name or file->package() is a
1886 // nested package within package_name.
1887 bool IsInPackage(const FileDescriptor* file, const string& package_name);
1888
1889 // Like tables_->FindSymbol(), but additionally:
1890 // - Search the pool's underlay if not found in tables_.
1891 // - Insure that the resulting Symbol is from one of the file's declared
1892 // dependencies.
1893 Symbol FindSymbol(const string& name);
1894
1895 // Like FindSymbol() but does not require that the symbol is in one of the
1896 // file's declared dependencies.
1897 Symbol FindSymbolNotEnforcingDeps(const string& name);
1898
1899 // Like FindSymbol(), but looks up the name relative to some other symbol
1900 // name. This first searches siblings of relative_to, then siblings of its
1901 // parents, etc. For example, LookupSymbol("foo.bar", "baz.qux.corge") makes
1902 // the following calls, returning the first non-null result:
1903 // FindSymbol("baz.qux.foo.bar"), FindSymbol("baz.foo.bar"),
1904 // FindSymbol("foo.bar"). If AllowUnknownDependencies() has been called
1905 // on the DescriptorPool, this will generate a placeholder type if
1906 // the name is not found (unless the name itself is malformed). The
1907 // placeholder_type parameter indicates what kind of placeholder should be
1908 // constructed in this case. The resolve_mode parameter determines whether
1909 // any symbol is returned, or only symbols that are types. Note, however,
1910 // that LookupSymbol may still return a non-type symbol in LOOKUP_TYPES mode,
1911 // if it believes that's all it could refer to. The caller should always
1912 // check that it receives the type of symbol it was expecting.
1913 enum PlaceholderType {
1914 PLACEHOLDER_MESSAGE,
1915 PLACEHOLDER_ENUM,
1916 PLACEHOLDER_EXTENDABLE_MESSAGE
1917 };
1918 enum ResolveMode {
1919 LOOKUP_ALL, LOOKUP_TYPES
1920 };
1921 Symbol LookupSymbol(const string& name, const string& relative_to,
1922 PlaceholderType placeholder_type = PLACEHOLDER_MESSAGE,
1923 ResolveMode resolve_mode = LOOKUP_ALL);
1924
1925 // Like LookupSymbol() but will not return a placeholder even if
1926 // AllowUnknownDependencies() has been used.
1927 Symbol LookupSymbolNoPlaceholder(const string& name,
1928 const string& relative_to,
1929 ResolveMode resolve_mode = LOOKUP_ALL);
1930
1931 // Creates a placeholder type suitable for return from LookupSymbol(). May
1932 // return kNullSymbol if the name is not a valid type name.
1933 Symbol NewPlaceholder(const string& name, PlaceholderType placeholder_type);
1934
1935 // Creates a placeholder file. Never returns NULL. This is used when an
1936 // import is not found and AllowUnknownDependencies() is enabled.
1937 const FileDescriptor* NewPlaceholderFile(const string& name);
1938
1939 // Calls tables_->AddSymbol() and records an error if it fails. Returns
1940 // true if successful or false if failed, though most callers can ignore
1941 // the return value since an error has already been recorded.
1942 bool AddSymbol(const string& full_name,
1943 const void* parent, const string& name,
1944 const Message& proto, Symbol symbol);
1945
1946 // Like AddSymbol(), but succeeds if the symbol is already defined as long
1947 // as the existing definition is also a package (because it's OK to define
1948 // the same package in two different files). Also adds all parents of the
1949 // packgae to the symbol table (e.g. AddPackage("foo.bar", ...) will add
1950 // "foo.bar" and "foo" to the table).
1951 void AddPackage(const string& name, const Message& proto,
1952 const FileDescriptor* file);
1953
1954 // Checks that the symbol name contains only alphanumeric characters and
1955 // underscores. Records an error otherwise.
1956 void ValidateSymbolName(const string& name, const string& full_name,
1957 const Message& proto);
1958
1959 // Like ValidateSymbolName(), but the name is allowed to contain periods and
1960 // an error is indicated by returning false (not recording the error).
1961 bool ValidateQualifiedName(const string& name);
1962
1963 // Used by BUILD_ARRAY macro (below) to avoid having to have the type
1964 // specified as a macro parameter.
1965 template <typename Type>
AllocateArray(int size,Type ** output)1966 inline void AllocateArray(int size, Type** output) {
1967 *output = tables_->AllocateArray<Type>(size);
1968 }
1969
1970 // Allocates a copy of orig_options in tables_ and stores it in the
1971 // descriptor. Remembers its uninterpreted options, to be interpreted
1972 // later. DescriptorT must be one of the Descriptor messages from
1973 // descriptor.proto.
1974 template<class DescriptorT> void AllocateOptions(
1975 const typename DescriptorT::OptionsType& orig_options,
1976 DescriptorT* descriptor);
1977 // Specialization for FileOptions.
1978 void AllocateOptions(const FileOptions& orig_options,
1979 FileDescriptor* descriptor);
1980
1981 // Implementation for AllocateOptions(). Don't call this directly.
1982 template<class DescriptorT> void AllocateOptionsImpl(
1983 const string& name_scope,
1984 const string& element_name,
1985 const typename DescriptorT::OptionsType& orig_options,
1986 DescriptorT* descriptor);
1987
1988 // These methods all have the same signature for the sake of the BUILD_ARRAY
1989 // macro, below.
1990 void BuildMessage(const DescriptorProto& proto,
1991 const Descriptor* parent,
1992 Descriptor* result);
1993 void BuildFieldOrExtension(const FieldDescriptorProto& proto,
1994 const Descriptor* parent,
1995 FieldDescriptor* result,
1996 bool is_extension);
BuildField(const FieldDescriptorProto & proto,const Descriptor * parent,FieldDescriptor * result)1997 void BuildField(const FieldDescriptorProto& proto,
1998 const Descriptor* parent,
1999 FieldDescriptor* result) {
2000 BuildFieldOrExtension(proto, parent, result, false);
2001 }
BuildExtension(const FieldDescriptorProto & proto,const Descriptor * parent,FieldDescriptor * result)2002 void BuildExtension(const FieldDescriptorProto& proto,
2003 const Descriptor* parent,
2004 FieldDescriptor* result) {
2005 BuildFieldOrExtension(proto, parent, result, true);
2006 }
2007 void BuildExtensionRange(const DescriptorProto::ExtensionRange& proto,
2008 const Descriptor* parent,
2009 Descriptor::ExtensionRange* result);
2010 void BuildEnum(const EnumDescriptorProto& proto,
2011 const Descriptor* parent,
2012 EnumDescriptor* result);
2013 void BuildEnumValue(const EnumValueDescriptorProto& proto,
2014 const EnumDescriptor* parent,
2015 EnumValueDescriptor* result);
2016 void BuildService(const ServiceDescriptorProto& proto,
2017 const void* dummy,
2018 ServiceDescriptor* result);
2019 void BuildMethod(const MethodDescriptorProto& proto,
2020 const ServiceDescriptor* parent,
2021 MethodDescriptor* result);
2022
2023 // Must be run only after building.
2024 //
2025 // NOTE: Options will not be available during cross-linking, as they
2026 // have not yet been interpreted. Defer any handling of options to the
2027 // Validate*Options methods.
2028 void CrossLinkFile(FileDescriptor* file, const FileDescriptorProto& proto);
2029 void CrossLinkMessage(Descriptor* message, const DescriptorProto& proto);
2030 void CrossLinkField(FieldDescriptor* field,
2031 const FieldDescriptorProto& proto);
2032 void CrossLinkEnum(EnumDescriptor* enum_type,
2033 const EnumDescriptorProto& proto);
2034 void CrossLinkEnumValue(EnumValueDescriptor* enum_value,
2035 const EnumValueDescriptorProto& proto);
2036 void CrossLinkService(ServiceDescriptor* service,
2037 const ServiceDescriptorProto& proto);
2038 void CrossLinkMethod(MethodDescriptor* method,
2039 const MethodDescriptorProto& proto);
2040
2041 // Must be run only after cross-linking.
2042 void InterpretOptions();
2043
2044 // A helper class for interpreting options.
2045 class OptionInterpreter {
2046 public:
2047 // Creates an interpreter that operates in the context of the pool of the
2048 // specified builder, which must not be NULL. We don't take ownership of the
2049 // builder.
2050 explicit OptionInterpreter(DescriptorBuilder* builder);
2051
2052 ~OptionInterpreter();
2053
2054 // Interprets the uninterpreted options in the specified Options message.
2055 // On error, calls AddError() on the underlying builder and returns false.
2056 // Otherwise returns true.
2057 bool InterpretOptions(OptionsToInterpret* options_to_interpret);
2058
2059 private:
2060 // Interprets uninterpreted_option_ on the specified message, which
2061 // must be the mutable copy of the original options message to which
2062 // uninterpreted_option_ belongs.
2063 bool InterpretSingleOption(Message* options);
2064
2065 // Adds the uninterpreted_option to the given options message verbatim.
2066 // Used when AllowUnknownDependencies() is in effect and we can't find
2067 // the option's definition.
2068 void AddWithoutInterpreting(const UninterpretedOption& uninterpreted_option,
2069 Message* options);
2070
2071 // A recursive helper function that drills into the intermediate fields
2072 // in unknown_fields to check if field innermost_field is set on the
2073 // innermost message. Returns false and sets an error if so.
2074 bool ExamineIfOptionIsSet(
2075 vector<const FieldDescriptor*>::const_iterator intermediate_fields_iter,
2076 vector<const FieldDescriptor*>::const_iterator intermediate_fields_end,
2077 const FieldDescriptor* innermost_field, const string& debug_msg_name,
2078 const UnknownFieldSet& unknown_fields);
2079
2080 // Validates the value for the option field of the currently interpreted
2081 // option and then sets it on the unknown_field.
2082 bool SetOptionValue(const FieldDescriptor* option_field,
2083 UnknownFieldSet* unknown_fields);
2084
2085 // Convenience functions to set an int field the right way, depending on
2086 // its wire type (a single int CppType can represent multiple wire types).
2087 void SetInt32(int number, int32 value, FieldDescriptor::Type type,
2088 UnknownFieldSet* unknown_fields);
2089 void SetInt64(int number, int64 value, FieldDescriptor::Type type,
2090 UnknownFieldSet* unknown_fields);
2091 void SetUInt32(int number, uint32 value, FieldDescriptor::Type type,
2092 UnknownFieldSet* unknown_fields);
2093 void SetUInt64(int number, uint64 value, FieldDescriptor::Type type,
2094 UnknownFieldSet* unknown_fields);
2095
2096 // A helper function that adds an error at the specified location of the
2097 // option we're currently interpreting, and returns false.
AddOptionError(DescriptorPool::ErrorCollector::ErrorLocation location,const string & msg)2098 bool AddOptionError(DescriptorPool::ErrorCollector::ErrorLocation location,
2099 const string& msg) {
2100 builder_->AddError(options_to_interpret_->element_name,
2101 *uninterpreted_option_, location, msg);
2102 return false;
2103 }
2104
2105 // A helper function that adds an error at the location of the option name
2106 // and returns false.
AddNameError(const string & msg)2107 bool AddNameError(const string& msg) {
2108 return AddOptionError(DescriptorPool::ErrorCollector::OPTION_NAME, msg);
2109 }
2110
2111 // A helper function that adds an error at the location of the option name
2112 // and returns false.
AddValueError(const string & msg)2113 bool AddValueError(const string& msg) {
2114 return AddOptionError(DescriptorPool::ErrorCollector::OPTION_VALUE, msg);
2115 }
2116
2117 // We interpret against this builder's pool. Is never NULL. We don't own
2118 // this pointer.
2119 DescriptorBuilder* builder_;
2120
2121 // The options we're currently interpreting, or NULL if we're not in a call
2122 // to InterpretOptions.
2123 const OptionsToInterpret* options_to_interpret_;
2124
2125 // The option we're currently interpreting within options_to_interpret_, or
2126 // NULL if we're not in a call to InterpretOptions(). This points to a
2127 // submessage of the original option, not the mutable copy. Therefore we
2128 // can use it to find locations recorded by the parser.
2129 const UninterpretedOption* uninterpreted_option_;
2130
2131 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(OptionInterpreter);
2132 };
2133
2134 // Work-around for broken compilers: According to the C++ standard,
2135 // OptionInterpreter should have access to the private members of any class
2136 // which has declared DescriptorBuilder as a friend. Unfortunately some old
2137 // versions of GCC and other compilers do not implement this correctly. So,
2138 // we have to have these intermediate methods to provide access. We also
2139 // redundantly declare OptionInterpreter a friend just to make things extra
2140 // clear for these bad compilers.
2141 friend class OptionInterpreter;
get_allow_unknown(const DescriptorPool * pool)2142 static inline bool get_allow_unknown(const DescriptorPool* pool) {
2143 return pool->allow_unknown_;
2144 }
get_is_placeholder(const Descriptor * descriptor)2145 static inline bool get_is_placeholder(const Descriptor* descriptor) {
2146 return descriptor->is_placeholder_;
2147 }
2148
2149 // Must be run only after options have been interpreted.
2150 //
2151 // NOTE: Validation code must only reference the options in the mutable
2152 // descriptors, which are the ones that have been interpreted. The const
2153 // proto references are passed in only so they can be provided to calls to
2154 // AddError(). Do not look at their options, which have not been interpreted.
2155 void ValidateFileOptions(FileDescriptor* file,
2156 const FileDescriptorProto& proto);
2157 void ValidateMessageOptions(Descriptor* message,
2158 const DescriptorProto& proto);
2159 void ValidateFieldOptions(FieldDescriptor* field,
2160 const FieldDescriptorProto& proto);
2161 void ValidateEnumOptions(EnumDescriptor* enm,
2162 const EnumDescriptorProto& proto);
2163 void ValidateEnumValueOptions(EnumValueDescriptor* enum_value,
2164 const EnumValueDescriptorProto& proto);
2165 void ValidateServiceOptions(ServiceDescriptor* service,
2166 const ServiceDescriptorProto& proto);
2167 void ValidateMethodOptions(MethodDescriptor* method,
2168 const MethodDescriptorProto& proto);
2169
2170 void ValidateMapKey(FieldDescriptor* field,
2171 const FieldDescriptorProto& proto);
2172 };
2173
BuildFile(const FileDescriptorProto & proto)2174 const FileDescriptor* DescriptorPool::BuildFile(
2175 const FileDescriptorProto& proto) {
2176 GOOGLE_CHECK(fallback_database_ == NULL)
2177 << "Cannot call BuildFile on a DescriptorPool that uses a "
2178 "DescriptorDatabase. You must instead find a way to get your file "
2179 "into the underlying database.";
2180 GOOGLE_CHECK(mutex_ == NULL); // Implied by the above GOOGLE_CHECK.
2181 return DescriptorBuilder(this, tables_.get(), NULL).BuildFile(proto);
2182 }
2183
BuildFileCollectingErrors(const FileDescriptorProto & proto,ErrorCollector * error_collector)2184 const FileDescriptor* DescriptorPool::BuildFileCollectingErrors(
2185 const FileDescriptorProto& proto,
2186 ErrorCollector* error_collector) {
2187 GOOGLE_CHECK(fallback_database_ == NULL)
2188 << "Cannot call BuildFile on a DescriptorPool that uses a "
2189 "DescriptorDatabase. You must instead find a way to get your file "
2190 "into the underlying database.";
2191 GOOGLE_CHECK(mutex_ == NULL); // Implied by the above GOOGLE_CHECK.
2192 return DescriptorBuilder(this, tables_.get(),
2193 error_collector).BuildFile(proto);
2194 }
2195
BuildFileFromDatabase(const FileDescriptorProto & proto) const2196 const FileDescriptor* DescriptorPool::BuildFileFromDatabase(
2197 const FileDescriptorProto& proto) const {
2198 mutex_->AssertHeld();
2199 return DescriptorBuilder(this, tables_.get(),
2200 default_error_collector_).BuildFile(proto);
2201 }
2202
DescriptorBuilder(const DescriptorPool * pool,DescriptorPool::Tables * tables,DescriptorPool::ErrorCollector * error_collector)2203 DescriptorBuilder::DescriptorBuilder(
2204 const DescriptorPool* pool,
2205 DescriptorPool::Tables* tables,
2206 DescriptorPool::ErrorCollector* error_collector)
2207 : pool_(pool),
2208 tables_(tables),
2209 error_collector_(error_collector),
2210 had_errors_(false),
2211 possible_undeclared_dependency_(NULL) {}
2212
~DescriptorBuilder()2213 DescriptorBuilder::~DescriptorBuilder() {}
2214
AddError(const string & element_name,const Message & descriptor,DescriptorPool::ErrorCollector::ErrorLocation location,const string & error)2215 void DescriptorBuilder::AddError(
2216 const string& element_name,
2217 const Message& descriptor,
2218 DescriptorPool::ErrorCollector::ErrorLocation location,
2219 const string& error) {
2220 if (error_collector_ == NULL) {
2221 if (!had_errors_) {
2222 GOOGLE_LOG(ERROR) << "Invalid proto descriptor for file \"" << filename_
2223 << "\":";
2224 }
2225 GOOGLE_LOG(ERROR) << " " << element_name << ": " << error;
2226 } else {
2227 error_collector_->AddError(filename_, element_name,
2228 &descriptor, location, error);
2229 }
2230 had_errors_ = true;
2231 }
2232
AddNotDefinedError(const string & element_name,const Message & descriptor,DescriptorPool::ErrorCollector::ErrorLocation location,const string & undefined_symbol)2233 void DescriptorBuilder::AddNotDefinedError(
2234 const string& element_name,
2235 const Message& descriptor,
2236 DescriptorPool::ErrorCollector::ErrorLocation location,
2237 const string& undefined_symbol) {
2238 if (possible_undeclared_dependency_ == NULL) {
2239 AddError(element_name, descriptor, location,
2240 "\"" + undefined_symbol + "\" is not defined.");
2241 } else {
2242 AddError(element_name, descriptor, location,
2243 "\"" + possible_undeclared_dependency_name_ +
2244 "\" seems to be defined in \"" +
2245 possible_undeclared_dependency_->name() + "\", which is not "
2246 "imported by \"" + filename_ + "\". To use it here, please "
2247 "add the necessary import.");
2248 }
2249 }
2250
IsInPackage(const FileDescriptor * file,const string & package_name)2251 bool DescriptorBuilder::IsInPackage(const FileDescriptor* file,
2252 const string& package_name) {
2253 return HasPrefixString(file->package(), package_name) &&
2254 (file->package().size() == package_name.size() ||
2255 file->package()[package_name.size()] == '.');
2256 }
2257
FindSymbolNotEnforcingDeps(const string & name)2258 Symbol DescriptorBuilder::FindSymbolNotEnforcingDeps(const string& name) {
2259 Symbol result;
2260
2261 // We need to search our pool and all its underlays.
2262 const DescriptorPool* pool = pool_;
2263 while (true) {
2264 // If we are looking at an underlay, we must lock its mutex_, since we are
2265 // accessing the underlay's tables_ dircetly.
2266 MutexLockMaybe lock((pool == pool_) ? NULL : pool->mutex_);
2267
2268 // Note that we don't have to check fallback_database_ here because the
2269 // symbol has to be in one of its file's direct dependencies, and we have
2270 // already loaded those by the time we get here.
2271 result = pool->tables_->FindSymbol(name);
2272 if (!result.IsNull()) break;
2273 if (pool->underlay_ == NULL) return kNullSymbol;
2274 pool = pool->underlay_;
2275 }
2276
2277 return result;
2278 }
2279
FindSymbol(const string & name)2280 Symbol DescriptorBuilder::FindSymbol(const string& name) {
2281 Symbol result = FindSymbolNotEnforcingDeps(name);
2282
2283 if (!pool_->enforce_dependencies_) {
2284 // Hack for CompilerUpgrader.
2285 return result;
2286 }
2287
2288 // Only find symbols which were defined in this file or one of its
2289 // dependencies.
2290 const FileDescriptor* file = result.GetFile();
2291 if (file == file_) return result;
2292 for (int i = 0; i < file_->dependency_count(); i++) {
2293 if (file == file_->dependency(i)) return result;
2294 }
2295
2296 if (result.type == Symbol::PACKAGE) {
2297 // Arg, this is overcomplicated. The symbol is a package name. It could
2298 // be that the package was defined in multiple files. result.GetFile()
2299 // returns the first file we saw that used this package. We've determined
2300 // that that file is not a direct dependency of the file we are currently
2301 // building, but it could be that some other file which *is* a direct
2302 // dependency also defines the same package. We can't really rule out this
2303 // symbol unless none of the dependencies define it.
2304 if (IsInPackage(file_, name)) return result;
2305 for (int i = 0; i < file_->dependency_count(); i++) {
2306 // Note: A dependency may be NULL if it was not found or had errors.
2307 if (file_->dependency(i) != NULL &&
2308 IsInPackage(file_->dependency(i), name)) {
2309 return result;
2310 }
2311 }
2312 }
2313
2314 possible_undeclared_dependency_ = file;
2315 possible_undeclared_dependency_name_ = name;
2316 return kNullSymbol;
2317 }
2318
LookupSymbolNoPlaceholder(const string & name,const string & relative_to,ResolveMode resolve_mode)2319 Symbol DescriptorBuilder::LookupSymbolNoPlaceholder(
2320 const string& name, const string& relative_to, ResolveMode resolve_mode) {
2321 possible_undeclared_dependency_ = NULL;
2322
2323 if (name.size() > 0 && name[0] == '.') {
2324 // Fully-qualified name.
2325 return FindSymbol(name.substr(1));
2326 }
2327
2328 // If name is something like "Foo.Bar.baz", and symbols named "Foo" are
2329 // defined in multiple parent scopes, we only want to find "Bar.baz" in the
2330 // innermost one. E.g., the following should produce an error:
2331 // message Bar { message Baz {} }
2332 // message Foo {
2333 // message Bar {
2334 // }
2335 // optional Bar.Baz baz = 1;
2336 // }
2337 // So, we look for just "Foo" first, then look for "Bar.baz" within it if
2338 // found.
2339 int name_dot_pos = name.find_first_of('.');
2340 string first_part_of_name;
2341 if (name_dot_pos == string::npos) {
2342 first_part_of_name = name;
2343 } else {
2344 first_part_of_name = name.substr(0, name_dot_pos);
2345 }
2346
2347 string scope_to_try(relative_to);
2348
2349 while (true) {
2350 // Chop off the last component of the scope.
2351 string::size_type dot_pos = scope_to_try.find_last_of('.');
2352 if (dot_pos == string::npos) {
2353 return FindSymbol(name);
2354 } else {
2355 scope_to_try.erase(dot_pos);
2356 }
2357
2358 // Append ".first_part_of_name" and try to find.
2359 string::size_type old_size = scope_to_try.size();
2360 scope_to_try.append(1, '.');
2361 scope_to_try.append(first_part_of_name);
2362 Symbol result = FindSymbol(scope_to_try);
2363 if (!result.IsNull()) {
2364 if (first_part_of_name.size() < name.size()) {
2365 // name is a compound symbol, of which we only found the first part.
2366 // Now try to look up the rest of it.
2367 if (result.IsAggregate()) {
2368 scope_to_try.append(name, first_part_of_name.size(),
2369 name.size() - first_part_of_name.size());
2370 return FindSymbol(scope_to_try);
2371 } else {
2372 // We found a symbol but it's not an aggregate. Continue the loop.
2373 }
2374 } else {
2375 if (resolve_mode == LOOKUP_TYPES && !result.IsType()) {
2376 // We found a symbol but it's not a type. Continue the loop.
2377 } else {
2378 return result;
2379 }
2380 }
2381 }
2382
2383 // Not found. Remove the name so we can try again.
2384 scope_to_try.erase(old_size);
2385 }
2386 }
2387
LookupSymbol(const string & name,const string & relative_to,PlaceholderType placeholder_type,ResolveMode resolve_mode)2388 Symbol DescriptorBuilder::LookupSymbol(
2389 const string& name, const string& relative_to,
2390 PlaceholderType placeholder_type, ResolveMode resolve_mode) {
2391 Symbol result = LookupSymbolNoPlaceholder(
2392 name, relative_to, resolve_mode);
2393 if (result.IsNull() && pool_->allow_unknown_) {
2394 // Not found, but AllowUnknownDependencies() is enabled. Return a
2395 // placeholder instead.
2396 result = NewPlaceholder(name, placeholder_type);
2397 }
2398 return result;
2399 }
2400
NewPlaceholder(const string & name,PlaceholderType placeholder_type)2401 Symbol DescriptorBuilder::NewPlaceholder(const string& name,
2402 PlaceholderType placeholder_type) {
2403 // Compute names.
2404 const string* placeholder_full_name;
2405 const string* placeholder_name;
2406 const string* placeholder_package;
2407
2408 if (!ValidateQualifiedName(name)) return kNullSymbol;
2409 if (name[0] == '.') {
2410 // Fully-qualified.
2411 placeholder_full_name = tables_->AllocateString(name.substr(1));
2412 } else {
2413 placeholder_full_name = tables_->AllocateString(name);
2414 }
2415
2416 string::size_type dotpos = placeholder_full_name->find_last_of('.');
2417 if (dotpos != string::npos) {
2418 placeholder_package = tables_->AllocateString(
2419 placeholder_full_name->substr(0, dotpos));
2420 placeholder_name = tables_->AllocateString(
2421 placeholder_full_name->substr(dotpos + 1));
2422 } else {
2423 placeholder_package = &kEmptyString;
2424 placeholder_name = placeholder_full_name;
2425 }
2426
2427 // Create the placeholders.
2428 FileDescriptor* placeholder_file = tables_->Allocate<FileDescriptor>();
2429 memset(placeholder_file, 0, sizeof(*placeholder_file));
2430
2431 placeholder_file->name_ =
2432 tables_->AllocateString(*placeholder_full_name + ".placeholder.proto");
2433 placeholder_file->package_ = placeholder_package;
2434 placeholder_file->pool_ = pool_;
2435 placeholder_file->options_ = &FileOptions::default_instance();
2436 placeholder_file->tables_ = &FileDescriptorTables::kEmpty;
2437 // All other fields are zero or NULL.
2438
2439 if (placeholder_type == PLACEHOLDER_ENUM) {
2440 placeholder_file->enum_type_count_ = 1;
2441 placeholder_file->enum_types_ =
2442 tables_->AllocateArray<EnumDescriptor>(1);
2443
2444 EnumDescriptor* placeholder_enum = &placeholder_file->enum_types_[0];
2445 memset(placeholder_enum, 0, sizeof(*placeholder_enum));
2446
2447 placeholder_enum->full_name_ = placeholder_full_name;
2448 placeholder_enum->name_ = placeholder_name;
2449 placeholder_enum->file_ = placeholder_file;
2450 placeholder_enum->options_ = &EnumOptions::default_instance();
2451 placeholder_enum->is_placeholder_ = true;
2452 placeholder_enum->is_unqualified_placeholder_ = (name[0] != '.');
2453
2454 // Enums must have at least one value.
2455 placeholder_enum->value_count_ = 1;
2456 placeholder_enum->values_ = tables_->AllocateArray<EnumValueDescriptor>(1);
2457
2458 EnumValueDescriptor* placeholder_value = &placeholder_enum->values_[0];
2459 memset(placeholder_value, 0, sizeof(*placeholder_value));
2460
2461 placeholder_value->name_ = tables_->AllocateString("PLACEHOLDER_VALUE");
2462 // Note that enum value names are siblings of their type, not children.
2463 placeholder_value->full_name_ =
2464 placeholder_package->empty() ? placeholder_value->name_ :
2465 tables_->AllocateString(*placeholder_package + ".PLACEHOLDER_VALUE");
2466
2467 placeholder_value->number_ = 0;
2468 placeholder_value->type_ = placeholder_enum;
2469 placeholder_value->options_ = &EnumValueOptions::default_instance();
2470
2471 return Symbol(placeholder_enum);
2472 } else {
2473 placeholder_file->message_type_count_ = 1;
2474 placeholder_file->message_types_ =
2475 tables_->AllocateArray<Descriptor>(1);
2476
2477 Descriptor* placeholder_message = &placeholder_file->message_types_[0];
2478 memset(placeholder_message, 0, sizeof(*placeholder_message));
2479
2480 placeholder_message->full_name_ = placeholder_full_name;
2481 placeholder_message->name_ = placeholder_name;
2482 placeholder_message->file_ = placeholder_file;
2483 placeholder_message->options_ = &MessageOptions::default_instance();
2484 placeholder_message->is_placeholder_ = true;
2485 placeholder_message->is_unqualified_placeholder_ = (name[0] != '.');
2486
2487 if (placeholder_type == PLACEHOLDER_EXTENDABLE_MESSAGE) {
2488 placeholder_message->extension_range_count_ = 1;
2489 placeholder_message->extension_ranges_ =
2490 tables_->AllocateArray<Descriptor::ExtensionRange>(1);
2491 placeholder_message->extension_ranges_->start = 1;
2492 // kMaxNumber + 1 because ExtensionRange::end is exclusive.
2493 placeholder_message->extension_ranges_->end =
2494 FieldDescriptor::kMaxNumber + 1;
2495 }
2496
2497 return Symbol(placeholder_message);
2498 }
2499 }
2500
NewPlaceholderFile(const string & name)2501 const FileDescriptor* DescriptorBuilder::NewPlaceholderFile(
2502 const string& name) {
2503 FileDescriptor* placeholder = tables_->Allocate<FileDescriptor>();
2504 memset(placeholder, 0, sizeof(*placeholder));
2505
2506 placeholder->name_ = tables_->AllocateString(name);
2507 placeholder->package_ = &kEmptyString;
2508 placeholder->pool_ = pool_;
2509 placeholder->options_ = &FileOptions::default_instance();
2510 placeholder->tables_ = &FileDescriptorTables::kEmpty;
2511 // All other fields are zero or NULL.
2512
2513 return placeholder;
2514 }
2515
AddSymbol(const string & full_name,const void * parent,const string & name,const Message & proto,Symbol symbol)2516 bool DescriptorBuilder::AddSymbol(
2517 const string& full_name, const void* parent, const string& name,
2518 const Message& proto, Symbol symbol) {
2519 // If the caller passed NULL for the parent, the symbol is at file scope.
2520 // Use its file as the parent instead.
2521 if (parent == NULL) parent = file_;
2522
2523 if (tables_->AddSymbol(full_name, symbol)) {
2524 if (!file_tables_->AddAliasUnderParent(parent, name, symbol)) {
2525 GOOGLE_LOG(DFATAL) << "\"" << full_name << "\" not previously defined in "
2526 "symbols_by_name_, but was defined in symbols_by_parent_; "
2527 "this shouldn't be possible.";
2528 return false;
2529 }
2530 return true;
2531 } else {
2532 const FileDescriptor* other_file = tables_->FindSymbol(full_name).GetFile();
2533 if (other_file == file_) {
2534 string::size_type dot_pos = full_name.find_last_of('.');
2535 if (dot_pos == string::npos) {
2536 AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
2537 "\"" + full_name + "\" is already defined.");
2538 } else {
2539 AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
2540 "\"" + full_name.substr(dot_pos + 1) +
2541 "\" is already defined in \"" +
2542 full_name.substr(0, dot_pos) + "\".");
2543 }
2544 } else {
2545 // Symbol seems to have been defined in a different file.
2546 AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
2547 "\"" + full_name + "\" is already defined in file \"" +
2548 other_file->name() + "\".");
2549 }
2550 return false;
2551 }
2552 }
2553
AddPackage(const string & name,const Message & proto,const FileDescriptor * file)2554 void DescriptorBuilder::AddPackage(
2555 const string& name, const Message& proto, const FileDescriptor* file) {
2556 if (tables_->AddSymbol(name, Symbol(file))) {
2557 // Success. Also add parent package, if any.
2558 string::size_type dot_pos = name.find_last_of('.');
2559 if (dot_pos == string::npos) {
2560 // No parents.
2561 ValidateSymbolName(name, name, proto);
2562 } else {
2563 // Has parent.
2564 string* parent_name = tables_->AllocateString(name.substr(0, dot_pos));
2565 AddPackage(*parent_name, proto, file);
2566 ValidateSymbolName(name.substr(dot_pos + 1), name, proto);
2567 }
2568 } else {
2569 Symbol existing_symbol = tables_->FindSymbol(name);
2570 // It's OK to redefine a package.
2571 if (existing_symbol.type != Symbol::PACKAGE) {
2572 // Symbol seems to have been defined in a different file.
2573 AddError(name, proto, DescriptorPool::ErrorCollector::NAME,
2574 "\"" + name + "\" is already defined (as something other than "
2575 "a package) in file \"" + existing_symbol.GetFile()->name() +
2576 "\".");
2577 }
2578 }
2579 }
2580
ValidateSymbolName(const string & name,const string & full_name,const Message & proto)2581 void DescriptorBuilder::ValidateSymbolName(
2582 const string& name, const string& full_name, const Message& proto) {
2583 if (name.empty()) {
2584 AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
2585 "Missing name.");
2586 } else {
2587 for (int i = 0; i < name.size(); i++) {
2588 // I don't trust isalnum() due to locales. :(
2589 if ((name[i] < 'a' || 'z' < name[i]) &&
2590 (name[i] < 'A' || 'Z' < name[i]) &&
2591 (name[i] < '0' || '9' < name[i]) &&
2592 (name[i] != '_')) {
2593 AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
2594 "\"" + name + "\" is not a valid identifier.");
2595 }
2596 }
2597 }
2598 }
2599
ValidateQualifiedName(const string & name)2600 bool DescriptorBuilder::ValidateQualifiedName(const string& name) {
2601 bool last_was_period = false;
2602
2603 for (int i = 0; i < name.size(); i++) {
2604 // I don't trust isalnum() due to locales. :(
2605 if (('a' <= name[i] && name[i] <= 'z') ||
2606 ('A' <= name[i] && name[i] <= 'Z') ||
2607 ('0' <= name[i] && name[i] <= '9') ||
2608 (name[i] == '_')) {
2609 last_was_period = false;
2610 } else if (name[i] == '.') {
2611 if (last_was_period) return false;
2612 last_was_period = true;
2613 } else {
2614 return false;
2615 }
2616 }
2617
2618 return !name.empty() && !last_was_period;
2619 }
2620
2621 // -------------------------------------------------------------------
2622
2623 // This generic implementation is good for all descriptors except
2624 // FileDescriptor.
AllocateOptions(const typename DescriptorT::OptionsType & orig_options,DescriptorT * descriptor)2625 template<class DescriptorT> void DescriptorBuilder::AllocateOptions(
2626 const typename DescriptorT::OptionsType& orig_options,
2627 DescriptorT* descriptor) {
2628 AllocateOptionsImpl(descriptor->full_name(), descriptor->full_name(),
2629 orig_options, descriptor);
2630 }
2631
2632 // We specialize for FileDescriptor.
AllocateOptions(const FileOptions & orig_options,FileDescriptor * descriptor)2633 void DescriptorBuilder::AllocateOptions(const FileOptions& orig_options,
2634 FileDescriptor* descriptor) {
2635 // We add the dummy token so that LookupSymbol does the right thing.
2636 AllocateOptionsImpl(descriptor->package() + ".dummy", descriptor->name(),
2637 orig_options, descriptor);
2638 }
2639
AllocateOptionsImpl(const string & name_scope,const string & element_name,const typename DescriptorT::OptionsType & orig_options,DescriptorT * descriptor)2640 template<class DescriptorT> void DescriptorBuilder::AllocateOptionsImpl(
2641 const string& name_scope,
2642 const string& element_name,
2643 const typename DescriptorT::OptionsType& orig_options,
2644 DescriptorT* descriptor) {
2645 // We need to use a dummy pointer to work around a bug in older versions of
2646 // GCC. Otherwise, the following two lines could be replaced with:
2647 // typename DescriptorT::OptionsType* options =
2648 // tables_->AllocateMessage<typename DescriptorT::OptionsType>();
2649 typename DescriptorT::OptionsType* const dummy = NULL;
2650 typename DescriptorT::OptionsType* options = tables_->AllocateMessage(dummy);
2651 options->CopyFrom(orig_options);
2652 descriptor->options_ = options;
2653
2654 // Don't add to options_to_interpret_ unless there were uninterpreted
2655 // options. This not only avoids unnecessary work, but prevents a
2656 // bootstrapping problem when building descriptors for descriptor.proto.
2657 // descriptor.proto does not contain any uninterpreted options, but
2658 // attempting to interpret options anyway will cause
2659 // OptionsType::GetDescriptor() to be called which may then deadlock since
2660 // we're still trying to build it.
2661 if (options->uninterpreted_option_size() > 0) {
2662 options_to_interpret_.push_back(
2663 OptionsToInterpret(name_scope, element_name, &orig_options, options));
2664 }
2665 }
2666
2667
2668 // A common pattern: We want to convert a repeated field in the descriptor
2669 // to an array of values, calling some method to build each value.
2670 #define BUILD_ARRAY(INPUT, OUTPUT, NAME, METHOD, PARENT) \
2671 OUTPUT->NAME##_count_ = INPUT.NAME##_size(); \
2672 AllocateArray(INPUT.NAME##_size(), &OUTPUT->NAME##s_); \
2673 for (int i = 0; i < INPUT.NAME##_size(); i++) { \
2674 METHOD(INPUT.NAME(i), PARENT, OUTPUT->NAME##s_ + i); \
2675 }
2676
BuildFile(const FileDescriptorProto & proto)2677 const FileDescriptor* DescriptorBuilder::BuildFile(
2678 const FileDescriptorProto& proto) {
2679 filename_ = proto.name();
2680
2681 // Check if the file already exists and is identical to the one being built.
2682 // Note: This only works if the input is canonical -- that is, it
2683 // fully-qualifies all type names, has no UninterpretedOptions, etc.
2684 // This is fine, because this idempotency "feature" really only exists to
2685 // accomodate one hack in the proto1->proto2 migration layer.
2686 const FileDescriptor* existing_file = tables_->FindFile(filename_);
2687 if (existing_file != NULL) {
2688 // File already in pool. Compare the existing one to the input.
2689 FileDescriptorProto existing_proto;
2690 existing_file->CopyTo(&existing_proto);
2691 if (existing_proto.SerializeAsString() == proto.SerializeAsString()) {
2692 // They're identical. Return the existing descriptor.
2693 return existing_file;
2694 }
2695
2696 // Not a match. The error will be detected and handled later.
2697 }
2698
2699 // Check to see if this file is already on the pending files list.
2700 // TODO(kenton): Allow recursive imports? It may not work with some
2701 // (most?) programming languages. E.g., in C++, a forward declaration
2702 // of a type is not sufficient to allow it to be used even in a
2703 // generated header file due to inlining. This could perhaps be
2704 // worked around using tricks involving inserting #include statements
2705 // mid-file, but that's pretty ugly, and I'm pretty sure there are
2706 // some languages out there that do not allow recursive dependencies
2707 // at all.
2708 for (int i = 0; i < tables_->pending_files_.size(); i++) {
2709 if (tables_->pending_files_[i] == proto.name()) {
2710 string error_message("File recursively imports itself: ");
2711 for (; i < tables_->pending_files_.size(); i++) {
2712 error_message.append(tables_->pending_files_[i]);
2713 error_message.append(" -> ");
2714 }
2715 error_message.append(proto.name());
2716
2717 AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER,
2718 error_message);
2719 return NULL;
2720 }
2721 }
2722
2723 // If we have a fallback_database_, attempt to load all dependencies now,
2724 // before checkpointing tables_. This avoids confusion with recursive
2725 // checkpoints.
2726 if (pool_->fallback_database_ != NULL) {
2727 tables_->pending_files_.push_back(proto.name());
2728 for (int i = 0; i < proto.dependency_size(); i++) {
2729 if (tables_->FindFile(proto.dependency(i)) == NULL &&
2730 (pool_->underlay_ == NULL ||
2731 pool_->underlay_->FindFileByName(proto.dependency(i)) == NULL)) {
2732 // We don't care what this returns since we'll find out below anyway.
2733 pool_->TryFindFileInFallbackDatabase(proto.dependency(i));
2734 }
2735 }
2736 tables_->pending_files_.pop_back();
2737 }
2738
2739 // Checkpoint the tables so that we can roll back if something goes wrong.
2740 tables_->Checkpoint();
2741
2742 FileDescriptor* result = tables_->Allocate<FileDescriptor>();
2743 file_ = result;
2744
2745 file_tables_ = tables_->AllocateFileTables();
2746 file_->tables_ = file_tables_;
2747
2748 if (!proto.has_name()) {
2749 AddError("", proto, DescriptorPool::ErrorCollector::OTHER,
2750 "Missing field: FileDescriptorProto.name.");
2751 }
2752
2753 result->name_ = tables_->AllocateString(proto.name());
2754 if (proto.has_package()) {
2755 result->package_ = tables_->AllocateString(proto.package());
2756 } else {
2757 // We cannot rely on proto.package() returning a valid string if
2758 // proto.has_package() is false, because we might be running at static
2759 // initialization time, in which case default values have not yet been
2760 // initialized.
2761 result->package_ = tables_->AllocateString("");
2762 }
2763 result->pool_ = pool_;
2764
2765 // Add to tables.
2766 if (!tables_->AddFile(result)) {
2767 AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER,
2768 "A file with this name is already in the pool.");
2769 // Bail out early so that if this is actually the exact same file, we
2770 // don't end up reporting that every single symbol is already defined.
2771 tables_->Rollback();
2772 return NULL;
2773 }
2774 if (!result->package().empty()) {
2775 AddPackage(result->package(), proto, result);
2776 }
2777
2778 // Make sure all dependencies are loaded.
2779 set<string> seen_dependencies;
2780 result->dependency_count_ = proto.dependency_size();
2781 result->dependencies_ =
2782 tables_->AllocateArray<const FileDescriptor*>(proto.dependency_size());
2783 for (int i = 0; i < proto.dependency_size(); i++) {
2784 if (!seen_dependencies.insert(proto.dependency(i)).second) {
2785 AddError(proto.name(), proto,
2786 DescriptorPool::ErrorCollector::OTHER,
2787 "Import \"" + proto.dependency(i) + "\" was listed twice.");
2788 }
2789
2790 const FileDescriptor* dependency = tables_->FindFile(proto.dependency(i));
2791 if (dependency == NULL && pool_->underlay_ != NULL) {
2792 dependency = pool_->underlay_->FindFileByName(proto.dependency(i));
2793 }
2794
2795 if (dependency == NULL) {
2796 if (pool_->allow_unknown_) {
2797 dependency = NewPlaceholderFile(proto.dependency(i));
2798 } else {
2799 string message;
2800 if (pool_->fallback_database_ == NULL) {
2801 message = "Import \"" + proto.dependency(i) +
2802 "\" has not been loaded.";
2803 } else {
2804 message = "Import \"" + proto.dependency(i) +
2805 "\" was not found or had errors.";
2806 }
2807 AddError(proto.name(), proto,
2808 DescriptorPool::ErrorCollector::OTHER,
2809 message);
2810 }
2811 }
2812
2813 result->dependencies_[i] = dependency;
2814 }
2815
2816 // Convert children.
2817 BUILD_ARRAY(proto, result, message_type, BuildMessage , NULL);
2818 BUILD_ARRAY(proto, result, enum_type , BuildEnum , NULL);
2819 BUILD_ARRAY(proto, result, service , BuildService , NULL);
2820 BUILD_ARRAY(proto, result, extension , BuildExtension, NULL);
2821
2822 // Copy options.
2823 if (!proto.has_options()) {
2824 result->options_ = NULL; // Will set to default_instance later.
2825 } else {
2826 AllocateOptions(proto.options(), result);
2827 }
2828
2829 // Note that the following steps must occur in exactly the specified order.
2830
2831 // Cross-link.
2832 CrossLinkFile(result, proto);
2833
2834 // Interpret any remaining uninterpreted options gathered into
2835 // options_to_interpret_ during descriptor building. Cross-linking has made
2836 // extension options known, so all interpretations should now succeed.
2837 if (!had_errors_) {
2838 OptionInterpreter option_interpreter(this);
2839 for (vector<OptionsToInterpret>::iterator iter =
2840 options_to_interpret_.begin();
2841 iter != options_to_interpret_.end(); ++iter) {
2842 option_interpreter.InterpretOptions(&(*iter));
2843 }
2844 options_to_interpret_.clear();
2845 }
2846
2847 // Validate options.
2848 if (!had_errors_) {
2849 ValidateFileOptions(result, proto);
2850 }
2851
2852 if (had_errors_) {
2853 tables_->Rollback();
2854 return NULL;
2855 } else {
2856 tables_->Checkpoint();
2857 return result;
2858 }
2859 }
2860
BuildMessage(const DescriptorProto & proto,const Descriptor * parent,Descriptor * result)2861 void DescriptorBuilder::BuildMessage(const DescriptorProto& proto,
2862 const Descriptor* parent,
2863 Descriptor* result) {
2864 const string& scope = (parent == NULL) ?
2865 file_->package() : parent->full_name();
2866 string* full_name = tables_->AllocateString(scope);
2867 if (!full_name->empty()) full_name->append(1, '.');
2868 full_name->append(proto.name());
2869
2870 ValidateSymbolName(proto.name(), *full_name, proto);
2871
2872 result->name_ = tables_->AllocateString(proto.name());
2873 result->full_name_ = full_name;
2874 result->file_ = file_;
2875 result->containing_type_ = parent;
2876 result->is_placeholder_ = false;
2877 result->is_unqualified_placeholder_ = false;
2878
2879 BUILD_ARRAY(proto, result, field , BuildField , result);
2880 BUILD_ARRAY(proto, result, nested_type , BuildMessage , result);
2881 BUILD_ARRAY(proto, result, enum_type , BuildEnum , result);
2882 BUILD_ARRAY(proto, result, extension_range, BuildExtensionRange, result);
2883 BUILD_ARRAY(proto, result, extension , BuildExtension , result);
2884
2885 // Copy options.
2886 if (!proto.has_options()) {
2887 result->options_ = NULL; // Will set to default_instance later.
2888 } else {
2889 AllocateOptions(proto.options(), result);
2890 }
2891
2892 AddSymbol(result->full_name(), parent, result->name(),
2893 proto, Symbol(result));
2894
2895 // Check that no fields have numbers in extension ranges.
2896 for (int i = 0; i < result->field_count(); i++) {
2897 const FieldDescriptor* field = result->field(i);
2898 for (int j = 0; j < result->extension_range_count(); j++) {
2899 const Descriptor::ExtensionRange* range = result->extension_range(j);
2900 if (range->start <= field->number() && field->number() < range->end) {
2901 AddError(field->full_name(), proto.extension_range(j),
2902 DescriptorPool::ErrorCollector::NUMBER,
2903 strings::Substitute(
2904 "Extension range $0 to $1 includes field \"$2\" ($3).",
2905 range->start, range->end - 1,
2906 field->name(), field->number()));
2907 }
2908 }
2909 }
2910
2911 // Check that extension ranges don't overlap.
2912 for (int i = 0; i < result->extension_range_count(); i++) {
2913 const Descriptor::ExtensionRange* range1 = result->extension_range(i);
2914 for (int j = i + 1; j < result->extension_range_count(); j++) {
2915 const Descriptor::ExtensionRange* range2 = result->extension_range(j);
2916 if (range1->end > range2->start && range2->end > range1->start) {
2917 AddError(result->full_name(), proto.extension_range(j),
2918 DescriptorPool::ErrorCollector::NUMBER,
2919 strings::Substitute("Extension range $0 to $1 overlaps with "
2920 "already-defined range $2 to $3.",
2921 range2->start, range2->end - 1,
2922 range1->start, range1->end - 1));
2923 }
2924 }
2925 }
2926 }
2927
BuildFieldOrExtension(const FieldDescriptorProto & proto,const Descriptor * parent,FieldDescriptor * result,bool is_extension)2928 void DescriptorBuilder::BuildFieldOrExtension(const FieldDescriptorProto& proto,
2929 const Descriptor* parent,
2930 FieldDescriptor* result,
2931 bool is_extension) {
2932 const string& scope = (parent == NULL) ?
2933 file_->package() : parent->full_name();
2934 string* full_name = tables_->AllocateString(scope);
2935 if (!full_name->empty()) full_name->append(1, '.');
2936 full_name->append(proto.name());
2937
2938 ValidateSymbolName(proto.name(), *full_name, proto);
2939
2940 result->name_ = tables_->AllocateString(proto.name());
2941 result->full_name_ = full_name;
2942 result->file_ = file_;
2943 result->number_ = proto.number();
2944 result->is_extension_ = is_extension;
2945
2946 // If .proto files follow the style guide then the name should already be
2947 // lower-cased. If that's the case we can just reuse the string we already
2948 // allocated rather than allocate a new one.
2949 string lowercase_name(proto.name());
2950 LowerString(&lowercase_name);
2951 if (lowercase_name == proto.name()) {
2952 result->lowercase_name_ = result->name_;
2953 } else {
2954 result->lowercase_name_ = tables_->AllocateString(lowercase_name);
2955 }
2956
2957 // Don't bother with the above optimization for camel-case names since
2958 // .proto files that follow the guide shouldn't be using names in this
2959 // format, so the optimization wouldn't help much.
2960 result->camelcase_name_ = tables_->AllocateString(ToCamelCase(proto.name()));
2961
2962 // Some compilers do not allow static_cast directly between two enum types,
2963 // so we must cast to int first.
2964 result->type_ = static_cast<FieldDescriptor::Type>(
2965 implicit_cast<int>(proto.type()));
2966 result->label_ = static_cast<FieldDescriptor::Label>(
2967 implicit_cast<int>(proto.label()));
2968
2969 // Some of these may be filled in when cross-linking.
2970 result->containing_type_ = NULL;
2971 result->extension_scope_ = NULL;
2972 result->experimental_map_key_ = NULL;
2973 result->message_type_ = NULL;
2974 result->enum_type_ = NULL;
2975
2976 result->has_default_value_ = proto.has_default_value();
2977 if (proto.has_default_value() && result->is_repeated()) {
2978 AddError(result->full_name(), proto,
2979 DescriptorPool::ErrorCollector::DEFAULT_VALUE,
2980 "Repeated fields can't have default values.");
2981 }
2982
2983 if (proto.has_type()) {
2984 if (proto.has_default_value()) {
2985 char* end_pos = NULL;
2986 switch (result->cpp_type()) {
2987 case FieldDescriptor::CPPTYPE_INT32:
2988 result->default_value_int32_ =
2989 strtol(proto.default_value().c_str(), &end_pos, 0);
2990 break;
2991 case FieldDescriptor::CPPTYPE_INT64:
2992 result->default_value_int64_ =
2993 strto64(proto.default_value().c_str(), &end_pos, 0);
2994 break;
2995 case FieldDescriptor::CPPTYPE_UINT32:
2996 result->default_value_uint32_ =
2997 strtoul(proto.default_value().c_str(), &end_pos, 0);
2998 break;
2999 case FieldDescriptor::CPPTYPE_UINT64:
3000 result->default_value_uint64_ =
3001 strtou64(proto.default_value().c_str(), &end_pos, 0);
3002 break;
3003 case FieldDescriptor::CPPTYPE_FLOAT:
3004 if (proto.default_value() == "inf") {
3005 result->default_value_float_ = numeric_limits<float>::infinity();
3006 } else if (proto.default_value() == "-inf") {
3007 result->default_value_float_ = -numeric_limits<float>::infinity();
3008 } else if (proto.default_value() == "nan") {
3009 result->default_value_float_ = numeric_limits<float>::quiet_NaN();
3010 } else {
3011 result->default_value_float_ =
3012 NoLocaleStrtod(proto.default_value().c_str(), &end_pos);
3013 }
3014 break;
3015 case FieldDescriptor::CPPTYPE_DOUBLE:
3016 if (proto.default_value() == "inf") {
3017 result->default_value_double_ = numeric_limits<double>::infinity();
3018 } else if (proto.default_value() == "-inf") {
3019 result->default_value_double_ = -numeric_limits<double>::infinity();
3020 } else if (proto.default_value() == "nan") {
3021 result->default_value_double_ = numeric_limits<double>::quiet_NaN();
3022 } else {
3023 result->default_value_double_ =
3024 NoLocaleStrtod(proto.default_value().c_str(), &end_pos);
3025 }
3026 break;
3027 case FieldDescriptor::CPPTYPE_BOOL:
3028 if (proto.default_value() == "true") {
3029 result->default_value_bool_ = true;
3030 } else if (proto.default_value() == "false") {
3031 result->default_value_bool_ = false;
3032 } else {
3033 AddError(result->full_name(), proto,
3034 DescriptorPool::ErrorCollector::DEFAULT_VALUE,
3035 "Boolean default must be true or false.");
3036 }
3037 break;
3038 case FieldDescriptor::CPPTYPE_ENUM:
3039 // This will be filled in when cross-linking.
3040 result->default_value_enum_ = NULL;
3041 break;
3042 case FieldDescriptor::CPPTYPE_STRING:
3043 if (result->type() == FieldDescriptor::TYPE_BYTES) {
3044 result->default_value_string_ = tables_->AllocateString(
3045 UnescapeCEscapeString(proto.default_value()));
3046 } else {
3047 result->default_value_string_ =
3048 tables_->AllocateString(proto.default_value());
3049 }
3050 break;
3051 case FieldDescriptor::CPPTYPE_MESSAGE:
3052 AddError(result->full_name(), proto,
3053 DescriptorPool::ErrorCollector::DEFAULT_VALUE,
3054 "Messages can't have default values.");
3055 result->has_default_value_ = false;
3056 break;
3057 }
3058
3059 if (end_pos != NULL) {
3060 // end_pos is only set non-NULL by the parsers for numeric types, above.
3061 // This checks that the default was non-empty and had no extra junk
3062 // after the end of the number.
3063 if (proto.default_value().empty() || *end_pos != '\0') {
3064 AddError(result->full_name(), proto,
3065 DescriptorPool::ErrorCollector::DEFAULT_VALUE,
3066 "Couldn't parse default value.");
3067 }
3068 }
3069 } else {
3070 // No explicit default value
3071 switch (result->cpp_type()) {
3072 case FieldDescriptor::CPPTYPE_INT32:
3073 result->default_value_int32_ = 0;
3074 break;
3075 case FieldDescriptor::CPPTYPE_INT64:
3076 result->default_value_int64_ = 0;
3077 break;
3078 case FieldDescriptor::CPPTYPE_UINT32:
3079 result->default_value_uint32_ = 0;
3080 break;
3081 case FieldDescriptor::CPPTYPE_UINT64:
3082 result->default_value_uint64_ = 0;
3083 break;
3084 case FieldDescriptor::CPPTYPE_FLOAT:
3085 result->default_value_float_ = 0.0f;
3086 break;
3087 case FieldDescriptor::CPPTYPE_DOUBLE:
3088 result->default_value_double_ = 0.0;
3089 break;
3090 case FieldDescriptor::CPPTYPE_BOOL:
3091 result->default_value_bool_ = false;
3092 break;
3093 case FieldDescriptor::CPPTYPE_ENUM:
3094 // This will be filled in when cross-linking.
3095 result->default_value_enum_ = NULL;
3096 break;
3097 case FieldDescriptor::CPPTYPE_STRING:
3098 result->default_value_string_ = &kEmptyString;
3099 break;
3100 case FieldDescriptor::CPPTYPE_MESSAGE:
3101 break;
3102 }
3103 }
3104 }
3105
3106 if (result->number() <= 0) {
3107 AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER,
3108 "Field numbers must be positive integers.");
3109 } else if (result->number() > FieldDescriptor::kMaxNumber) {
3110 AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER,
3111 strings::Substitute("Field numbers cannot be greater than $0.",
3112 FieldDescriptor::kMaxNumber));
3113 } else if (result->number() >= FieldDescriptor::kFirstReservedNumber &&
3114 result->number() <= FieldDescriptor::kLastReservedNumber) {
3115 AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER,
3116 strings::Substitute(
3117 "Field numbers $0 through $1 are reserved for the protocol "
3118 "buffer library implementation.",
3119 FieldDescriptor::kFirstReservedNumber,
3120 FieldDescriptor::kLastReservedNumber));
3121 }
3122
3123 if (is_extension) {
3124 if (!proto.has_extendee()) {
3125 AddError(result->full_name(), proto,
3126 DescriptorPool::ErrorCollector::EXTENDEE,
3127 "FieldDescriptorProto.extendee not set for extension field.");
3128 }
3129
3130 result->extension_scope_ = parent;
3131 } else {
3132 if (proto.has_extendee()) {
3133 AddError(result->full_name(), proto,
3134 DescriptorPool::ErrorCollector::EXTENDEE,
3135 "FieldDescriptorProto.extendee set for non-extension field.");
3136 }
3137
3138 result->containing_type_ = parent;
3139 }
3140
3141 // Copy options.
3142 if (!proto.has_options()) {
3143 result->options_ = NULL; // Will set to default_instance later.
3144 } else {
3145 AllocateOptions(proto.options(), result);
3146 }
3147
3148 AddSymbol(result->full_name(), parent, result->name(),
3149 proto, Symbol(result));
3150 }
3151
BuildExtensionRange(const DescriptorProto::ExtensionRange & proto,const Descriptor * parent,Descriptor::ExtensionRange * result)3152 void DescriptorBuilder::BuildExtensionRange(
3153 const DescriptorProto::ExtensionRange& proto,
3154 const Descriptor* parent,
3155 Descriptor::ExtensionRange* result) {
3156 result->start = proto.start();
3157 result->end = proto.end();
3158 if (result->start <= 0) {
3159 AddError(parent->full_name(), proto,
3160 DescriptorPool::ErrorCollector::NUMBER,
3161 "Extension numbers must be positive integers.");
3162 }
3163
3164 if (result->end > FieldDescriptor::kMaxNumber + 1) {
3165 AddError(parent->full_name(), proto,
3166 DescriptorPool::ErrorCollector::NUMBER,
3167 strings::Substitute("Extension numbers cannot be greater than $0.",
3168 FieldDescriptor::kMaxNumber));
3169 }
3170
3171 if (result->start >= result->end) {
3172 AddError(parent->full_name(), proto,
3173 DescriptorPool::ErrorCollector::NUMBER,
3174 "Extension range end number must be greater than start number.");
3175 }
3176 }
3177
BuildEnum(const EnumDescriptorProto & proto,const Descriptor * parent,EnumDescriptor * result)3178 void DescriptorBuilder::BuildEnum(const EnumDescriptorProto& proto,
3179 const Descriptor* parent,
3180 EnumDescriptor* result) {
3181 const string& scope = (parent == NULL) ?
3182 file_->package() : parent->full_name();
3183 string* full_name = tables_->AllocateString(scope);
3184 if (!full_name->empty()) full_name->append(1, '.');
3185 full_name->append(proto.name());
3186
3187 ValidateSymbolName(proto.name(), *full_name, proto);
3188
3189 result->name_ = tables_->AllocateString(proto.name());
3190 result->full_name_ = full_name;
3191 result->file_ = file_;
3192 result->containing_type_ = parent;
3193 result->is_placeholder_ = false;
3194 result->is_unqualified_placeholder_ = false;
3195
3196 if (proto.value_size() == 0) {
3197 // We cannot allow enums with no values because this would mean there
3198 // would be no valid default value for fields of this type.
3199 AddError(result->full_name(), proto,
3200 DescriptorPool::ErrorCollector::NAME,
3201 "Enums must contain at least one value.");
3202 }
3203
3204 BUILD_ARRAY(proto, result, value, BuildEnumValue, result);
3205
3206 // Copy options.
3207 if (!proto.has_options()) {
3208 result->options_ = NULL; // Will set to default_instance later.
3209 } else {
3210 AllocateOptions(proto.options(), result);
3211 }
3212
3213 AddSymbol(result->full_name(), parent, result->name(),
3214 proto, Symbol(result));
3215 }
3216
BuildEnumValue(const EnumValueDescriptorProto & proto,const EnumDescriptor * parent,EnumValueDescriptor * result)3217 void DescriptorBuilder::BuildEnumValue(const EnumValueDescriptorProto& proto,
3218 const EnumDescriptor* parent,
3219 EnumValueDescriptor* result) {
3220 result->name_ = tables_->AllocateString(proto.name());
3221 result->number_ = proto.number();
3222 result->type_ = parent;
3223
3224 // Note: full_name for enum values is a sibling to the parent's name, not a
3225 // child of it.
3226 string* full_name = tables_->AllocateString(*parent->full_name_);
3227 full_name->resize(full_name->size() - parent->name_->size());
3228 full_name->append(*result->name_);
3229 result->full_name_ = full_name;
3230
3231 ValidateSymbolName(proto.name(), *full_name, proto);
3232
3233 // Copy options.
3234 if (!proto.has_options()) {
3235 result->options_ = NULL; // Will set to default_instance later.
3236 } else {
3237 AllocateOptions(proto.options(), result);
3238 }
3239
3240 // Again, enum values are weird because we makes them appear as siblings
3241 // of the enum type instead of children of it. So, we use
3242 // parent->containing_type() as the value's parent.
3243 bool added_to_outer_scope =
3244 AddSymbol(result->full_name(), parent->containing_type(), result->name(),
3245 proto, Symbol(result));
3246
3247 // However, we also want to be able to search for values within a single
3248 // enum type, so we add it as a child of the enum type itself, too.
3249 // Note: This could fail, but if it does, the error has already been
3250 // reported by the above AddSymbol() call, so we ignore the return code.
3251 bool added_to_inner_scope =
3252 file_tables_->AddAliasUnderParent(parent, result->name(), Symbol(result));
3253
3254 if (added_to_inner_scope && !added_to_outer_scope) {
3255 // This value did not conflict with any values defined in the same enum,
3256 // but it did conflict with some other symbol defined in the enum type's
3257 // scope. Let's print an additional error to explain this.
3258 string outer_scope;
3259 if (parent->containing_type() == NULL) {
3260 outer_scope = file_->package();
3261 } else {
3262 outer_scope = parent->containing_type()->full_name();
3263 }
3264
3265 if (outer_scope.empty()) {
3266 outer_scope = "the global scope";
3267 } else {
3268 outer_scope = "\"" + outer_scope + "\"";
3269 }
3270
3271 AddError(result->full_name(), proto,
3272 DescriptorPool::ErrorCollector::NAME,
3273 "Note that enum values use C++ scoping rules, meaning that "
3274 "enum values are siblings of their type, not children of it. "
3275 "Therefore, \"" + result->name() + "\" must be unique within "
3276 + outer_scope + ", not just within \"" + parent->name() + "\".");
3277 }
3278
3279 // An enum is allowed to define two numbers that refer to the same value.
3280 // FindValueByNumber() should return the first such value, so we simply
3281 // ignore AddEnumValueByNumber()'s return code.
3282 file_tables_->AddEnumValueByNumber(result);
3283 }
3284
BuildService(const ServiceDescriptorProto & proto,const void * dummy,ServiceDescriptor * result)3285 void DescriptorBuilder::BuildService(const ServiceDescriptorProto& proto,
3286 const void* dummy,
3287 ServiceDescriptor* result) {
3288 string* full_name = tables_->AllocateString(file_->package());
3289 if (!full_name->empty()) full_name->append(1, '.');
3290 full_name->append(proto.name());
3291
3292 ValidateSymbolName(proto.name(), *full_name, proto);
3293
3294 result->name_ = tables_->AllocateString(proto.name());
3295 result->full_name_ = full_name;
3296 result->file_ = file_;
3297
3298 BUILD_ARRAY(proto, result, method, BuildMethod, result);
3299
3300 // Copy options.
3301 if (!proto.has_options()) {
3302 result->options_ = NULL; // Will set to default_instance later.
3303 } else {
3304 AllocateOptions(proto.options(), result);
3305 }
3306
3307 AddSymbol(result->full_name(), NULL, result->name(),
3308 proto, Symbol(result));
3309 }
3310
BuildMethod(const MethodDescriptorProto & proto,const ServiceDescriptor * parent,MethodDescriptor * result)3311 void DescriptorBuilder::BuildMethod(const MethodDescriptorProto& proto,
3312 const ServiceDescriptor* parent,
3313 MethodDescriptor* result) {
3314 result->name_ = tables_->AllocateString(proto.name());
3315 result->service_ = parent;
3316
3317 string* full_name = tables_->AllocateString(parent->full_name());
3318 full_name->append(1, '.');
3319 full_name->append(*result->name_);
3320 result->full_name_ = full_name;
3321
3322 ValidateSymbolName(proto.name(), *full_name, proto);
3323
3324 // These will be filled in when cross-linking.
3325 result->input_type_ = NULL;
3326 result->output_type_ = NULL;
3327
3328 // Copy options.
3329 if (!proto.has_options()) {
3330 result->options_ = NULL; // Will set to default_instance later.
3331 } else {
3332 AllocateOptions(proto.options(), result);
3333 }
3334
3335 AddSymbol(result->full_name(), parent, result->name(),
3336 proto, Symbol(result));
3337 }
3338
3339 #undef BUILD_ARRAY
3340
3341 // -------------------------------------------------------------------
3342
CrossLinkFile(FileDescriptor * file,const FileDescriptorProto & proto)3343 void DescriptorBuilder::CrossLinkFile(
3344 FileDescriptor* file, const FileDescriptorProto& proto) {
3345 if (file->options_ == NULL) {
3346 file->options_ = &FileOptions::default_instance();
3347 }
3348
3349 for (int i = 0; i < file->message_type_count(); i++) {
3350 CrossLinkMessage(&file->message_types_[i], proto.message_type(i));
3351 }
3352
3353 for (int i = 0; i < file->extension_count(); i++) {
3354 CrossLinkField(&file->extensions_[i], proto.extension(i));
3355 }
3356
3357 for (int i = 0; i < file->enum_type_count(); i++) {
3358 CrossLinkEnum(&file->enum_types_[i], proto.enum_type(i));
3359 }
3360
3361 for (int i = 0; i < file->service_count(); i++) {
3362 CrossLinkService(&file->services_[i], proto.service(i));
3363 }
3364 }
3365
CrossLinkMessage(Descriptor * message,const DescriptorProto & proto)3366 void DescriptorBuilder::CrossLinkMessage(
3367 Descriptor* message, const DescriptorProto& proto) {
3368 if (message->options_ == NULL) {
3369 message->options_ = &MessageOptions::default_instance();
3370 }
3371
3372 for (int i = 0; i < message->nested_type_count(); i++) {
3373 CrossLinkMessage(&message->nested_types_[i], proto.nested_type(i));
3374 }
3375
3376 for (int i = 0; i < message->enum_type_count(); i++) {
3377 CrossLinkEnum(&message->enum_types_[i], proto.enum_type(i));
3378 }
3379
3380 for (int i = 0; i < message->field_count(); i++) {
3381 CrossLinkField(&message->fields_[i], proto.field(i));
3382 }
3383
3384 for (int i = 0; i < message->extension_count(); i++) {
3385 CrossLinkField(&message->extensions_[i], proto.extension(i));
3386 }
3387 }
3388
CrossLinkField(FieldDescriptor * field,const FieldDescriptorProto & proto)3389 void DescriptorBuilder::CrossLinkField(
3390 FieldDescriptor* field, const FieldDescriptorProto& proto) {
3391 if (field->options_ == NULL) {
3392 field->options_ = &FieldOptions::default_instance();
3393 }
3394
3395 if (proto.has_extendee()) {
3396 Symbol extendee = LookupSymbol(proto.extendee(), field->full_name(),
3397 PLACEHOLDER_EXTENDABLE_MESSAGE);
3398 if (extendee.IsNull()) {
3399 AddNotDefinedError(field->full_name(), proto,
3400 DescriptorPool::ErrorCollector::EXTENDEE,
3401 proto.extendee());
3402 return;
3403 } else if (extendee.type != Symbol::MESSAGE) {
3404 AddError(field->full_name(), proto,
3405 DescriptorPool::ErrorCollector::EXTENDEE,
3406 "\"" + proto.extendee() + "\" is not a message type.");
3407 return;
3408 }
3409 field->containing_type_ = extendee.descriptor;
3410
3411 if (!field->containing_type()->IsExtensionNumber(field->number())) {
3412 AddError(field->full_name(), proto,
3413 DescriptorPool::ErrorCollector::NUMBER,
3414 strings::Substitute("\"$0\" does not declare $1 as an "
3415 "extension number.",
3416 field->containing_type()->full_name(),
3417 field->number()));
3418 }
3419 }
3420
3421 if (proto.has_type_name()) {
3422 // Assume we are expecting a message type unless the proto contains some
3423 // evidence that it expects an enum type. This only makes a difference if
3424 // we end up creating a placeholder.
3425 bool expecting_enum = (proto.type() == FieldDescriptorProto::TYPE_ENUM) ||
3426 proto.has_default_value();
3427
3428 Symbol type =
3429 LookupSymbol(proto.type_name(), field->full_name(),
3430 expecting_enum ? PLACEHOLDER_ENUM : PLACEHOLDER_MESSAGE,
3431 LOOKUP_TYPES);
3432
3433 if (type.IsNull()) {
3434 AddNotDefinedError(field->full_name(), proto,
3435 DescriptorPool::ErrorCollector::TYPE,
3436 proto.type_name());
3437 return;
3438 }
3439
3440 if (!proto.has_type()) {
3441 // Choose field type based on symbol.
3442 if (type.type == Symbol::MESSAGE) {
3443 field->type_ = FieldDescriptor::TYPE_MESSAGE;
3444 } else if (type.type == Symbol::ENUM) {
3445 field->type_ = FieldDescriptor::TYPE_ENUM;
3446 } else {
3447 AddError(field->full_name(), proto,
3448 DescriptorPool::ErrorCollector::TYPE,
3449 "\"" + proto.type_name() + "\" is not a type.");
3450 return;
3451 }
3452 }
3453
3454 if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
3455 if (type.type != Symbol::MESSAGE) {
3456 AddError(field->full_name(), proto,
3457 DescriptorPool::ErrorCollector::TYPE,
3458 "\"" + proto.type_name() + "\" is not a message type.");
3459 return;
3460 }
3461 field->message_type_ = type.descriptor;
3462
3463 if (field->has_default_value()) {
3464 AddError(field->full_name(), proto,
3465 DescriptorPool::ErrorCollector::DEFAULT_VALUE,
3466 "Messages can't have default values.");
3467 }
3468 } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_ENUM) {
3469 if (type.type != Symbol::ENUM) {
3470 AddError(field->full_name(), proto,
3471 DescriptorPool::ErrorCollector::TYPE,
3472 "\"" + proto.type_name() + "\" is not an enum type.");
3473 return;
3474 }
3475 field->enum_type_ = type.enum_descriptor;
3476
3477 if (field->enum_type()->is_placeholder_) {
3478 // We can't look up default values for placeholder types. We'll have
3479 // to just drop them.
3480 field->has_default_value_ = false;
3481 }
3482
3483 if (field->has_default_value()) {
3484 // We can't just use field->enum_type()->FindValueByName() here
3485 // because that locks the pool's mutex, which we have already locked
3486 // at this point.
3487 Symbol default_value =
3488 LookupSymbolNoPlaceholder(proto.default_value(),
3489 field->enum_type()->full_name());
3490
3491 if (default_value.type == Symbol::ENUM_VALUE &&
3492 default_value.enum_value_descriptor->type() == field->enum_type()) {
3493 field->default_value_enum_ = default_value.enum_value_descriptor;
3494 } else {
3495 AddError(field->full_name(), proto,
3496 DescriptorPool::ErrorCollector::DEFAULT_VALUE,
3497 "Enum type \"" + field->enum_type()->full_name() +
3498 "\" has no value named \"" + proto.default_value() + "\".");
3499 }
3500 } else if (field->enum_type()->value_count() > 0) {
3501 // All enums must have at least one value, or we would have reported
3502 // an error elsewhere. We use the first defined value as the default
3503 // if a default is not explicitly defined.
3504 field->default_value_enum_ = field->enum_type()->value(0);
3505 }
3506 } else {
3507 AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
3508 "Field with primitive type has type_name.");
3509 }
3510 } else {
3511 if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE ||
3512 field->cpp_type() == FieldDescriptor::CPPTYPE_ENUM) {
3513 AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
3514 "Field with message or enum type missing type_name.");
3515 }
3516 }
3517
3518 // Add the field to the fields-by-number table.
3519 // Note: We have to do this *after* cross-linking because extensions do not
3520 // know their containing type until now.
3521 if (!file_tables_->AddFieldByNumber(field)) {
3522 const FieldDescriptor* conflicting_field =
3523 file_tables_->FindFieldByNumber(field->containing_type(),
3524 field->number());
3525 if (field->is_extension()) {
3526 AddError(field->full_name(), proto,
3527 DescriptorPool::ErrorCollector::NUMBER,
3528 strings::Substitute("Extension number $0 has already been used "
3529 "in \"$1\" by extension \"$2\".",
3530 field->number(),
3531 field->containing_type()->full_name(),
3532 conflicting_field->full_name()));
3533 } else {
3534 AddError(field->full_name(), proto,
3535 DescriptorPool::ErrorCollector::NUMBER,
3536 strings::Substitute("Field number $0 has already been used in "
3537 "\"$1\" by field \"$2\".",
3538 field->number(),
3539 field->containing_type()->full_name(),
3540 conflicting_field->name()));
3541 }
3542 }
3543
3544 if (field->is_extension()) {
3545 // No need for error checking: if the extension number collided,
3546 // we've already been informed of it by the if() above.
3547 tables_->AddExtension(field);
3548 }
3549
3550 // Add the field to the lowercase-name and camelcase-name tables.
3551 file_tables_->AddFieldByStylizedNames(field);
3552 }
3553
CrossLinkEnum(EnumDescriptor * enum_type,const EnumDescriptorProto & proto)3554 void DescriptorBuilder::CrossLinkEnum(
3555 EnumDescriptor* enum_type, const EnumDescriptorProto& proto) {
3556 if (enum_type->options_ == NULL) {
3557 enum_type->options_ = &EnumOptions::default_instance();
3558 }
3559
3560 for (int i = 0; i < enum_type->value_count(); i++) {
3561 CrossLinkEnumValue(&enum_type->values_[i], proto.value(i));
3562 }
3563 }
3564
CrossLinkEnumValue(EnumValueDescriptor * enum_value,const EnumValueDescriptorProto & proto)3565 void DescriptorBuilder::CrossLinkEnumValue(
3566 EnumValueDescriptor* enum_value, const EnumValueDescriptorProto& proto) {
3567 if (enum_value->options_ == NULL) {
3568 enum_value->options_ = &EnumValueOptions::default_instance();
3569 }
3570 }
3571
CrossLinkService(ServiceDescriptor * service,const ServiceDescriptorProto & proto)3572 void DescriptorBuilder::CrossLinkService(
3573 ServiceDescriptor* service, const ServiceDescriptorProto& proto) {
3574 if (service->options_ == NULL) {
3575 service->options_ = &ServiceOptions::default_instance();
3576 }
3577
3578 for (int i = 0; i < service->method_count(); i++) {
3579 CrossLinkMethod(&service->methods_[i], proto.method(i));
3580 }
3581 }
3582
CrossLinkMethod(MethodDescriptor * method,const MethodDescriptorProto & proto)3583 void DescriptorBuilder::CrossLinkMethod(
3584 MethodDescriptor* method, const MethodDescriptorProto& proto) {
3585 if (method->options_ == NULL) {
3586 method->options_ = &MethodOptions::default_instance();
3587 }
3588
3589 Symbol input_type = LookupSymbol(proto.input_type(), method->full_name());
3590 if (input_type.IsNull()) {
3591 AddNotDefinedError(method->full_name(), proto,
3592 DescriptorPool::ErrorCollector::INPUT_TYPE,
3593 proto.input_type());
3594 } else if (input_type.type != Symbol::MESSAGE) {
3595 AddError(method->full_name(), proto,
3596 DescriptorPool::ErrorCollector::INPUT_TYPE,
3597 "\"" + proto.input_type() + "\" is not a message type.");
3598 } else {
3599 method->input_type_ = input_type.descriptor;
3600 }
3601
3602 Symbol output_type = LookupSymbol(proto.output_type(), method->full_name());
3603 if (output_type.IsNull()) {
3604 AddNotDefinedError(method->full_name(), proto,
3605 DescriptorPool::ErrorCollector::OUTPUT_TYPE,
3606 proto.output_type());
3607 } else if (output_type.type != Symbol::MESSAGE) {
3608 AddError(method->full_name(), proto,
3609 DescriptorPool::ErrorCollector::OUTPUT_TYPE,
3610 "\"" + proto.output_type() + "\" is not a message type.");
3611 } else {
3612 method->output_type_ = output_type.descriptor;
3613 }
3614 }
3615
3616 // -------------------------------------------------------------------
3617
3618 #define VALIDATE_OPTIONS_FROM_ARRAY(descriptor, array_name, type) \
3619 for (int i = 0; i < descriptor->array_name##_count(); ++i) { \
3620 Validate##type##Options(descriptor->array_name##s_ + i, \
3621 proto.array_name(i)); \
3622 }
3623
3624 // Determine if the file uses optimize_for = LITE_RUNTIME, being careful to
3625 // avoid problems that exist at init time.
IsLite(const FileDescriptor * file)3626 static bool IsLite(const FileDescriptor* file) {
3627 // TODO(kenton): I don't even remember how many of these conditions are
3628 // actually possible. I'm just being super-safe.
3629 return file != NULL &&
3630 &file->options() != NULL &&
3631 &file->options() != &FileOptions::default_instance() &&
3632 file->options().optimize_for() == FileOptions::LITE_RUNTIME;
3633 }
3634
ValidateFileOptions(FileDescriptor * file,const FileDescriptorProto & proto)3635 void DescriptorBuilder::ValidateFileOptions(FileDescriptor* file,
3636 const FileDescriptorProto& proto) {
3637 VALIDATE_OPTIONS_FROM_ARRAY(file, message_type, Message);
3638 VALIDATE_OPTIONS_FROM_ARRAY(file, enum_type, Enum);
3639 VALIDATE_OPTIONS_FROM_ARRAY(file, service, Service);
3640 VALIDATE_OPTIONS_FROM_ARRAY(file, extension, Field);
3641
3642 // Lite files can only be imported by other Lite files.
3643 if (!IsLite(file)) {
3644 for (int i = 0; i < file->dependency_count(); i++) {
3645 if (IsLite(file->dependency(i))) {
3646 AddError(
3647 file->name(), proto,
3648 DescriptorPool::ErrorCollector::OTHER,
3649 "Files that do not use optimize_for = LITE_RUNTIME cannot import "
3650 "files which do use this option. This file is not lite, but it "
3651 "imports \"" + file->dependency(i)->name() + "\" which is.");
3652 break;
3653 }
3654 }
3655 }
3656 }
3657
ValidateMessageOptions(Descriptor * message,const DescriptorProto & proto)3658 void DescriptorBuilder::ValidateMessageOptions(Descriptor* message,
3659 const DescriptorProto& proto) {
3660 VALIDATE_OPTIONS_FROM_ARRAY(message, field, Field);
3661 VALIDATE_OPTIONS_FROM_ARRAY(message, nested_type, Message);
3662 VALIDATE_OPTIONS_FROM_ARRAY(message, enum_type, Enum);
3663 VALIDATE_OPTIONS_FROM_ARRAY(message, extension, Field);
3664 }
3665
ValidateFieldOptions(FieldDescriptor * field,const FieldDescriptorProto & proto)3666 void DescriptorBuilder::ValidateFieldOptions(FieldDescriptor* field,
3667 const FieldDescriptorProto& proto) {
3668 if (field->options().has_experimental_map_key()) {
3669 ValidateMapKey(field, proto);
3670 }
3671
3672 // Only repeated primitive fields may be packed.
3673 if (field->options().packed() && !field->is_packable()) {
3674 AddError(
3675 field->full_name(), proto,
3676 DescriptorPool::ErrorCollector::TYPE,
3677 "[packed = true] can only be specified for repeated primitive fields.");
3678 }
3679
3680 // Note: Default instance may not yet be initialized here, so we have to
3681 // avoid reading from it.
3682 if (field->containing_type_ != NULL &&
3683 &field->containing_type()->options() !=
3684 &MessageOptions::default_instance() &&
3685 field->containing_type()->options().message_set_wire_format()) {
3686 if (field->is_extension()) {
3687 if (!field->is_optional() ||
3688 field->type() != FieldDescriptor::TYPE_MESSAGE) {
3689 AddError(field->full_name(), proto,
3690 DescriptorPool::ErrorCollector::TYPE,
3691 "Extensions of MessageSets must be optional messages.");
3692 }
3693 } else {
3694 AddError(field->full_name(), proto,
3695 DescriptorPool::ErrorCollector::NAME,
3696 "MessageSets cannot have fields, only extensions.");
3697 }
3698 }
3699
3700 // Lite extensions can only be of Lite types.
3701 if (IsLite(field->file()) &&
3702 field->containing_type_ != NULL &&
3703 !IsLite(field->containing_type()->file())) {
3704 AddError(field->full_name(), proto,
3705 DescriptorPool::ErrorCollector::EXTENDEE,
3706 "Extensions to non-lite types can only be declared in non-lite "
3707 "files. Note that you cannot extend a non-lite type to contain "
3708 "a lite type, but the reverse is allowed.");
3709 }
3710 }
3711
ValidateEnumOptions(EnumDescriptor * enm,const EnumDescriptorProto & proto)3712 void DescriptorBuilder::ValidateEnumOptions(EnumDescriptor* enm,
3713 const EnumDescriptorProto& proto) {
3714 VALIDATE_OPTIONS_FROM_ARRAY(enm, value, EnumValue);
3715 }
3716
ValidateEnumValueOptions(EnumValueDescriptor * enum_value,const EnumValueDescriptorProto & proto)3717 void DescriptorBuilder::ValidateEnumValueOptions(
3718 EnumValueDescriptor* enum_value, const EnumValueDescriptorProto& proto) {
3719 // Nothing to do so far.
3720 }
ValidateServiceOptions(ServiceDescriptor * service,const ServiceDescriptorProto & proto)3721 void DescriptorBuilder::ValidateServiceOptions(ServiceDescriptor* service,
3722 const ServiceDescriptorProto& proto) {
3723 if (IsLite(service->file())) {
3724 AddError(service->full_name(), proto,
3725 DescriptorPool::ErrorCollector::NAME,
3726 "Files with optimize_for = LITE_RUNTIME cannot define services.");
3727 }
3728
3729 VALIDATE_OPTIONS_FROM_ARRAY(service, method, Method);
3730 }
3731
ValidateMethodOptions(MethodDescriptor * method,const MethodDescriptorProto & proto)3732 void DescriptorBuilder::ValidateMethodOptions(MethodDescriptor* method,
3733 const MethodDescriptorProto& proto) {
3734 // Nothing to do so far.
3735 }
3736
ValidateMapKey(FieldDescriptor * field,const FieldDescriptorProto & proto)3737 void DescriptorBuilder::ValidateMapKey(FieldDescriptor* field,
3738 const FieldDescriptorProto& proto) {
3739 if (!field->is_repeated()) {
3740 AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
3741 "map type is only allowed for repeated fields.");
3742 return;
3743 }
3744
3745 if (field->cpp_type() != FieldDescriptor::CPPTYPE_MESSAGE) {
3746 AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
3747 "map type is only allowed for fields with a message type.");
3748 return;
3749 }
3750
3751 const Descriptor* item_type = field->message_type();
3752 if (item_type == NULL) {
3753 AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
3754 "Could not find field type.");
3755 return;
3756 }
3757
3758 // Find the field in item_type named by "experimental_map_key"
3759 const string& key_name = field->options().experimental_map_key();
3760 const Symbol key_symbol = LookupSymbol(
3761 key_name,
3762 // We append ".key_name" to the containing type's name since
3763 // LookupSymbol() searches for peers of the supplied name, not
3764 // children of the supplied name.
3765 item_type->full_name() + "." + key_name);
3766
3767 if (key_symbol.IsNull() || key_symbol.field_descriptor->is_extension()) {
3768 AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
3769 "Could not find field named \"" + key_name + "\" in type \"" +
3770 item_type->full_name() + "\".");
3771 return;
3772 }
3773 const FieldDescriptor* key_field = key_symbol.field_descriptor;
3774
3775 if (key_field->is_repeated()) {
3776 AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
3777 "map_key must not name a repeated field.");
3778 return;
3779 }
3780
3781 if (key_field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
3782 AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
3783 "map key must name a scalar or string field.");
3784 return;
3785 }
3786
3787 field->experimental_map_key_ = key_field;
3788 }
3789
3790 #undef VALIDATE_OPTIONS_FROM_ARRAY
3791
3792 // -------------------------------------------------------------------
3793
OptionInterpreter(DescriptorBuilder * builder)3794 DescriptorBuilder::OptionInterpreter::OptionInterpreter(
3795 DescriptorBuilder* builder) : builder_(builder) {
3796 GOOGLE_CHECK(builder_);
3797 }
3798
~OptionInterpreter()3799 DescriptorBuilder::OptionInterpreter::~OptionInterpreter() {
3800 }
3801
InterpretOptions(OptionsToInterpret * options_to_interpret)3802 bool DescriptorBuilder::OptionInterpreter::InterpretOptions(
3803 OptionsToInterpret* options_to_interpret) {
3804 // Note that these may be in different pools, so we can't use the same
3805 // descriptor and reflection objects on both.
3806 Message* options = options_to_interpret->options;
3807 const Message* original_options = options_to_interpret->original_options;
3808
3809 bool failed = false;
3810 options_to_interpret_ = options_to_interpret;
3811
3812 // Find the uninterpreted_option field in the mutable copy of the options
3813 // and clear them, since we're about to interpret them.
3814 const FieldDescriptor* uninterpreted_options_field =
3815 options->GetDescriptor()->FindFieldByName("uninterpreted_option");
3816 GOOGLE_CHECK(uninterpreted_options_field != NULL)
3817 << "No field named \"uninterpreted_option\" in the Options proto.";
3818 options->GetReflection()->ClearField(options, uninterpreted_options_field);
3819
3820 // Find the uninterpreted_option field in the original options.
3821 const FieldDescriptor* original_uninterpreted_options_field =
3822 original_options->GetDescriptor()->
3823 FindFieldByName("uninterpreted_option");
3824 GOOGLE_CHECK(original_uninterpreted_options_field != NULL)
3825 << "No field named \"uninterpreted_option\" in the Options proto.";
3826
3827 const int num_uninterpreted_options = original_options->GetReflection()->
3828 FieldSize(*original_options, original_uninterpreted_options_field);
3829 for (int i = 0; i < num_uninterpreted_options; ++i) {
3830 uninterpreted_option_ = down_cast<const UninterpretedOption*>(
3831 &original_options->GetReflection()->GetRepeatedMessage(
3832 *original_options, original_uninterpreted_options_field, i));
3833 if (!InterpretSingleOption(options)) {
3834 // Error already added by InterpretSingleOption().
3835 failed = true;
3836 break;
3837 }
3838 }
3839 // Reset these, so we don't have any dangling pointers.
3840 uninterpreted_option_ = NULL;
3841 options_to_interpret_ = NULL;
3842
3843 if (!failed) {
3844 // InterpretSingleOption() added the interpreted options in the
3845 // UnknownFieldSet, in case the option isn't yet known to us. Now we
3846 // serialize the options message and deserialize it back. That way, any
3847 // option fields that we do happen to know about will get moved from the
3848 // UnknownFieldSet into the real fields, and thus be available right away.
3849 // If they are not known, that's OK too. They will get reparsed into the
3850 // UnknownFieldSet and wait there until the message is parsed by something
3851 // that does know about the options.
3852 string buf;
3853 options->AppendToString(&buf);
3854 GOOGLE_CHECK(options->ParseFromString(buf))
3855 << "Protocol message serialized itself in invalid fashion.";
3856 }
3857
3858 return !failed;
3859 }
3860
InterpretSingleOption(Message * options)3861 bool DescriptorBuilder::OptionInterpreter::InterpretSingleOption(
3862 Message* options) {
3863 // First do some basic validation.
3864 if (uninterpreted_option_->name_size() == 0) {
3865 // This should never happen unless the parser has gone seriously awry or
3866 // someone has manually created the uninterpreted option badly.
3867 return AddNameError("Option must have a name.");
3868 }
3869 if (uninterpreted_option_->name(0).name_part() == "uninterpreted_option") {
3870 return AddNameError("Option must not use reserved name "
3871 "\"uninterpreted_option\".");
3872 }
3873
3874 const Descriptor* options_descriptor = NULL;
3875 // Get the options message's descriptor from the builder's pool, so that we
3876 // get the version that knows about any extension options declared in the
3877 // file we're currently building. The descriptor should be there as long as
3878 // the file we're building imported "google/protobuf/descriptors.proto".
3879
3880 // Note that we use DescriptorBuilder::FindSymbol(), not
3881 // DescriptorPool::FindMessageTypeByName() because we're already holding the
3882 // pool's mutex, and the latter method locks it again.
3883 Symbol symbol = builder_->FindSymbolNotEnforcingDeps(
3884 options->GetDescriptor()->full_name());
3885 if (!symbol.IsNull() && symbol.type == Symbol::MESSAGE) {
3886 options_descriptor = symbol.descriptor;
3887 } else {
3888 // The options message's descriptor was not in the builder's pool, so use
3889 // the standard version from the generated pool. We're not holding the
3890 // generated pool's mutex, so we can search it the straightforward way.
3891 options_descriptor = options->GetDescriptor();
3892 }
3893 GOOGLE_CHECK(options_descriptor);
3894
3895 // We iterate over the name parts to drill into the submessages until we find
3896 // the leaf field for the option. As we drill down we remember the current
3897 // submessage's descriptor in |descriptor| and the next field in that
3898 // submessage in |field|. We also track the fields we're drilling down
3899 // through in |intermediate_fields|. As we go, we reconstruct the full option
3900 // name in |debug_msg_name|, for use in error messages.
3901 const Descriptor* descriptor = options_descriptor;
3902 const FieldDescriptor* field = NULL;
3903 vector<const FieldDescriptor*> intermediate_fields;
3904 string debug_msg_name = "";
3905
3906 for (int i = 0; i < uninterpreted_option_->name_size(); ++i) {
3907 const string& name_part = uninterpreted_option_->name(i).name_part();
3908 if (debug_msg_name.size() > 0) {
3909 debug_msg_name += ".";
3910 }
3911 if (uninterpreted_option_->name(i).is_extension()) {
3912 debug_msg_name += "(" + name_part + ")";
3913 // Search for the extension's descriptor as an extension in the builder's
3914 // pool. Note that we use DescriptorBuilder::LookupSymbol(), not
3915 // DescriptorPool::FindExtensionByName(), for two reasons: 1) It allows
3916 // relative lookups, and 2) because we're already holding the pool's
3917 // mutex, and the latter method locks it again.
3918 Symbol symbol = builder_->LookupSymbol(name_part,
3919 options_to_interpret_->name_scope);
3920 if (!symbol.IsNull() && symbol.type == Symbol::FIELD) {
3921 field = symbol.field_descriptor;
3922 }
3923 // If we don't find the field then the field's descriptor was not in the
3924 // builder's pool, but there's no point in looking in the generated
3925 // pool. We require that you import the file that defines any extensions
3926 // you use, so they must be present in the builder's pool.
3927 } else {
3928 debug_msg_name += name_part;
3929 // Search for the field's descriptor as a regular field.
3930 field = descriptor->FindFieldByName(name_part);
3931 }
3932
3933 if (field == NULL) {
3934 if (get_allow_unknown(builder_->pool_)) {
3935 // We can't find the option, but AllowUnknownDependencies() is enabled,
3936 // so we will just leave it as uninterpreted.
3937 AddWithoutInterpreting(*uninterpreted_option_, options);
3938 return true;
3939 } else {
3940 return AddNameError("Option \"" + debug_msg_name + "\" unknown.");
3941 }
3942 } else if (field->containing_type() != descriptor) {
3943 if (get_is_placeholder(field->containing_type())) {
3944 // The field is an extension of a placeholder type, so we can't
3945 // reliably verify whether it is a valid extension to use here (e.g.
3946 // we don't know if it is an extension of the correct *Options message,
3947 // or if it has a valid field number, etc.). Just leave it as
3948 // uninterpreted instead.
3949 AddWithoutInterpreting(*uninterpreted_option_, options);
3950 return true;
3951 } else {
3952 // This can only happen if, due to some insane misconfiguration of the
3953 // pools, we find the options message in one pool but the field in
3954 // another. This would probably imply a hefty bug somewhere.
3955 return AddNameError("Option field \"" + debug_msg_name +
3956 "\" is not a field or extension of message \"" +
3957 descriptor->name() + "\".");
3958 }
3959 } else if (field->is_repeated()) {
3960 return AddNameError("Option field \"" + debug_msg_name +
3961 "\" is repeated. Repeated options are not "
3962 "supported.");
3963 } else if (i < uninterpreted_option_->name_size() - 1) {
3964 if (field->cpp_type() != FieldDescriptor::CPPTYPE_MESSAGE) {
3965 return AddNameError("Option \"" + debug_msg_name +
3966 "\" is an atomic type, not a message.");
3967 } else {
3968 // Drill down into the submessage.
3969 intermediate_fields.push_back(field);
3970 descriptor = field->message_type();
3971 }
3972 } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
3973 return AddNameError("Option field \"" + debug_msg_name +
3974 "\" cannot be of message type.");
3975 }
3976 }
3977
3978 // We've found the leaf field. Now we use UnknownFieldSets to set its value
3979 // on the options message. We do so because the message may not yet know
3980 // about its extension fields, so we may not be able to set the fields
3981 // directly. But the UnknownFieldSets will serialize to the same wire-format
3982 // message, so reading that message back in once the extension fields are
3983 // known will populate them correctly.
3984
3985 // First see if the option is already set.
3986 if (!ExamineIfOptionIsSet(
3987 intermediate_fields.begin(),
3988 intermediate_fields.end(),
3989 field, debug_msg_name,
3990 options->GetReflection()->GetUnknownFields(*options))) {
3991 return false; // ExamineIfOptionIsSet() already added the error.
3992 }
3993
3994
3995 // First set the value on the UnknownFieldSet corresponding to the
3996 // innermost message.
3997 scoped_ptr<UnknownFieldSet> unknown_fields(new UnknownFieldSet());
3998 if (!SetOptionValue(field, unknown_fields.get())) {
3999 return false; // SetOptionValue() already added the error.
4000 }
4001
4002 // Now wrap the UnknownFieldSet with UnknownFieldSets corresponding to all
4003 // the intermediate messages.
4004 for (vector<const FieldDescriptor*>::reverse_iterator iter =
4005 intermediate_fields.rbegin();
4006 iter != intermediate_fields.rend(); ++iter) {
4007 scoped_ptr<UnknownFieldSet> parent_unknown_fields(new UnknownFieldSet());
4008 switch ((*iter)->type()) {
4009 case FieldDescriptor::TYPE_MESSAGE: {
4010 io::StringOutputStream outstr(
4011 parent_unknown_fields->AddLengthDelimited((*iter)->number()));
4012 io::CodedOutputStream out(&outstr);
4013 internal::WireFormat::SerializeUnknownFields(*unknown_fields, &out);
4014 GOOGLE_CHECK(!out.HadError())
4015 << "Unexpected failure while serializing option submessage "
4016 << debug_msg_name << "\".";
4017 break;
4018 }
4019
4020 case FieldDescriptor::TYPE_GROUP: {
4021 parent_unknown_fields->AddGroup((*iter)->number())
4022 ->MergeFrom(*unknown_fields);
4023 break;
4024 }
4025
4026 default:
4027 GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_MESSAGE: "
4028 << (*iter)->type();
4029 return false;
4030 }
4031 unknown_fields.reset(parent_unknown_fields.release());
4032 }
4033
4034 // Now merge the UnknownFieldSet corresponding to the top-level message into
4035 // the options message.
4036 options->GetReflection()->MutableUnknownFields(options)->MergeFrom(
4037 *unknown_fields);
4038
4039 return true;
4040 }
4041
AddWithoutInterpreting(const UninterpretedOption & uninterpreted_option,Message * options)4042 void DescriptorBuilder::OptionInterpreter::AddWithoutInterpreting(
4043 const UninterpretedOption& uninterpreted_option, Message* options) {
4044 const FieldDescriptor* field =
4045 options->GetDescriptor()->FindFieldByName("uninterpreted_option");
4046 GOOGLE_CHECK(field != NULL);
4047
4048 options->GetReflection()->AddMessage(options, field)
4049 ->CopyFrom(uninterpreted_option);
4050 }
4051
ExamineIfOptionIsSet(vector<const FieldDescriptor * >::const_iterator intermediate_fields_iter,vector<const FieldDescriptor * >::const_iterator intermediate_fields_end,const FieldDescriptor * innermost_field,const string & debug_msg_name,const UnknownFieldSet & unknown_fields)4052 bool DescriptorBuilder::OptionInterpreter::ExamineIfOptionIsSet(
4053 vector<const FieldDescriptor*>::const_iterator intermediate_fields_iter,
4054 vector<const FieldDescriptor*>::const_iterator intermediate_fields_end,
4055 const FieldDescriptor* innermost_field, const string& debug_msg_name,
4056 const UnknownFieldSet& unknown_fields) {
4057 // We do linear searches of the UnknownFieldSet and its sub-groups. This
4058 // should be fine since it's unlikely that any one options structure will
4059 // contain more than a handful of options.
4060
4061 if (intermediate_fields_iter == intermediate_fields_end) {
4062 // We're at the innermost submessage.
4063 for (int i = 0; i < unknown_fields.field_count(); i++) {
4064 if (unknown_fields.field(i).number() == innermost_field->number()) {
4065 return AddNameError("Option \"" + debug_msg_name +
4066 "\" was already set.");
4067 }
4068 }
4069 return true;
4070 }
4071
4072 for (int i = 0; i < unknown_fields.field_count(); i++) {
4073 if (unknown_fields.field(i).number() ==
4074 (*intermediate_fields_iter)->number()) {
4075 const UnknownField* unknown_field = &unknown_fields.field(i);
4076 FieldDescriptor::Type type = (*intermediate_fields_iter)->type();
4077 // Recurse into the next submessage.
4078 switch (type) {
4079 case FieldDescriptor::TYPE_MESSAGE:
4080 if (unknown_field->type() == UnknownField::TYPE_LENGTH_DELIMITED) {
4081 UnknownFieldSet intermediate_unknown_fields;
4082 if (intermediate_unknown_fields.ParseFromString(
4083 unknown_field->length_delimited()) &&
4084 !ExamineIfOptionIsSet(intermediate_fields_iter + 1,
4085 intermediate_fields_end,
4086 innermost_field, debug_msg_name,
4087 intermediate_unknown_fields)) {
4088 return false; // Error already added.
4089 }
4090 }
4091 break;
4092
4093 case FieldDescriptor::TYPE_GROUP:
4094 if (unknown_field->type() == UnknownField::TYPE_GROUP) {
4095 if (!ExamineIfOptionIsSet(intermediate_fields_iter + 1,
4096 intermediate_fields_end,
4097 innermost_field, debug_msg_name,
4098 unknown_field->group())) {
4099 return false; // Error already added.
4100 }
4101 }
4102 break;
4103
4104 default:
4105 GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_MESSAGE: " << type;
4106 return false;
4107 }
4108 }
4109 }
4110 return true;
4111 }
4112
SetOptionValue(const FieldDescriptor * option_field,UnknownFieldSet * unknown_fields)4113 bool DescriptorBuilder::OptionInterpreter::SetOptionValue(
4114 const FieldDescriptor* option_field,
4115 UnknownFieldSet* unknown_fields) {
4116 // We switch on the CppType to validate.
4117 switch (option_field->cpp_type()) {
4118
4119 case FieldDescriptor::CPPTYPE_INT32:
4120 if (uninterpreted_option_->has_positive_int_value()) {
4121 if (uninterpreted_option_->positive_int_value() >
4122 static_cast<uint64>(kint32max)) {
4123 return AddValueError("Value out of range for int32 option \"" +
4124 option_field->full_name() + "\".");
4125 } else {
4126 SetInt32(option_field->number(),
4127 uninterpreted_option_->positive_int_value(),
4128 option_field->type(), unknown_fields);
4129 }
4130 } else if (uninterpreted_option_->has_negative_int_value()) {
4131 if (uninterpreted_option_->negative_int_value() <
4132 static_cast<int64>(kint32min)) {
4133 return AddValueError("Value out of range for int32 option \"" +
4134 option_field->full_name() + "\".");
4135 } else {
4136 SetInt32(option_field->number(),
4137 uninterpreted_option_->negative_int_value(),
4138 option_field->type(), unknown_fields);
4139 }
4140 } else {
4141 return AddValueError("Value must be integer for int32 option \"" +
4142 option_field->full_name() + "\".");
4143 }
4144 break;
4145
4146 case FieldDescriptor::CPPTYPE_INT64:
4147 if (uninterpreted_option_->has_positive_int_value()) {
4148 if (uninterpreted_option_->positive_int_value() >
4149 static_cast<uint64>(kint64max)) {
4150 return AddValueError("Value out of range for int64 option \"" +
4151 option_field->full_name() + "\".");
4152 } else {
4153 SetInt64(option_field->number(),
4154 uninterpreted_option_->positive_int_value(),
4155 option_field->type(), unknown_fields);
4156 }
4157 } else if (uninterpreted_option_->has_negative_int_value()) {
4158 SetInt64(option_field->number(),
4159 uninterpreted_option_->negative_int_value(),
4160 option_field->type(), unknown_fields);
4161 } else {
4162 return AddValueError("Value must be integer for int64 option \"" +
4163 option_field->full_name() + "\".");
4164 }
4165 break;
4166
4167 case FieldDescriptor::CPPTYPE_UINT32:
4168 if (uninterpreted_option_->has_positive_int_value()) {
4169 if (uninterpreted_option_->positive_int_value() > kuint32max) {
4170 return AddValueError("Value out of range for uint32 option \"" +
4171 option_field->name() + "\".");
4172 } else {
4173 SetUInt32(option_field->number(),
4174 uninterpreted_option_->positive_int_value(),
4175 option_field->type(), unknown_fields);
4176 }
4177 } else {
4178 return AddValueError("Value must be non-negative integer for uint32 "
4179 "option \"" + option_field->full_name() + "\".");
4180 }
4181 break;
4182
4183 case FieldDescriptor::CPPTYPE_UINT64:
4184 if (uninterpreted_option_->has_positive_int_value()) {
4185 SetUInt64(option_field->number(),
4186 uninterpreted_option_->positive_int_value(),
4187 option_field->type(), unknown_fields);
4188 } else {
4189 return AddValueError("Value must be non-negative integer for uint64 "
4190 "option \"" + option_field->full_name() + "\".");
4191 }
4192 break;
4193
4194 case FieldDescriptor::CPPTYPE_FLOAT: {
4195 float value;
4196 if (uninterpreted_option_->has_double_value()) {
4197 value = uninterpreted_option_->double_value();
4198 } else if (uninterpreted_option_->has_positive_int_value()) {
4199 value = uninterpreted_option_->positive_int_value();
4200 } else if (uninterpreted_option_->has_negative_int_value()) {
4201 value = uninterpreted_option_->negative_int_value();
4202 } else {
4203 return AddValueError("Value must be number for float option \"" +
4204 option_field->full_name() + "\".");
4205 }
4206 unknown_fields->AddFixed32(option_field->number(),
4207 google::protobuf::internal::WireFormatLite::EncodeFloat(value));
4208 break;
4209 }
4210
4211 case FieldDescriptor::CPPTYPE_DOUBLE: {
4212 double value;
4213 if (uninterpreted_option_->has_double_value()) {
4214 value = uninterpreted_option_->double_value();
4215 } else if (uninterpreted_option_->has_positive_int_value()) {
4216 value = uninterpreted_option_->positive_int_value();
4217 } else if (uninterpreted_option_->has_negative_int_value()) {
4218 value = uninterpreted_option_->negative_int_value();
4219 } else {
4220 return AddValueError("Value must be number for double option \"" +
4221 option_field->full_name() + "\".");
4222 }
4223 unknown_fields->AddFixed64(option_field->number(),
4224 google::protobuf::internal::WireFormatLite::EncodeDouble(value));
4225 break;
4226 }
4227
4228 case FieldDescriptor::CPPTYPE_BOOL:
4229 uint64 value;
4230 if (!uninterpreted_option_->has_identifier_value()) {
4231 return AddValueError("Value must be identifier for boolean option "
4232 "\"" + option_field->full_name() + "\".");
4233 }
4234 if (uninterpreted_option_->identifier_value() == "true") {
4235 value = 1;
4236 } else if (uninterpreted_option_->identifier_value() == "false") {
4237 value = 0;
4238 } else {
4239 return AddValueError("Value must be \"true\" or \"false\" for boolean "
4240 "option \"" + option_field->full_name() + "\".");
4241 }
4242 unknown_fields->AddVarint(option_field->number(), value);
4243 break;
4244
4245 case FieldDescriptor::CPPTYPE_ENUM: {
4246 if (!uninterpreted_option_->has_identifier_value()) {
4247 return AddValueError("Value must be identifier for enum-valued option "
4248 "\"" + option_field->full_name() + "\".");
4249 }
4250 const EnumDescriptor* enum_type = option_field->enum_type();
4251 const string& value_name = uninterpreted_option_->identifier_value();
4252 const EnumValueDescriptor* enum_value = NULL;
4253
4254 if (enum_type->file()->pool() != DescriptorPool::generated_pool()) {
4255 // Note that the enum value's fully-qualified name is a sibling of the
4256 // enum's name, not a child of it.
4257 string fully_qualified_name = enum_type->full_name();
4258 fully_qualified_name.resize(fully_qualified_name.size() -
4259 enum_type->name().size());
4260 fully_qualified_name += value_name;
4261
4262 // Search for the enum value's descriptor in the builder's pool. Note
4263 // that we use DescriptorBuilder::FindSymbolNotEnforcingDeps(), not
4264 // DescriptorPool::FindEnumValueByName() because we're already holding
4265 // the pool's mutex, and the latter method locks it again.
4266 Symbol symbol =
4267 builder_->FindSymbolNotEnforcingDeps(fully_qualified_name);
4268 if (!symbol.IsNull() && symbol.type == Symbol::ENUM_VALUE) {
4269 if (symbol.enum_value_descriptor->type() != enum_type) {
4270 return AddValueError("Enum type \"" + enum_type->full_name() +
4271 "\" has no value named \"" + value_name + "\" for option \"" +
4272 option_field->full_name() +
4273 "\". This appears to be a value from a sibling type.");
4274 } else {
4275 enum_value = symbol.enum_value_descriptor;
4276 }
4277 }
4278 } else {
4279 // The enum type is in the generated pool, so we can search for the
4280 // value there.
4281 enum_value = enum_type->FindValueByName(value_name);
4282 }
4283
4284 if (enum_value == NULL) {
4285 return AddValueError("Enum type \"" +
4286 option_field->enum_type()->full_name() +
4287 "\" has no value named \"" + value_name + "\" for "
4288 "option \"" + option_field->full_name() + "\".");
4289 } else {
4290 // Sign-extension is not a problem, since we cast directly from int32 to
4291 // uint64, without first going through uint32.
4292 unknown_fields->AddVarint(option_field->number(),
4293 static_cast<uint64>(static_cast<int64>(enum_value->number())));
4294 }
4295 break;
4296 }
4297
4298 case FieldDescriptor::CPPTYPE_STRING:
4299 if (!uninterpreted_option_->has_string_value()) {
4300 return AddValueError("Value must be quoted string for string option "
4301 "\"" + option_field->full_name() + "\".");
4302 }
4303 // The string has already been unquoted and unescaped by the parser.
4304 unknown_fields->AddLengthDelimited(option_field->number(),
4305 uninterpreted_option_->string_value());
4306 break;
4307
4308 case FieldDescriptor::CPPTYPE_MESSAGE:
4309 // We don't currently support defining a message-typed option, so we
4310 // should never actually get here.
4311 return AddValueError("Option \"" + option_field->full_name() +
4312 "\" is a message. To set fields within it, use "
4313 "syntax like \"" + option_field->name() +
4314 ".foo = value\".");
4315 break;
4316 }
4317
4318 return true;
4319 }
4320
SetInt32(int number,int32 value,FieldDescriptor::Type type,UnknownFieldSet * unknown_fields)4321 void DescriptorBuilder::OptionInterpreter::SetInt32(int number, int32 value,
4322 FieldDescriptor::Type type, UnknownFieldSet* unknown_fields) {
4323 switch (type) {
4324 case FieldDescriptor::TYPE_INT32:
4325 unknown_fields->AddVarint(number,
4326 static_cast<uint64>(static_cast<int64>(value)));
4327 break;
4328
4329 case FieldDescriptor::TYPE_SFIXED32:
4330 unknown_fields->AddFixed32(number, static_cast<uint32>(value));
4331 break;
4332
4333 case FieldDescriptor::TYPE_SINT32:
4334 unknown_fields->AddVarint(number,
4335 google::protobuf::internal::WireFormatLite::ZigZagEncode32(value));
4336 break;
4337
4338 default:
4339 GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_INT32: " << type;
4340 break;
4341 }
4342 }
4343
SetInt64(int number,int64 value,FieldDescriptor::Type type,UnknownFieldSet * unknown_fields)4344 void DescriptorBuilder::OptionInterpreter::SetInt64(int number, int64 value,
4345 FieldDescriptor::Type type, UnknownFieldSet* unknown_fields) {
4346 switch (type) {
4347 case FieldDescriptor::TYPE_INT64:
4348 unknown_fields->AddVarint(number, static_cast<uint64>(value));
4349 break;
4350
4351 case FieldDescriptor::TYPE_SFIXED64:
4352 unknown_fields->AddFixed64(number, static_cast<uint64>(value));
4353 break;
4354
4355 case FieldDescriptor::TYPE_SINT64:
4356 unknown_fields->AddVarint(number,
4357 google::protobuf::internal::WireFormatLite::ZigZagEncode64(value));
4358 break;
4359
4360 default:
4361 GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_INT64: " << type;
4362 break;
4363 }
4364 }
4365
SetUInt32(int number,uint32 value,FieldDescriptor::Type type,UnknownFieldSet * unknown_fields)4366 void DescriptorBuilder::OptionInterpreter::SetUInt32(int number, uint32 value,
4367 FieldDescriptor::Type type, UnknownFieldSet* unknown_fields) {
4368 switch (type) {
4369 case FieldDescriptor::TYPE_UINT32:
4370 unknown_fields->AddVarint(number, static_cast<uint64>(value));
4371 break;
4372
4373 case FieldDescriptor::TYPE_FIXED32:
4374 unknown_fields->AddFixed32(number, static_cast<uint32>(value));
4375 break;
4376
4377 default:
4378 GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_UINT32: " << type;
4379 break;
4380 }
4381 }
4382
SetUInt64(int number,uint64 value,FieldDescriptor::Type type,UnknownFieldSet * unknown_fields)4383 void DescriptorBuilder::OptionInterpreter::SetUInt64(int number, uint64 value,
4384 FieldDescriptor::Type type, UnknownFieldSet* unknown_fields) {
4385 switch (type) {
4386 case FieldDescriptor::TYPE_UINT64:
4387 unknown_fields->AddVarint(number, value);
4388 break;
4389
4390 case FieldDescriptor::TYPE_FIXED64:
4391 unknown_fields->AddFixed64(number, value);
4392 break;
4393
4394 default:
4395 GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_UINT64: " << type;
4396 break;
4397 }
4398 }
4399
4400 } // namespace protobuf
4401 } // namespace google
4402