• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef BASE_MESSAGE_LOOP_H_
6 #define BASE_MESSAGE_LOOP_H_
7 
8 #include <queue>
9 #include <string>
10 
11 #include "base/histogram.h"
12 #include "base/message_pump.h"
13 #include "base/observer_list.h"
14 #include "base/ref_counted.h"
15 #include "base/scoped_ptr.h"
16 #include "base/task.h"
17 
18 #if defined(OS_WIN)
19 // We need this to declare base::MessagePumpWin::Dispatcher, which we should
20 // really just eliminate.
21 #include "base/message_pump_win.h"
22 #elif defined(OS_POSIX)
23 #include "base/message_pump_libevent.h"
24 #if !defined(OS_MACOSX)
25 #include "base/message_pump_glib.h"
26 #endif
27 #endif
28 
29 // A MessageLoop is used to process events for a particular thread.  There is
30 // at most one MessageLoop instance per thread.
31 //
32 // Events include at a minimum Task instances submitted to PostTask or those
33 // managed by TimerManager.  Depending on the type of message pump used by the
34 // MessageLoop other events such as UI messages may be processed.  On Windows
35 // APC calls (as time permits) and signals sent to a registered set of HANDLEs
36 // may also be processed.
37 //
38 // NOTE: Unless otherwise specified, a MessageLoop's methods may only be called
39 // on the thread where the MessageLoop's Run method executes.
40 //
41 // NOTE: MessageLoop has task reentrancy protection.  This means that if a
42 // task is being processed, a second task cannot start until the first task is
43 // finished.  Reentrancy can happen when processing a task, and an inner
44 // message pump is created.  That inner pump then processes native messages
45 // which could implicitly start an inner task.  Inner message pumps are created
46 // with dialogs (DialogBox), common dialogs (GetOpenFileName), OLE functions
47 // (DoDragDrop), printer functions (StartDoc) and *many* others.
48 //
49 // Sample workaround when inner task processing is needed:
50 //   bool old_state = MessageLoop::current()->NestableTasksAllowed();
51 //   MessageLoop::current()->SetNestableTasksAllowed(true);
52 //   HRESULT hr = DoDragDrop(...); // Implicitly runs a modal message loop here.
53 //   MessageLoop::current()->SetNestableTasksAllowed(old_state);
54 //   // Process hr  (the result returned by DoDragDrop().
55 //
56 // Please be SURE your task is reentrant (nestable) and all global variables
57 // are stable and accessible before calling SetNestableTasksAllowed(true).
58 //
59 class MessageLoop : public base::MessagePump::Delegate {
60  public:
61   static void EnableHistogrammer(bool enable_histogrammer);
62 
63   // A DestructionObserver is notified when the current MessageLoop is being
64   // destroyed.  These obsevers are notified prior to MessageLoop::current()
65   // being changed to return NULL.  This gives interested parties the chance to
66   // do final cleanup that depends on the MessageLoop.
67   //
68   // NOTE: Any tasks posted to the MessageLoop during this notification will
69   // not be run.  Instead, they will be deleted.
70   //
71   class DestructionObserver {
72    public:
~DestructionObserver()73     virtual ~DestructionObserver() {}
74     virtual void WillDestroyCurrentMessageLoop() = 0;
75   };
76 
77   // Add a DestructionObserver, which will start receiving notifications
78   // immediately.
79   void AddDestructionObserver(DestructionObserver* destruction_observer);
80 
81   // Remove a DestructionObserver.  It is safe to call this method while a
82   // DestructionObserver is receiving a notification callback.
83   void RemoveDestructionObserver(DestructionObserver* destruction_observer);
84 
85   // The "PostTask" family of methods call the task's Run method asynchronously
86   // from within a message loop at some point in the future.
87   //
88   // With the PostTask variant, tasks are invoked in FIFO order, inter-mixed
89   // with normal UI or IO event processing.  With the PostDelayedTask variant,
90   // tasks are called after at least approximately 'delay_ms' have elapsed.
91   //
92   // The NonNestable variants work similarly except that they promise never to
93   // dispatch the task from a nested invocation of MessageLoop::Run.  Instead,
94   // such tasks get deferred until the top-most MessageLoop::Run is executing.
95   //
96   // The MessageLoop takes ownership of the Task, and deletes it after it has
97   // been Run().
98   //
99   // NOTE: These methods may be called on any thread.  The Task will be invoked
100   // on the thread that executes MessageLoop::Run().
101 
102   void PostTask(
103       const tracked_objects::Location& from_here, Task* task);
104 
105   void PostDelayedTask(
106       const tracked_objects::Location& from_here, Task* task, int64 delay_ms);
107 
108   void PostNonNestableTask(
109       const tracked_objects::Location& from_here, Task* task);
110 
111   void PostNonNestableDelayedTask(
112       const tracked_objects::Location& from_here, Task* task, int64 delay_ms);
113 
114   // A variant on PostTask that deletes the given object.  This is useful
115   // if the object needs to live until the next run of the MessageLoop (for
116   // example, deleting a RenderProcessHost from within an IPC callback is not
117   // good).
118   //
119   // NOTE: This method may be called on any thread.  The object will be deleted
120   // on the thread that executes MessageLoop::Run().  If this is not the same
121   // as the thread that calls PostDelayedTask(FROM_HERE, ), then T MUST inherit
122   // from RefCountedThreadSafe<T>!
123   template <class T>
DeleteSoon(const tracked_objects::Location & from_here,T * object)124   void DeleteSoon(const tracked_objects::Location& from_here, T* object) {
125     PostNonNestableTask(from_here, new DeleteTask<T>(object));
126   }
127 
128   // A variant on PostTask that releases the given reference counted object
129   // (by calling its Release method).  This is useful if the object needs to
130   // live until the next run of the MessageLoop, or if the object needs to be
131   // released on a particular thread.
132   //
133   // NOTE: This method may be called on any thread.  The object will be
134   // released (and thus possibly deleted) on the thread that executes
135   // MessageLoop::Run().  If this is not the same as the thread that calls
136   // PostDelayedTask(FROM_HERE, ), then T MUST inherit from
137   // RefCountedThreadSafe<T>!
138   template <class T>
ReleaseSoon(const tracked_objects::Location & from_here,T * object)139   void ReleaseSoon(const tracked_objects::Location& from_here, T* object) {
140     PostNonNestableTask(from_here, new ReleaseTask<T>(object));
141   }
142 
143   // Run the message loop.
144   void Run();
145 
146   // Process all pending tasks, windows messages, etc., but don't wait/sleep.
147   // Return as soon as all items that can be run are taken care of.
148   void RunAllPending();
149 
150   // Signals the Run method to return after it is done processing all pending
151   // messages.  This method may only be called on the same thread that called
152   // Run, and Run must still be on the call stack.
153   //
154   // Use QuitTask if you need to Quit another thread's MessageLoop, but note
155   // that doing so is fairly dangerous if the target thread makes nested calls
156   // to MessageLoop::Run.  The problem being that you won't know which nested
157   // run loop you are quiting, so be careful!
158   //
159   void Quit();
160 
161   // Invokes Quit on the current MessageLoop when run.  Useful to schedule an
162   // arbitrary MessageLoop to Quit.
163   class QuitTask : public Task {
164    public:
Run()165     virtual void Run() {
166       MessageLoop::current()->Quit();
167     }
168   };
169 
170   // A MessageLoop has a particular type, which indicates the set of
171   // asynchronous events it may process in addition to tasks and timers.
172   //
173   // TYPE_DEFAULT
174   //   This type of ML only supports tasks and timers.
175   //
176   // TYPE_UI
177   //   This type of ML also supports native UI events (e.g., Windows messages).
178   //   See also MessageLoopForUI.
179   //
180   // TYPE_IO
181   //   This type of ML also supports asynchronous IO.  See also
182   //   MessageLoopForIO.
183   //
184   enum Type {
185     TYPE_DEFAULT,
186     TYPE_UI,
187     TYPE_IO
188   };
189 
190   // Normally, it is not necessary to instantiate a MessageLoop.  Instead, it
191   // is typical to make use of the current thread's MessageLoop instance.
192   explicit MessageLoop(Type type = TYPE_DEFAULT);
193   ~MessageLoop();
194 
195   // Returns the type passed to the constructor.
type()196   Type type() const { return type_; }
197 
198   // Optional call to connect the thread name with this loop.
set_thread_name(const std::string & thread_name)199   void set_thread_name(const std::string& thread_name) {
200     DCHECK(thread_name_.empty()) << "Should not rename this thread!";
201     thread_name_ = thread_name;
202   }
thread_name()203   const std::string& thread_name() const { return thread_name_; }
204 
205   // Returns the MessageLoop object for the current thread, or null if none.
206   static MessageLoop* current();
207 
208   // Enables or disables the recursive task processing. This happens in the case
209   // of recursive message loops. Some unwanted message loop may occurs when
210   // using common controls or printer functions. By default, recursive task
211   // processing is disabled.
212   //
213   // The specific case where tasks get queued is:
214   // - The thread is running a message loop.
215   // - It receives a task #1 and execute it.
216   // - The task #1 implicitly start a message loop, like a MessageBox in the
217   //   unit test. This can also be StartDoc or GetSaveFileName.
218   // - The thread receives a task #2 before or while in this second message
219   //   loop.
220   // - With NestableTasksAllowed set to true, the task #2 will run right away.
221   //   Otherwise, it will get executed right after task #1 completes at "thread
222   //   message loop level".
223   void SetNestableTasksAllowed(bool allowed);
224   bool NestableTasksAllowed() const;
225 
226   // Enables nestable tasks on |loop| while in scope.
227   class ScopedNestableTaskAllower {
228    public:
ScopedNestableTaskAllower(MessageLoop * loop)229     explicit ScopedNestableTaskAllower(MessageLoop* loop)
230         : loop_(loop),
231           old_state_(loop_->NestableTasksAllowed()) {
232       loop_->SetNestableTasksAllowed(true);
233     }
~ScopedNestableTaskAllower()234     ~ScopedNestableTaskAllower() {
235       loop_->SetNestableTasksAllowed(old_state_);
236     }
237 
238    private:
239     MessageLoop* loop_;
240     bool old_state_;
241   };
242 
243   // Enables or disables the restoration during an exception of the unhandled
244   // exception filter that was active when Run() was called. This can happen
245   // if some third party code call SetUnhandledExceptionFilter() and never
246   // restores the previous filter.
set_exception_restoration(bool restore)247   void set_exception_restoration(bool restore) {
248     exception_restoration_ = restore;
249   }
250 
251   // Returns true if we are currently running a nested message loop.
252   bool IsNested();
253 
254 #if defined(OS_WIN)
255   typedef base::MessagePumpWin::Dispatcher Dispatcher;
256   typedef base::MessagePumpWin::Observer Observer;
257 #elif !defined(OS_MACOSX)
258   typedef base::MessagePumpForUI::Dispatcher Dispatcher;
259   typedef base::MessagePumpForUI::Observer Observer;
260 #endif
261 
262   //----------------------------------------------------------------------------
263  protected:
264   struct RunState {
265     // Used to count how many Run() invocations are on the stack.
266     int run_depth;
267 
268     // Used to record that Quit() was called, or that we should quit the pump
269     // once it becomes idle.
270     bool quit_received;
271 
272 #if !defined(OS_MACOSX)
273     Dispatcher* dispatcher;
274 #endif
275   };
276 
277   class AutoRunState : RunState {
278    public:
279     explicit AutoRunState(MessageLoop* loop);
280     ~AutoRunState();
281    private:
282     MessageLoop* loop_;
283     RunState* previous_state_;
284   };
285 
286   // This structure is copied around by value.
287   struct PendingTask {
288     Task* task;                   // The task to run.
289     base::Time delayed_run_time;  // The time when the task should be run.
290     int sequence_num;             // Used to facilitate sorting by run time.
291     bool nestable;                // True if OK to dispatch from a nested loop.
292 
PendingTaskPendingTask293     PendingTask(Task* task, bool nestable)
294         : task(task), sequence_num(0), nestable(nestable) {
295     }
296 
297     // Used to support sorting.
298     bool operator<(const PendingTask& other) const;
299   };
300 
301   class TaskQueue : public std::queue<PendingTask> {
302    public:
Swap(TaskQueue * queue)303     void Swap(TaskQueue* queue) {
304       c.swap(queue->c);  // Calls std::deque::swap
305     }
306   };
307 
308   typedef std::priority_queue<PendingTask> DelayedTaskQueue;
309 
310 #if defined(OS_WIN)
pump_win()311   base::MessagePumpWin* pump_win() {
312     return static_cast<base::MessagePumpWin*>(pump_.get());
313   }
314 #elif defined(OS_POSIX)
pump_libevent()315   base::MessagePumpLibevent* pump_libevent() {
316     return static_cast<base::MessagePumpLibevent*>(pump_.get());
317   }
318 #endif
319 
320   // A function to encapsulate all the exception handling capability in the
321   // stacks around the running of a main message loop.  It will run the message
322   // loop in a SEH try block or not depending on the set_SEH_restoration()
323   // flag invoking respectively RunInternalInSEHFrame() or RunInternal().
324   void RunHandler();
325 
326 #if defined(OS_WIN)
327   __declspec(noinline) void RunInternalInSEHFrame();
328 #endif
329 
330   // A surrounding stack frame around the running of the message loop that
331   // supports all saving and restoring of state, as is needed for any/all (ugly)
332   // recursive calls.
333   void RunInternal();
334 
335   // Called to process any delayed non-nestable tasks.
336   bool ProcessNextDelayedNonNestableTask();
337 
338   //----------------------------------------------------------------------------
339   // Run a work_queue_ task or new_task, and delete it (if it was processed by
340   // PostTask). If there are queued tasks, the oldest one is executed and
341   // new_task is queued. new_task is optional and can be NULL. In this NULL
342   // case, the method will run one pending task (if any exist). Returns true if
343   // it executes a task.  Queued tasks accumulate only when there is a
344   // non-nestable task currently processing, in which case the new_task is
345   // appended to the list work_queue_.  Such re-entrancy generally happens when
346   // an unrequested message pump (typical of a native dialog) is executing in
347   // the context of a task.
348   bool QueueOrRunTask(Task* new_task);
349 
350   // Runs the specified task and deletes it.
351   void RunTask(Task* task);
352 
353   // Calls RunTask or queues the pending_task on the deferred task list if it
354   // cannot be run right now.  Returns true if the task was run.
355   bool DeferOrRunPendingTask(const PendingTask& pending_task);
356 
357   // Adds the pending task to delayed_work_queue_.
358   void AddToDelayedWorkQueue(const PendingTask& pending_task);
359 
360   // Load tasks from the incoming_queue_ into work_queue_ if the latter is
361   // empty.  The former requires a lock to access, while the latter is directly
362   // accessible on this thread.
363   void ReloadWorkQueue();
364 
365   // Delete tasks that haven't run yet without running them.  Used in the
366   // destructor to make sure all the task's destructors get called.  Returns
367   // true if some work was done.
368   bool DeletePendingTasks();
369 
370   // Post a task to our incomming queue.
371   void PostTask_Helper(const tracked_objects::Location& from_here, Task* task,
372                        int64 delay_ms, bool nestable);
373 
374   // base::MessagePump::Delegate methods:
375   virtual bool DoWork();
376   virtual bool DoDelayedWork(base::Time* next_delayed_work_time);
377   virtual bool DoIdleWork();
378 
379   // Start recording histogram info about events and action IF it was enabled
380   // and IF the statistics recorder can accept a registration of our histogram.
381   void StartHistogrammer();
382 
383   // Add occurence of event to our histogram, so that we can see what is being
384   // done in a specific MessageLoop instance (i.e., specific thread).
385   // If message_histogram_ is NULL, this is a no-op.
386   void HistogramEvent(int event);
387 
388   static const LinearHistogram::DescriptionPair event_descriptions_[];
389   static bool enable_histogrammer_;
390 
391   Type type_;
392 
393   // A list of tasks that need to be processed by this instance.  Note that
394   // this queue is only accessed (push/pop) by our current thread.
395   TaskQueue work_queue_;
396 
397   // Contains delayed tasks, sorted by their 'delayed_run_time' property.
398   DelayedTaskQueue delayed_work_queue_;
399 
400   // A queue of non-nestable tasks that we had to defer because when it came
401   // time to execute them we were in a nested message loop.  They will execute
402   // once we're out of nested message loops.
403   TaskQueue deferred_non_nestable_work_queue_;
404 
405   scoped_refptr<base::MessagePump> pump_;
406 
407   ObserverList<DestructionObserver> destruction_observers_;
408 
409   // A recursion block that prevents accidentally running additonal tasks when
410   // insider a (accidentally induced?) nested message pump.
411   bool nestable_tasks_allowed_;
412 
413   bool exception_restoration_;
414 
415   std::string thread_name_;
416   // A profiling histogram showing the counts of various messages and events.
417   scoped_refptr<Histogram> message_histogram_;
418 
419   // A null terminated list which creates an incoming_queue of tasks that are
420   // aquired under a mutex for processing on this instance's thread. These tasks
421   // have not yet been sorted out into items for our work_queue_ vs items that
422   // will be handled by the TimerManager.
423   TaskQueue incoming_queue_;
424   // Protect access to incoming_queue_.
425   Lock incoming_queue_lock_;
426 
427   RunState* state_;
428 
429   // The next sequence number to use for delayed tasks.
430   int next_sequence_num_;
431 
432   DISALLOW_COPY_AND_ASSIGN(MessageLoop);
433 };
434 
435 //-----------------------------------------------------------------------------
436 // MessageLoopForUI extends MessageLoop with methods that are particular to a
437 // MessageLoop instantiated with TYPE_UI.
438 //
439 // This class is typically used like so:
440 //   MessageLoopForUI::current()->...call some method...
441 //
442 class MessageLoopForUI : public MessageLoop {
443  public:
MessageLoopForUI()444   MessageLoopForUI() : MessageLoop(TYPE_UI) {
445   }
446 
447   // Returns the MessageLoopForUI of the current thread.
current()448   static MessageLoopForUI* current() {
449     MessageLoop* loop = MessageLoop::current();
450     DCHECK_EQ(MessageLoop::TYPE_UI, loop->type());
451     return static_cast<MessageLoopForUI*>(loop);
452   }
453 
454 #if defined(OS_WIN)
455   void WillProcessMessage(const MSG& message);
456   void DidProcessMessage(const MSG& message);
457   void PumpOutPendingPaintMessages();
458 #endif
459 
460 #if !defined(OS_MACOSX)
461   // Please see message_pump_win/message_pump_glib for definitions of these
462   // methods.
463   void AddObserver(Observer* observer);
464   void RemoveObserver(Observer* observer);
465   void Run(Dispatcher* dispatcher);
466 
467  protected:
468   // TODO(rvargas): Make this platform independent.
pump_ui()469   base::MessagePumpForUI* pump_ui() {
470     return static_cast<base::MessagePumpForUI*>(pump_.get());
471   }
472 #endif  // defined(OS_MACOSX)
473 };
474 
475 // Do not add any member variables to MessageLoopForUI!  This is important b/c
476 // MessageLoopForUI is often allocated via MessageLoop(TYPE_UI).  Any extra
477 // data that you need should be stored on the MessageLoop's pump_ instance.
478 COMPILE_ASSERT(sizeof(MessageLoop) == sizeof(MessageLoopForUI),
479                MessageLoopForUI_should_not_have_extra_member_variables);
480 
481 //-----------------------------------------------------------------------------
482 // MessageLoopForIO extends MessageLoop with methods that are particular to a
483 // MessageLoop instantiated with TYPE_IO.
484 //
485 // This class is typically used like so:
486 //   MessageLoopForIO::current()->...call some method...
487 //
488 class MessageLoopForIO : public MessageLoop {
489  public:
MessageLoopForIO()490   MessageLoopForIO() : MessageLoop(TYPE_IO) {
491   }
492 
493   // Returns the MessageLoopForIO of the current thread.
current()494   static MessageLoopForIO* current() {
495     MessageLoop* loop = MessageLoop::current();
496     DCHECK_EQ(MessageLoop::TYPE_IO, loop->type());
497     return static_cast<MessageLoopForIO*>(loop);
498   }
499 
500 #if defined(OS_WIN)
501   typedef base::MessagePumpForIO::IOHandler IOHandler;
502   typedef base::MessagePumpForIO::IOContext IOContext;
503 
504   // Please see MessagePumpWin for definitions of these methods.
505   void RegisterIOHandler(HANDLE file_handle, IOHandler* handler);
506   bool WaitForIOCompletion(DWORD timeout, IOHandler* filter);
507 
508  protected:
509   // TODO(rvargas): Make this platform independent.
pump_io()510   base::MessagePumpForIO* pump_io() {
511     return static_cast<base::MessagePumpForIO*>(pump_.get());
512   }
513 
514 #elif defined(OS_POSIX)
515   typedef base::MessagePumpLibevent::Watcher Watcher;
516   typedef base::MessagePumpLibevent::FileDescriptorWatcher
517       FileDescriptorWatcher;
518 
519   enum Mode {
520     WATCH_READ = base::MessagePumpLibevent::WATCH_READ,
521     WATCH_WRITE = base::MessagePumpLibevent::WATCH_WRITE,
522     WATCH_READ_WRITE = base::MessagePumpLibevent::WATCH_READ_WRITE
523   };
524 
525   // Please see MessagePumpLibevent for definition.
526   bool WatchFileDescriptor(int fd,
527                            bool persistent,
528                            Mode mode,
529                            FileDescriptorWatcher *controller,
530                            Watcher *delegate);
531 #endif  // defined(OS_POSIX)
532 };
533 
534 // Do not add any member variables to MessageLoopForIO!  This is important b/c
535 // MessageLoopForIO is often allocated via MessageLoop(TYPE_IO).  Any extra
536 // data that you need should be stored on the MessageLoop's pump_ instance.
537 COMPILE_ASSERT(sizeof(MessageLoop) == sizeof(MessageLoopForIO),
538                MessageLoopForIO_should_not_have_extra_member_variables);
539 
540 #endif  // BASE_MESSAGE_LOOP_H_
541