1 /*
2 *
3 *
4 * Copyright (c) 1994
5 * Hewlett-Packard Company
6 *
7 * Copyright (c) 1996,1997
8 * Silicon Graphics Computer Systems, Inc.
9 *
10 * Copyright (c) 1997
11 * Moscow Center for SPARC Technology
12 *
13 * Copyright (c) 1999
14 * Boris Fomitchev
15 *
16 * This material is provided "as is", with absolutely no warranty expressed
17 * or implied. Any use is at your own risk.
18 *
19 * Permission to use or copy this software for any purpose is hereby granted
20 * without fee, provided the above notices are retained on all copies.
21 * Permission to modify the code and to distribute modified code is granted,
22 * provided the above notices are retained, and a notice that the code was
23 * modified is included with the above copyright notice.
24 *
25 * Modified CRP 7/10/00 for improved conformance / efficiency on insert_unique /
26 * insert_equal with valid hint -- efficiency is improved all around, and it is
27 * should now be standard conforming for complexity on insert point immediately
28 * after hint (amortized constant time).
29 *
30 */
31 #ifndef _STLP_TREE_C
32 #define _STLP_TREE_C
33
34 #ifndef _STLP_INTERNAL_TREE_H
35 # include <stl/_tree.h>
36 #endif
37
38 #if defined (_STLP_DEBUG)
39 # define _Rb_tree _STLP_NON_DBG_NAME(Rb_tree)
40 #endif
41
42 // fbp: these defines are for outline methods definitions.
43 // needed for definitions to be portable. Should not be used in method bodies.
44 #if defined (_STLP_NESTED_TYPE_PARAM_BUG)
45 # define __iterator__ _Rb_tree_iterator<_Value, _STLP_HEADER_TYPENAME _Traits::_NonConstTraits>
46 # define __size_type__ size_t
47 # define iterator __iterator__
48 #else
49 # define __iterator__ _STLP_TYPENAME_ON_RETURN_TYPE _Rb_tree<_Key, _Compare, _Value, _KeyOfValue, _Traits, _Alloc>::iterator
50 # define __size_type__ _STLP_TYPENAME_ON_RETURN_TYPE _Rb_tree<_Key, _Compare, _Value, _KeyOfValue, _Traits, _Alloc>::size_type
51 #endif
52
53 _STLP_BEGIN_NAMESPACE
54
55 _STLP_MOVE_TO_PRIV_NAMESPACE
56
57 #if defined (_STLP_EXPOSE_GLOBALS_IMPLEMENTATION)
58
59 template <class _Dummy> void _STLP_CALL
_Rotate_left(_Rb_tree_node_base * __x,_Rb_tree_node_base * & __root)60 _Rb_global<_Dummy>::_Rotate_left(_Rb_tree_node_base* __x,
61 _Rb_tree_node_base*& __root) {
62 _Rb_tree_node_base* __y = __x->_M_right;
63 __x->_M_right = __y->_M_left;
64 if (__y->_M_left != 0)
65 __y->_M_left->_M_parent = __x;
66 __y->_M_parent = __x->_M_parent;
67
68 if (__x == __root)
69 __root = __y;
70 else if (__x == __x->_M_parent->_M_left)
71 __x->_M_parent->_M_left = __y;
72 else
73 __x->_M_parent->_M_right = __y;
74 __y->_M_left = __x;
75 __x->_M_parent = __y;
76 }
77
78 template <class _Dummy> void _STLP_CALL
_Rotate_right(_Rb_tree_node_base * __x,_Rb_tree_node_base * & __root)79 _Rb_global<_Dummy>::_Rotate_right(_Rb_tree_node_base* __x,
80 _Rb_tree_node_base*& __root) {
81 _Rb_tree_node_base* __y = __x->_M_left;
82 __x->_M_left = __y->_M_right;
83 if (__y->_M_right != 0)
84 __y->_M_right->_M_parent = __x;
85 __y->_M_parent = __x->_M_parent;
86
87 if (__x == __root)
88 __root = __y;
89 else if (__x == __x->_M_parent->_M_right)
90 __x->_M_parent->_M_right = __y;
91 else
92 __x->_M_parent->_M_left = __y;
93 __y->_M_right = __x;
94 __x->_M_parent = __y;
95 }
96
97 template <class _Dummy> void _STLP_CALL
_Rebalance(_Rb_tree_node_base * __x,_Rb_tree_node_base * & __root)98 _Rb_global<_Dummy>::_Rebalance(_Rb_tree_node_base* __x,
99 _Rb_tree_node_base*& __root) {
100 __x->_M_color = _S_rb_tree_red;
101 while (__x != __root && __x->_M_parent->_M_color == _S_rb_tree_red) {
102 if (__x->_M_parent == __x->_M_parent->_M_parent->_M_left) {
103 _Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_right;
104 if (__y && __y->_M_color == _S_rb_tree_red) {
105 __x->_M_parent->_M_color = _S_rb_tree_black;
106 __y->_M_color = _S_rb_tree_black;
107 __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
108 __x = __x->_M_parent->_M_parent;
109 }
110 else {
111 if (__x == __x->_M_parent->_M_right) {
112 __x = __x->_M_parent;
113 _Rotate_left(__x, __root);
114 }
115 __x->_M_parent->_M_color = _S_rb_tree_black;
116 __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
117 _Rotate_right(__x->_M_parent->_M_parent, __root);
118 }
119 }
120 else {
121 _Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_left;
122 if (__y && __y->_M_color == _S_rb_tree_red) {
123 __x->_M_parent->_M_color = _S_rb_tree_black;
124 __y->_M_color = _S_rb_tree_black;
125 __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
126 __x = __x->_M_parent->_M_parent;
127 }
128 else {
129 if (__x == __x->_M_parent->_M_left) {
130 __x = __x->_M_parent;
131 _Rotate_right(__x, __root);
132 }
133 __x->_M_parent->_M_color = _S_rb_tree_black;
134 __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
135 _Rotate_left(__x->_M_parent->_M_parent, __root);
136 }
137 }
138 }
139 __root->_M_color = _S_rb_tree_black;
140 }
141
142 template <class _Dummy> _Rb_tree_node_base* _STLP_CALL
_Rebalance_for_erase(_Rb_tree_node_base * __z,_Rb_tree_node_base * & __root,_Rb_tree_node_base * & __leftmost,_Rb_tree_node_base * & __rightmost)143 _Rb_global<_Dummy>::_Rebalance_for_erase(_Rb_tree_node_base* __z,
144 _Rb_tree_node_base*& __root,
145 _Rb_tree_node_base*& __leftmost,
146 _Rb_tree_node_base*& __rightmost) {
147 _Rb_tree_node_base* __y = __z;
148 _Rb_tree_node_base* __x;
149 _Rb_tree_node_base* __x_parent;
150
151 if (__y->_M_left == 0) // __z has at most one non-null child. y == z.
152 __x = __y->_M_right; // __x might be null.
153 else {
154 if (__y->_M_right == 0) // __z has exactly one non-null child. y == z.
155 __x = __y->_M_left; // __x is not null.
156 else { // __z has two non-null children. Set __y to
157 __y = _Rb_tree_node_base::_S_minimum(__y->_M_right); // __z's successor. __x might be null.
158 __x = __y->_M_right;
159 }
160 }
161
162 if (__y != __z) { // relink y in place of z. y is z's successor
163 __z->_M_left->_M_parent = __y;
164 __y->_M_left = __z->_M_left;
165 if (__y != __z->_M_right) {
166 __x_parent = __y->_M_parent;
167 if (__x) __x->_M_parent = __y->_M_parent;
168 __y->_M_parent->_M_left = __x; // __y must be a child of _M_left
169 __y->_M_right = __z->_M_right;
170 __z->_M_right->_M_parent = __y;
171 }
172 else
173 __x_parent = __y;
174 if (__root == __z)
175 __root = __y;
176 else if (__z->_M_parent->_M_left == __z)
177 __z->_M_parent->_M_left = __y;
178 else
179 __z->_M_parent->_M_right = __y;
180 __y->_M_parent = __z->_M_parent;
181 _STLP_STD::swap(__y->_M_color, __z->_M_color);
182 __y = __z;
183 // __y now points to node to be actually deleted
184 }
185 else { // __y == __z
186 __x_parent = __y->_M_parent;
187 if (__x) __x->_M_parent = __y->_M_parent;
188 if (__root == __z)
189 __root = __x;
190 else {
191 if (__z->_M_parent->_M_left == __z)
192 __z->_M_parent->_M_left = __x;
193 else
194 __z->_M_parent->_M_right = __x;
195 }
196
197 if (__leftmost == __z) {
198 if (__z->_M_right == 0) // __z->_M_left must be null also
199 __leftmost = __z->_M_parent;
200 // makes __leftmost == _M_header if __z == __root
201 else
202 __leftmost = _Rb_tree_node_base::_S_minimum(__x);
203 }
204 if (__rightmost == __z) {
205 if (__z->_M_left == 0) // __z->_M_right must be null also
206 __rightmost = __z->_M_parent;
207 // makes __rightmost == _M_header if __z == __root
208 else // __x == __z->_M_left
209 __rightmost = _Rb_tree_node_base::_S_maximum(__x);
210 }
211 }
212
213 if (__y->_M_color != _S_rb_tree_red) {
214 while (__x != __root && (__x == 0 || __x->_M_color == _S_rb_tree_black))
215 if (__x == __x_parent->_M_left) {
216 _Rb_tree_node_base* __w = __x_parent->_M_right;
217 if (__w->_M_color == _S_rb_tree_red) {
218 __w->_M_color = _S_rb_tree_black;
219 __x_parent->_M_color = _S_rb_tree_red;
220 _Rotate_left(__x_parent, __root);
221 __w = __x_parent->_M_right;
222 }
223 if ((__w->_M_left == 0 ||
224 __w->_M_left->_M_color == _S_rb_tree_black) && (__w->_M_right == 0 ||
225 __w->_M_right->_M_color == _S_rb_tree_black)) {
226 __w->_M_color = _S_rb_tree_red;
227 __x = __x_parent;
228 __x_parent = __x_parent->_M_parent;
229 } else {
230 if (__w->_M_right == 0 ||
231 __w->_M_right->_M_color == _S_rb_tree_black) {
232 if (__w->_M_left) __w->_M_left->_M_color = _S_rb_tree_black;
233 __w->_M_color = _S_rb_tree_red;
234 _Rotate_right(__w, __root);
235 __w = __x_parent->_M_right;
236 }
237 __w->_M_color = __x_parent->_M_color;
238 __x_parent->_M_color = _S_rb_tree_black;
239 if (__w->_M_right) __w->_M_right->_M_color = _S_rb_tree_black;
240 _Rotate_left(__x_parent, __root);
241 break;
242 }
243 } else { // same as above, with _M_right <-> _M_left.
244 _Rb_tree_node_base* __w = __x_parent->_M_left;
245 if (__w->_M_color == _S_rb_tree_red) {
246 __w->_M_color = _S_rb_tree_black;
247 __x_parent->_M_color = _S_rb_tree_red;
248 _Rotate_right(__x_parent, __root);
249 __w = __x_parent->_M_left;
250 }
251 if ((__w->_M_right == 0 ||
252 __w->_M_right->_M_color == _S_rb_tree_black) && (__w->_M_left == 0 ||
253 __w->_M_left->_M_color == _S_rb_tree_black)) {
254 __w->_M_color = _S_rb_tree_red;
255 __x = __x_parent;
256 __x_parent = __x_parent->_M_parent;
257 } else {
258 if (__w->_M_left == 0 ||
259 __w->_M_left->_M_color == _S_rb_tree_black) {
260 if (__w->_M_right) __w->_M_right->_M_color = _S_rb_tree_black;
261 __w->_M_color = _S_rb_tree_red;
262 _Rotate_left(__w, __root);
263 __w = __x_parent->_M_left;
264 }
265 __w->_M_color = __x_parent->_M_color;
266 __x_parent->_M_color = _S_rb_tree_black;
267 if (__w->_M_left) __w->_M_left->_M_color = _S_rb_tree_black;
268 _Rotate_right(__x_parent, __root);
269 break;
270 }
271 }
272 if (__x) __x->_M_color = _S_rb_tree_black;
273 }
274 return __y;
275 }
276
277 template <class _Dummy> _Rb_tree_node_base* _STLP_CALL
_M_decrement(_Rb_tree_node_base * _M_node)278 _Rb_global<_Dummy>::_M_decrement(_Rb_tree_node_base* _M_node) {
279 if (_M_node->_M_color == _S_rb_tree_red && _M_node->_M_parent->_M_parent == _M_node)
280 _M_node = _M_node->_M_right;
281 else if (_M_node->_M_left != 0) {
282 _M_node = _Rb_tree_node_base::_S_maximum(_M_node->_M_left);
283 }
284 else {
285 _Base_ptr __y = _M_node->_M_parent;
286 while (_M_node == __y->_M_left) {
287 _M_node = __y;
288 __y = __y->_M_parent;
289 }
290 _M_node = __y;
291 }
292 return _M_node;
293 }
294
295 template <class _Dummy> _Rb_tree_node_base* _STLP_CALL
_M_increment(_Rb_tree_node_base * _M_node)296 _Rb_global<_Dummy>::_M_increment(_Rb_tree_node_base* _M_node) {
297 if (_M_node->_M_right != 0) {
298 _M_node = _Rb_tree_node_base::_S_minimum(_M_node->_M_right);
299 }
300 else {
301 _Base_ptr __y = _M_node->_M_parent;
302 while (_M_node == __y->_M_right) {
303 _M_node = __y;
304 __y = __y->_M_parent;
305 }
306 // check special case: This is necessary if _M_node is the
307 // _M_head and the tree contains only a single node __y. In
308 // that case parent, left and right all point to __y!
309 if (_M_node->_M_right != __y)
310 _M_node = __y;
311 }
312 return _M_node;
313 }
314
315 #endif /* _STLP_EXPOSE_GLOBALS_IMPLEMENTATION */
316
317
318 template <class _Key, class _Compare,
319 class _Value, class _KeyOfValue, class _Traits, class _Alloc>
320 _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc>&
321 _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::operator=(
322 const _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc>& __x) {
323 if (this != &__x) {
324 // Note that _Key may be a constant type.
325 clear();
326 _M_node_count = 0;
327 _M_key_compare = __x._M_key_compare;
328 if (__x._M_root() == 0) {
329 _M_root() = 0;
330 _M_leftmost() = &this->_M_header._M_data;
331 _M_rightmost() = &this->_M_header._M_data;
332 }
333 else {
334 _M_root() = _M_copy(__x._M_root(), &this->_M_header._M_data);
335 _M_leftmost() = _S_minimum(_M_root());
336 _M_rightmost() = _S_maximum(_M_root());
337 _M_node_count = __x._M_node_count;
338 }
339 }
340 return *this;
341 }
342
343 // CRP 7/10/00 inserted argument __on_right, which is another hint (meant to
344 // act like __on_left and ignore a portion of the if conditions -- specify
345 // __on_right != 0 to bypass comparison as false or __on_left != 0 to bypass
346 // comparison as true)
347 template <class _Key, class _Compare,
348 class _Value, class _KeyOfValue, class _Traits, class _Alloc>
349 __iterator__
_M_insert(_Rb_tree_node_base * __parent,const _Value & __val,_Rb_tree_node_base * __on_left,_Rb_tree_node_base * __on_right)350 _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::_M_insert(_Rb_tree_node_base * __parent,
351 const _Value& __val,
352 _Rb_tree_node_base * __on_left,
353 _Rb_tree_node_base * __on_right) {
354 // We do not create the node here as, depending on tests, we might call
355 // _M_key_compare that can throw an exception.
356 _Base_ptr __new_node;
357
358 if ( __parent == &this->_M_header._M_data ) {
359 __new_node = _M_create_node(__val);
360 _S_left(__parent) = __new_node; // also makes _M_leftmost() = __new_node
361 _M_root() = __new_node;
362 _M_rightmost() = __new_node;
363 }
364 else if ( __on_right == 0 && // If __on_right != 0, the remainder fails to false
365 ( __on_left != 0 || // If __on_left != 0, the remainder succeeds to true
366 _M_key_compare( _KeyOfValue()(__val), _S_key(__parent) ) ) ) {
367 __new_node = _M_create_node(__val);
368 _S_left(__parent) = __new_node;
369 if (__parent == _M_leftmost())
370 _M_leftmost() = __new_node; // maintain _M_leftmost() pointing to min node
371 }
372 else {
373 __new_node = _M_create_node(__val);
374 _S_right(__parent) = __new_node;
375 if (__parent == _M_rightmost())
376 _M_rightmost() = __new_node; // maintain _M_rightmost() pointing to max node
377 }
378 _S_parent(__new_node) = __parent;
379 _Rb_global_inst::_Rebalance(__new_node, this->_M_header._M_data._M_parent);
380 ++_M_node_count;
381 return iterator(__new_node);
382 }
383
384 template <class _Key, class _Compare,
385 class _Value, class _KeyOfValue, class _Traits, class _Alloc>
386 __iterator__
insert_equal(const _Value & __val)387 _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::insert_equal(const _Value& __val) {
388 _Base_ptr __y = &this->_M_header._M_data;
389 _Base_ptr __x = _M_root();
390 while (__x != 0) {
391 __y = __x;
392 if (_M_key_compare(_KeyOfValue()(__val), _S_key(__x))) {
393 __x = _S_left(__x);
394 }
395 else
396 __x = _S_right(__x);
397 }
398 return _M_insert(__y, __val, __x);
399 }
400
401
402 template <class _Key, class _Compare,
403 class _Value, class _KeyOfValue, class _Traits, class _Alloc>
404 pair<__iterator__, bool>
insert_unique(const _Value & __val)405 _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::insert_unique(const _Value& __val) {
406 _Base_ptr __y = &this->_M_header._M_data;
407 _Base_ptr __x = _M_root();
408 bool __comp = true;
409 while (__x != 0) {
410 __y = __x;
411 __comp = _M_key_compare(_KeyOfValue()(__val), _S_key(__x));
412 __x = __comp ? _S_left(__x) : _S_right(__x);
413 }
414 iterator __j = iterator(__y);
415 if (__comp) {
416 if (__j == begin())
417 return pair<iterator,bool>(_M_insert(__y, __val, /* __x*/ __y), true);
418 else
419 --__j;
420 }
421 if (_M_key_compare(_S_key(__j._M_node), _KeyOfValue()(__val))) {
422 return pair<iterator,bool>(_M_insert(__y, __val, __x), true);
423 }
424 return pair<iterator,bool>(__j, false);
425 }
426
427 // Modifications CRP 7/10/00 as noted to improve conformance and
428 // efficiency.
429 template <class _Key, class _Compare,
430 class _Value, class _KeyOfValue, class _Traits, class _Alloc>
431 __iterator__
insert_unique(iterator __position,const _Value & __val)432 _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::insert_unique(iterator __position,
433 const _Value& __val) {
434 if (__position._M_node == this->_M_header._M_data._M_left) { // begin()
435
436 // if the container is empty, fall back on insert_unique.
437 if (empty())
438 return insert_unique(__val).first;
439
440 if (_M_key_compare(_KeyOfValue()(__val), _S_key(__position._M_node))) {
441 return _M_insert(__position._M_node, __val, __position._M_node);
442 }
443 // first argument just needs to be non-null
444 else {
445 bool __comp_pos_v = _M_key_compare( _S_key(__position._M_node), _KeyOfValue()(__val) );
446
447 if (__comp_pos_v == false) // compare > and compare < both false so compare equal
448 return __position;
449 //Below __comp_pos_v == true
450
451 // Standard-conformance - does the insertion point fall immediately AFTER
452 // the hint?
453 iterator __after = __position;
454 ++__after;
455
456 // Check for only one member -- in that case, __position points to itself,
457 // and attempting to increment will cause an infinite loop.
458 if (__after._M_node == &this->_M_header._M_data)
459 // Check guarantees exactly one member, so comparison was already
460 // performed and we know the result; skip repeating it in _M_insert
461 // by specifying a non-zero fourth argument.
462 return _M_insert(__position._M_node, __val, 0, __position._M_node);
463
464 // All other cases:
465
466 // Optimization to catch insert-equivalent -- save comparison results,
467 // and we get this for free.
468 if (_M_key_compare( _KeyOfValue()(__val), _S_key(__after._M_node) )) {
469 if (_S_right(__position._M_node) == 0)
470 return _M_insert(__position._M_node, __val, 0, __position._M_node);
471 else
472 return _M_insert(__after._M_node, __val, __after._M_node);
473 }
474 else {
475 return insert_unique(__val).first;
476 }
477 }
478 }
479 else if (__position._M_node == &this->_M_header._M_data) { // end()
480 if (_M_key_compare(_S_key(_M_rightmost()), _KeyOfValue()(__val))) {
481 // pass along to _M_insert that it can skip comparing
482 // v, Key ; since compare Key, v was true, compare v, Key must be false.
483 return _M_insert(_M_rightmost(), __val, 0, __position._M_node); // Last argument only needs to be non-null
484 }
485 else
486 return insert_unique(__val).first;
487 }
488 else {
489 iterator __before = __position;
490 --__before;
491
492 bool __comp_v_pos = _M_key_compare(_KeyOfValue()(__val), _S_key(__position._M_node));
493
494 if (__comp_v_pos
495 && _M_key_compare( _S_key(__before._M_node), _KeyOfValue()(__val) )) {
496
497 if (_S_right(__before._M_node) == 0)
498 return _M_insert(__before._M_node, __val, 0, __before._M_node); // Last argument only needs to be non-null
499 else
500 return _M_insert(__position._M_node, __val, __position._M_node);
501 // first argument just needs to be non-null
502 }
503 else {
504 // Does the insertion point fall immediately AFTER the hint?
505 iterator __after = __position;
506 ++__after;
507 // Optimization to catch equivalent cases and avoid unnecessary comparisons
508 bool __comp_pos_v = !__comp_v_pos; // Stored this result earlier
509 // If the earlier comparison was true, this comparison doesn't need to be
510 // performed because it must be false. However, if the earlier comparison
511 // was false, we need to perform this one because in the equal case, both will
512 // be false.
513 if (!__comp_v_pos) {
514 __comp_pos_v = _M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__val));
515 }
516
517 if ( (!__comp_v_pos) // comp_v_pos true implies comp_v_pos false
518 && __comp_pos_v
519 && (__after._M_node == &this->_M_header._M_data ||
520 _M_key_compare( _KeyOfValue()(__val), _S_key(__after._M_node) ))) {
521 if (_S_right(__position._M_node) == 0)
522 return _M_insert(__position._M_node, __val, 0, __position._M_node);
523 else
524 return _M_insert(__after._M_node, __val, __after._M_node);
525 } else {
526 // Test for equivalent case
527 if (__comp_v_pos == __comp_pos_v)
528 return __position;
529 else
530 return insert_unique(__val).first;
531 }
532 }
533 }
534 }
535
536 template <class _Key, class _Compare,
537 class _Value, class _KeyOfValue, class _Traits, class _Alloc>
538 __iterator__
insert_equal(iterator __position,const _Value & __val)539 _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::insert_equal(iterator __position,
540 const _Value& __val) {
541 if (__position._M_node == this->_M_header._M_data._M_left) { // begin()
542
543 // Check for zero members
544 if (size() <= 0)
545 return insert_equal(__val);
546
547 if (!_M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__val)))
548 return _M_insert(__position._M_node, __val, __position._M_node);
549 else {
550 // Check for only one member
551 if (__position._M_node->_M_left == __position._M_node)
552 // Unlike insert_unique, can't avoid doing a comparison here.
553 return _M_insert(__position._M_node, __val);
554
555 // All other cases:
556 // Standard-conformance - does the insertion point fall immediately AFTER
557 // the hint?
558 iterator __after = __position;
559 ++__after;
560
561 // Already know that compare(pos, v) must be true!
562 // Therefore, we want to know if compare(after, v) is false.
563 // (i.e., we now pos < v, now we want to know if v <= after)
564 // If not, invalid hint.
565 if ( __after._M_node == &this->_M_header._M_data ||
566 !_M_key_compare( _S_key(__after._M_node), _KeyOfValue()(__val) ) ) {
567 if (_S_right(__position._M_node) == 0)
568 return _M_insert(__position._M_node, __val, 0, __position._M_node);
569 else
570 return _M_insert(__after._M_node, __val, __after._M_node);
571 }
572 else { // Invalid hint
573 return insert_equal(__val);
574 }
575 }
576 }
577 else if (__position._M_node == &this->_M_header._M_data) { // end()
578 if (!_M_key_compare(_KeyOfValue()(__val), _S_key(_M_rightmost())))
579 return _M_insert(_M_rightmost(), __val, 0, __position._M_node); // Last argument only needs to be non-null
580 else {
581 return insert_equal(__val);
582 }
583 }
584 else {
585 iterator __before = __position;
586 --__before;
587 // store the result of the comparison between pos and v so
588 // that we don't have to do it again later. Note that this reverses the shortcut
589 // on the if, possibly harming efficiency in comparisons; I think the harm will
590 // be negligible, and to do what I want to do (save the result of a comparison so
591 // that it can be re-used) there is no alternative. Test here is for before <= v <= pos.
592 bool __comp_pos_v = _M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__val));
593 if (!__comp_pos_v &&
594 !_M_key_compare(_KeyOfValue()(__val), _S_key(__before._M_node))) {
595 if (_S_right(__before._M_node) == 0)
596 return _M_insert(__before._M_node, __val, 0, __before._M_node); // Last argument only needs to be non-null
597 else
598 return _M_insert(__position._M_node, __val, __position._M_node);
599 }
600 else {
601 // Does the insertion point fall immediately AFTER the hint?
602 // Test for pos < v <= after
603 iterator __after = __position;
604 ++__after;
605
606 if (__comp_pos_v &&
607 ( __after._M_node == &this->_M_header._M_data ||
608 !_M_key_compare( _S_key(__after._M_node), _KeyOfValue()(__val) ) ) ) {
609 if (_S_right(__position._M_node) == 0)
610 return _M_insert(__position._M_node, __val, 0, __position._M_node);
611 else
612 return _M_insert(__after._M_node, __val, __after._M_node);
613 }
614 else { // Invalid hint
615 return insert_equal(__val);
616 }
617 }
618 }
619 }
620
621 template <class _Key, class _Compare,
622 class _Value, class _KeyOfValue, class _Traits, class _Alloc>
623 _Rb_tree_node_base*
_M_copy(_Rb_tree_node_base * __x,_Rb_tree_node_base * __p)624 _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::_M_copy(_Rb_tree_node_base* __x,
625 _Rb_tree_node_base* __p) {
626 // structural copy. __x and __p must be non-null.
627 _Base_ptr __top = _M_clone_node(__x);
628 _S_parent(__top) = __p;
629
630 _STLP_TRY {
631 if (_S_right(__x))
632 _S_right(__top) = _M_copy(_S_right(__x), __top);
633 __p = __top;
634 __x = _S_left(__x);
635
636 while (__x != 0) {
637 _Base_ptr __y = _M_clone_node(__x);
638 _S_left(__p) = __y;
639 _S_parent(__y) = __p;
640 if (_S_right(__x))
641 _S_right(__y) = _M_copy(_S_right(__x), __y);
642 __p = __y;
643 __x = _S_left(__x);
644 }
645 }
646 _STLP_UNWIND(_M_erase(__top))
647
648 return __top;
649 }
650
651 // this has to stay out-of-line : it's recursive
652 template <class _Key, class _Compare,
653 class _Value, class _KeyOfValue, class _Traits, class _Alloc>
654 void
_M_erase(_Rb_tree_node_base * __x)655 _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc>::_M_erase(_Rb_tree_node_base *__x) {
656 // erase without rebalancing
657 while (__x != 0) {
658 _M_erase(_S_right(__x));
659 _Base_ptr __y = _S_left(__x);
660 _STLP_STD::_Destroy(&_S_value(__x));
661 this->_M_header.deallocate(__STATIC_CAST(_Link_type, __x),1);
662 __x = __y;
663 }
664 }
665
666 #if defined (_STLP_DEBUG)
667 inline int
__black_count(_Rb_tree_node_base * __node,_Rb_tree_node_base * __root)668 __black_count(_Rb_tree_node_base* __node, _Rb_tree_node_base* __root) {
669 if (__node == 0)
670 return 0;
671 else {
672 int __bc = __node->_M_color == _S_rb_tree_black ? 1 : 0;
673 if (__node == __root)
674 return __bc;
675 else
676 return __bc + __black_count(__node->_M_parent, __root);
677 }
678 }
679
680 template <class _Key, class _Compare,
681 class _Value, class _KeyOfValue, class _Traits, class _Alloc>
__rb_verify()682 bool _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc>::__rb_verify() const {
683 if (_M_node_count == 0 || begin() == end())
684 return ((_M_node_count == 0) &&
685 (begin() == end()) &&
686 (this->_M_header._M_data._M_left == &this->_M_header._M_data) &&
687 (this->_M_header._M_data._M_right == &this->_M_header._M_data));
688
689 int __len = __black_count(_M_leftmost(), _M_root());
690 for (const_iterator __it = begin(); __it != end(); ++__it) {
691 _Base_ptr __x = __it._M_node;
692 _Base_ptr __L = _S_left(__x);
693 _Base_ptr __R = _S_right(__x);
694
695 if (__x->_M_color == _S_rb_tree_red)
696 if ((__L && __L->_M_color == _S_rb_tree_red) ||
697 (__R && __R->_M_color == _S_rb_tree_red))
698 return false;
699
700 if (__L && _M_key_compare(_S_key(__x), _S_key(__L)))
701 return false;
702 if (__R && _M_key_compare(_S_key(__R), _S_key(__x)))
703 return false;
704
705 if (!__L && !__R && __black_count(__x, _M_root()) != __len)
706 return false;
707 }
708
709 if (_M_leftmost() != _Rb_tree_node_base::_S_minimum(_M_root()))
710 return false;
711 if (_M_rightmost() != _Rb_tree_node_base::_S_maximum(_M_root()))
712 return false;
713
714 return true;
715 }
716 #endif /* _STLP_DEBUG */
717
718 _STLP_MOVE_TO_STD_NAMESPACE
719 _STLP_END_NAMESPACE
720
721 #undef _Rb_tree
722 #undef __iterator__
723 #undef iterator
724 #undef __size_type__
725
726 #endif /* _STLP_TREE_C */
727
728 // Local Variables:
729 // mode:C++
730 // End:
731