1 // Copyright 2006-2008 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #include "macro-assembler.h"
31 #include "mark-compact.h"
32 #include "platform.h"
33
34 namespace v8 {
35 namespace internal {
36
37 // For contiguous spaces, top should be in the space (or at the end) and limit
38 // should be the end of the space.
39 #define ASSERT_SEMISPACE_ALLOCATION_INFO(info, space) \
40 ASSERT((space).low() <= (info).top \
41 && (info).top <= (space).high() \
42 && (info).limit == (space).high())
43
44
45 // ----------------------------------------------------------------------------
46 // HeapObjectIterator
47
HeapObjectIterator(PagedSpace * space)48 HeapObjectIterator::HeapObjectIterator(PagedSpace* space) {
49 Initialize(space->bottom(), space->top(), NULL);
50 }
51
52
HeapObjectIterator(PagedSpace * space,HeapObjectCallback size_func)53 HeapObjectIterator::HeapObjectIterator(PagedSpace* space,
54 HeapObjectCallback size_func) {
55 Initialize(space->bottom(), space->top(), size_func);
56 }
57
58
HeapObjectIterator(PagedSpace * space,Address start)59 HeapObjectIterator::HeapObjectIterator(PagedSpace* space, Address start) {
60 Initialize(start, space->top(), NULL);
61 }
62
63
HeapObjectIterator(PagedSpace * space,Address start,HeapObjectCallback size_func)64 HeapObjectIterator::HeapObjectIterator(PagedSpace* space, Address start,
65 HeapObjectCallback size_func) {
66 Initialize(start, space->top(), size_func);
67 }
68
69
Initialize(Address cur,Address end,HeapObjectCallback size_f)70 void HeapObjectIterator::Initialize(Address cur, Address end,
71 HeapObjectCallback size_f) {
72 cur_addr_ = cur;
73 end_addr_ = end;
74 end_page_ = Page::FromAllocationTop(end);
75 size_func_ = size_f;
76 Page* p = Page::FromAllocationTop(cur_addr_);
77 cur_limit_ = (p == end_page_) ? end_addr_ : p->AllocationTop();
78
79 #ifdef DEBUG
80 Verify();
81 #endif
82 }
83
84
FromNextPage()85 HeapObject* HeapObjectIterator::FromNextPage() {
86 if (cur_addr_ == end_addr_) return NULL;
87
88 Page* cur_page = Page::FromAllocationTop(cur_addr_);
89 cur_page = cur_page->next_page();
90 ASSERT(cur_page->is_valid());
91
92 cur_addr_ = cur_page->ObjectAreaStart();
93 cur_limit_ = (cur_page == end_page_) ? end_addr_ : cur_page->AllocationTop();
94
95 if (cur_addr_ == end_addr_) return NULL;
96 ASSERT(cur_addr_ < cur_limit_);
97 #ifdef DEBUG
98 Verify();
99 #endif
100 return FromCurrentPage();
101 }
102
103
104 #ifdef DEBUG
Verify()105 void HeapObjectIterator::Verify() {
106 Page* p = Page::FromAllocationTop(cur_addr_);
107 ASSERT(p == Page::FromAllocationTop(cur_limit_));
108 ASSERT(p->Offset(cur_addr_) <= p->Offset(cur_limit_));
109 }
110 #endif
111
112
113 // -----------------------------------------------------------------------------
114 // PageIterator
115
PageIterator(PagedSpace * space,Mode mode)116 PageIterator::PageIterator(PagedSpace* space, Mode mode) : space_(space) {
117 prev_page_ = NULL;
118 switch (mode) {
119 case PAGES_IN_USE:
120 stop_page_ = space->AllocationTopPage();
121 break;
122 case PAGES_USED_BY_MC:
123 stop_page_ = space->MCRelocationTopPage();
124 break;
125 case ALL_PAGES:
126 #ifdef DEBUG
127 // Verify that the cached last page in the space is actually the
128 // last page.
129 for (Page* p = space->first_page_; p->is_valid(); p = p->next_page()) {
130 if (!p->next_page()->is_valid()) {
131 ASSERT(space->last_page_ == p);
132 }
133 }
134 #endif
135 stop_page_ = space->last_page_;
136 break;
137 }
138 }
139
140
141 // -----------------------------------------------------------------------------
142 // Page
143
144 #ifdef DEBUG
145 Page::RSetState Page::rset_state_ = Page::IN_USE;
146 #endif
147
148 // -----------------------------------------------------------------------------
149 // CodeRange
150
151 List<CodeRange::FreeBlock> CodeRange::free_list_(0);
152 List<CodeRange::FreeBlock> CodeRange::allocation_list_(0);
153 int CodeRange::current_allocation_block_index_ = 0;
154 VirtualMemory* CodeRange::code_range_ = NULL;
155
156
Setup(const size_t requested)157 bool CodeRange::Setup(const size_t requested) {
158 ASSERT(code_range_ == NULL);
159
160 code_range_ = new VirtualMemory(requested);
161 CHECK(code_range_ != NULL);
162 if (!code_range_->IsReserved()) {
163 delete code_range_;
164 code_range_ = NULL;
165 return false;
166 }
167
168 // We are sure that we have mapped a block of requested addresses.
169 ASSERT(code_range_->size() == requested);
170 LOG(NewEvent("CodeRange", code_range_->address(), requested));
171 allocation_list_.Add(FreeBlock(code_range_->address(), code_range_->size()));
172 current_allocation_block_index_ = 0;
173 return true;
174 }
175
176
CompareFreeBlockAddress(const FreeBlock * left,const FreeBlock * right)177 int CodeRange::CompareFreeBlockAddress(const FreeBlock* left,
178 const FreeBlock* right) {
179 // The entire point of CodeRange is that the difference between two
180 // addresses in the range can be represented as a signed 32-bit int,
181 // so the cast is semantically correct.
182 return static_cast<int>(left->start - right->start);
183 }
184
185
GetNextAllocationBlock(size_t requested)186 void CodeRange::GetNextAllocationBlock(size_t requested) {
187 for (current_allocation_block_index_++;
188 current_allocation_block_index_ < allocation_list_.length();
189 current_allocation_block_index_++) {
190 if (requested <= allocation_list_[current_allocation_block_index_].size) {
191 return; // Found a large enough allocation block.
192 }
193 }
194
195 // Sort and merge the free blocks on the free list and the allocation list.
196 free_list_.AddAll(allocation_list_);
197 allocation_list_.Clear();
198 free_list_.Sort(&CompareFreeBlockAddress);
199 for (int i = 0; i < free_list_.length();) {
200 FreeBlock merged = free_list_[i];
201 i++;
202 // Add adjacent free blocks to the current merged block.
203 while (i < free_list_.length() &&
204 free_list_[i].start == merged.start + merged.size) {
205 merged.size += free_list_[i].size;
206 i++;
207 }
208 if (merged.size > 0) {
209 allocation_list_.Add(merged);
210 }
211 }
212 free_list_.Clear();
213
214 for (current_allocation_block_index_ = 0;
215 current_allocation_block_index_ < allocation_list_.length();
216 current_allocation_block_index_++) {
217 if (requested <= allocation_list_[current_allocation_block_index_].size) {
218 return; // Found a large enough allocation block.
219 }
220 }
221
222 // Code range is full or too fragmented.
223 V8::FatalProcessOutOfMemory("CodeRange::GetNextAllocationBlock");
224 }
225
226
227
AllocateRawMemory(const size_t requested,size_t * allocated)228 void* CodeRange::AllocateRawMemory(const size_t requested, size_t* allocated) {
229 ASSERT(current_allocation_block_index_ < allocation_list_.length());
230 if (requested > allocation_list_[current_allocation_block_index_].size) {
231 // Find an allocation block large enough. This function call may
232 // call V8::FatalProcessOutOfMemory if it cannot find a large enough block.
233 GetNextAllocationBlock(requested);
234 }
235 // Commit the requested memory at the start of the current allocation block.
236 *allocated = RoundUp(requested, Page::kPageSize);
237 FreeBlock current = allocation_list_[current_allocation_block_index_];
238 if (*allocated >= current.size - Page::kPageSize) {
239 // Don't leave a small free block, useless for a large object or chunk.
240 *allocated = current.size;
241 }
242 ASSERT(*allocated <= current.size);
243 if (!code_range_->Commit(current.start, *allocated, true)) {
244 *allocated = 0;
245 return NULL;
246 }
247 allocation_list_[current_allocation_block_index_].start += *allocated;
248 allocation_list_[current_allocation_block_index_].size -= *allocated;
249 if (*allocated == current.size) {
250 GetNextAllocationBlock(0); // This block is used up, get the next one.
251 }
252 return current.start;
253 }
254
255
FreeRawMemory(void * address,size_t length)256 void CodeRange::FreeRawMemory(void* address, size_t length) {
257 free_list_.Add(FreeBlock(address, length));
258 code_range_->Uncommit(address, length);
259 }
260
261
TearDown()262 void CodeRange::TearDown() {
263 delete code_range_; // Frees all memory in the virtual memory range.
264 code_range_ = NULL;
265 free_list_.Free();
266 allocation_list_.Free();
267 }
268
269
270 // -----------------------------------------------------------------------------
271 // MemoryAllocator
272 //
273 int MemoryAllocator::capacity_ = 0;
274 int MemoryAllocator::size_ = 0;
275
276 VirtualMemory* MemoryAllocator::initial_chunk_ = NULL;
277
278 // 270 is an estimate based on the static default heap size of a pair of 256K
279 // semispaces and a 64M old generation.
280 const int kEstimatedNumberOfChunks = 270;
281 List<MemoryAllocator::ChunkInfo> MemoryAllocator::chunks_(
282 kEstimatedNumberOfChunks);
283 List<int> MemoryAllocator::free_chunk_ids_(kEstimatedNumberOfChunks);
284 int MemoryAllocator::max_nof_chunks_ = 0;
285 int MemoryAllocator::top_ = 0;
286
287
Push(int free_chunk_id)288 void MemoryAllocator::Push(int free_chunk_id) {
289 ASSERT(max_nof_chunks_ > 0);
290 ASSERT(top_ < max_nof_chunks_);
291 free_chunk_ids_[top_++] = free_chunk_id;
292 }
293
294
Pop()295 int MemoryAllocator::Pop() {
296 ASSERT(top_ > 0);
297 return free_chunk_ids_[--top_];
298 }
299
300
Setup(int capacity)301 bool MemoryAllocator::Setup(int capacity) {
302 capacity_ = RoundUp(capacity, Page::kPageSize);
303
304 // Over-estimate the size of chunks_ array. It assumes the expansion of old
305 // space is always in the unit of a chunk (kChunkSize) except the last
306 // expansion.
307 //
308 // Due to alignment, allocated space might be one page less than required
309 // number (kPagesPerChunk) of pages for old spaces.
310 //
311 // Reserve two chunk ids for semispaces, one for map space, one for old
312 // space, and one for code space.
313 max_nof_chunks_ = (capacity_ / (kChunkSize - Page::kPageSize)) + 5;
314 if (max_nof_chunks_ > kMaxNofChunks) return false;
315
316 size_ = 0;
317 ChunkInfo info; // uninitialized element.
318 for (int i = max_nof_chunks_ - 1; i >= 0; i--) {
319 chunks_.Add(info);
320 free_chunk_ids_.Add(i);
321 }
322 top_ = max_nof_chunks_;
323 return true;
324 }
325
326
TearDown()327 void MemoryAllocator::TearDown() {
328 for (int i = 0; i < max_nof_chunks_; i++) {
329 if (chunks_[i].address() != NULL) DeleteChunk(i);
330 }
331 chunks_.Clear();
332 free_chunk_ids_.Clear();
333
334 if (initial_chunk_ != NULL) {
335 LOG(DeleteEvent("InitialChunk", initial_chunk_->address()));
336 delete initial_chunk_;
337 initial_chunk_ = NULL;
338 }
339
340 ASSERT(top_ == max_nof_chunks_); // all chunks are free
341 top_ = 0;
342 capacity_ = 0;
343 size_ = 0;
344 max_nof_chunks_ = 0;
345 }
346
347
AllocateRawMemory(const size_t requested,size_t * allocated,Executability executable)348 void* MemoryAllocator::AllocateRawMemory(const size_t requested,
349 size_t* allocated,
350 Executability executable) {
351 if (size_ + static_cast<int>(requested) > capacity_) return NULL;
352 void* mem;
353 if (executable == EXECUTABLE && CodeRange::exists()) {
354 mem = CodeRange::AllocateRawMemory(requested, allocated);
355 } else {
356 mem = OS::Allocate(requested, allocated, (executable == EXECUTABLE));
357 }
358 int alloced = static_cast<int>(*allocated);
359 size_ += alloced;
360 #ifdef DEBUG
361 ZapBlock(reinterpret_cast<Address>(mem), alloced);
362 #endif
363 Counters::memory_allocated.Increment(alloced);
364 return mem;
365 }
366
367
FreeRawMemory(void * mem,size_t length)368 void MemoryAllocator::FreeRawMemory(void* mem, size_t length) {
369 #ifdef DEBUG
370 ZapBlock(reinterpret_cast<Address>(mem), length);
371 #endif
372 if (CodeRange::contains(static_cast<Address>(mem))) {
373 CodeRange::FreeRawMemory(mem, length);
374 } else {
375 OS::Free(mem, length);
376 }
377 Counters::memory_allocated.Decrement(static_cast<int>(length));
378 size_ -= static_cast<int>(length);
379 ASSERT(size_ >= 0);
380 }
381
382
ReserveInitialChunk(const size_t requested)383 void* MemoryAllocator::ReserveInitialChunk(const size_t requested) {
384 ASSERT(initial_chunk_ == NULL);
385
386 initial_chunk_ = new VirtualMemory(requested);
387 CHECK(initial_chunk_ != NULL);
388 if (!initial_chunk_->IsReserved()) {
389 delete initial_chunk_;
390 initial_chunk_ = NULL;
391 return NULL;
392 }
393
394 // We are sure that we have mapped a block of requested addresses.
395 ASSERT(initial_chunk_->size() == requested);
396 LOG(NewEvent("InitialChunk", initial_chunk_->address(), requested));
397 size_ += static_cast<int>(requested);
398 return initial_chunk_->address();
399 }
400
401
PagesInChunk(Address start,size_t size)402 static int PagesInChunk(Address start, size_t size) {
403 // The first page starts on the first page-aligned address from start onward
404 // and the last page ends on the last page-aligned address before
405 // start+size. Page::kPageSize is a power of two so we can divide by
406 // shifting.
407 return static_cast<int>((RoundDown(start + size, Page::kPageSize)
408 - RoundUp(start, Page::kPageSize)) >> kPageSizeBits);
409 }
410
411
AllocatePages(int requested_pages,int * allocated_pages,PagedSpace * owner)412 Page* MemoryAllocator::AllocatePages(int requested_pages, int* allocated_pages,
413 PagedSpace* owner) {
414 if (requested_pages <= 0) return Page::FromAddress(NULL);
415 size_t chunk_size = requested_pages * Page::kPageSize;
416
417 // There is not enough space to guarantee the desired number pages can be
418 // allocated.
419 if (size_ + static_cast<int>(chunk_size) > capacity_) {
420 // Request as many pages as we can.
421 chunk_size = capacity_ - size_;
422 requested_pages = static_cast<int>(chunk_size >> kPageSizeBits);
423
424 if (requested_pages <= 0) return Page::FromAddress(NULL);
425 }
426 void* chunk = AllocateRawMemory(chunk_size, &chunk_size, owner->executable());
427 if (chunk == NULL) return Page::FromAddress(NULL);
428 LOG(NewEvent("PagedChunk", chunk, chunk_size));
429
430 *allocated_pages = PagesInChunk(static_cast<Address>(chunk), chunk_size);
431 if (*allocated_pages == 0) {
432 FreeRawMemory(chunk, chunk_size);
433 LOG(DeleteEvent("PagedChunk", chunk));
434 return Page::FromAddress(NULL);
435 }
436
437 int chunk_id = Pop();
438 chunks_[chunk_id].init(static_cast<Address>(chunk), chunk_size, owner);
439
440 return InitializePagesInChunk(chunk_id, *allocated_pages, owner);
441 }
442
443
CommitPages(Address start,size_t size,PagedSpace * owner,int * num_pages)444 Page* MemoryAllocator::CommitPages(Address start, size_t size,
445 PagedSpace* owner, int* num_pages) {
446 ASSERT(start != NULL);
447 *num_pages = PagesInChunk(start, size);
448 ASSERT(*num_pages > 0);
449 ASSERT(initial_chunk_ != NULL);
450 ASSERT(InInitialChunk(start));
451 ASSERT(InInitialChunk(start + size - 1));
452 if (!initial_chunk_->Commit(start, size, owner->executable() == EXECUTABLE)) {
453 return Page::FromAddress(NULL);
454 }
455 #ifdef DEBUG
456 ZapBlock(start, size);
457 #endif
458 Counters::memory_allocated.Increment(static_cast<int>(size));
459
460 // So long as we correctly overestimated the number of chunks we should not
461 // run out of chunk ids.
462 CHECK(!OutOfChunkIds());
463 int chunk_id = Pop();
464 chunks_[chunk_id].init(start, size, owner);
465 return InitializePagesInChunk(chunk_id, *num_pages, owner);
466 }
467
468
CommitBlock(Address start,size_t size,Executability executable)469 bool MemoryAllocator::CommitBlock(Address start,
470 size_t size,
471 Executability executable) {
472 ASSERT(start != NULL);
473 ASSERT(size > 0);
474 ASSERT(initial_chunk_ != NULL);
475 ASSERT(InInitialChunk(start));
476 ASSERT(InInitialChunk(start + size - 1));
477
478 if (!initial_chunk_->Commit(start, size, executable)) return false;
479 #ifdef DEBUG
480 ZapBlock(start, size);
481 #endif
482 Counters::memory_allocated.Increment(static_cast<int>(size));
483 return true;
484 }
485
486
UncommitBlock(Address start,size_t size)487 bool MemoryAllocator::UncommitBlock(Address start, size_t size) {
488 ASSERT(start != NULL);
489 ASSERT(size > 0);
490 ASSERT(initial_chunk_ != NULL);
491 ASSERT(InInitialChunk(start));
492 ASSERT(InInitialChunk(start + size - 1));
493
494 if (!initial_chunk_->Uncommit(start, size)) return false;
495 Counters::memory_allocated.Decrement(static_cast<int>(size));
496 return true;
497 }
498
499
ZapBlock(Address start,size_t size)500 void MemoryAllocator::ZapBlock(Address start, size_t size) {
501 for (size_t s = 0; s + kPointerSize <= size; s += kPointerSize) {
502 Memory::Address_at(start + s) = kZapValue;
503 }
504 }
505
506
InitializePagesInChunk(int chunk_id,int pages_in_chunk,PagedSpace * owner)507 Page* MemoryAllocator::InitializePagesInChunk(int chunk_id, int pages_in_chunk,
508 PagedSpace* owner) {
509 ASSERT(IsValidChunk(chunk_id));
510 ASSERT(pages_in_chunk > 0);
511
512 Address chunk_start = chunks_[chunk_id].address();
513
514 Address low = RoundUp(chunk_start, Page::kPageSize);
515
516 #ifdef DEBUG
517 size_t chunk_size = chunks_[chunk_id].size();
518 Address high = RoundDown(chunk_start + chunk_size, Page::kPageSize);
519 ASSERT(pages_in_chunk <=
520 ((OffsetFrom(high) - OffsetFrom(low)) / Page::kPageSize));
521 #endif
522
523 Address page_addr = low;
524 for (int i = 0; i < pages_in_chunk; i++) {
525 Page* p = Page::FromAddress(page_addr);
526 p->opaque_header = OffsetFrom(page_addr + Page::kPageSize) | chunk_id;
527 p->is_normal_page = 1;
528 page_addr += Page::kPageSize;
529 }
530
531 // Set the next page of the last page to 0.
532 Page* last_page = Page::FromAddress(page_addr - Page::kPageSize);
533 last_page->opaque_header = OffsetFrom(0) | chunk_id;
534
535 return Page::FromAddress(low);
536 }
537
538
FreePages(Page * p)539 Page* MemoryAllocator::FreePages(Page* p) {
540 if (!p->is_valid()) return p;
541
542 // Find the first page in the same chunk as 'p'
543 Page* first_page = FindFirstPageInSameChunk(p);
544 Page* page_to_return = Page::FromAddress(NULL);
545
546 if (p != first_page) {
547 // Find the last page in the same chunk as 'prev'.
548 Page* last_page = FindLastPageInSameChunk(p);
549 first_page = GetNextPage(last_page); // first page in next chunk
550
551 // set the next_page of last_page to NULL
552 SetNextPage(last_page, Page::FromAddress(NULL));
553 page_to_return = p; // return 'p' when exiting
554 }
555
556 while (first_page->is_valid()) {
557 int chunk_id = GetChunkId(first_page);
558 ASSERT(IsValidChunk(chunk_id));
559
560 // Find the first page of the next chunk before deleting this chunk.
561 first_page = GetNextPage(FindLastPageInSameChunk(first_page));
562
563 // Free the current chunk.
564 DeleteChunk(chunk_id);
565 }
566
567 return page_to_return;
568 }
569
570
DeleteChunk(int chunk_id)571 void MemoryAllocator::DeleteChunk(int chunk_id) {
572 ASSERT(IsValidChunk(chunk_id));
573
574 ChunkInfo& c = chunks_[chunk_id];
575
576 // We cannot free a chunk contained in the initial chunk because it was not
577 // allocated with AllocateRawMemory. Instead we uncommit the virtual
578 // memory.
579 if (InInitialChunk(c.address())) {
580 // TODO(1240712): VirtualMemory::Uncommit has a return value which
581 // is ignored here.
582 initial_chunk_->Uncommit(c.address(), c.size());
583 Counters::memory_allocated.Decrement(static_cast<int>(c.size()));
584 } else {
585 LOG(DeleteEvent("PagedChunk", c.address()));
586 FreeRawMemory(c.address(), c.size());
587 }
588 c.init(NULL, 0, NULL);
589 Push(chunk_id);
590 }
591
592
FindFirstPageInSameChunk(Page * p)593 Page* MemoryAllocator::FindFirstPageInSameChunk(Page* p) {
594 int chunk_id = GetChunkId(p);
595 ASSERT(IsValidChunk(chunk_id));
596
597 Address low = RoundUp(chunks_[chunk_id].address(), Page::kPageSize);
598 return Page::FromAddress(low);
599 }
600
601
FindLastPageInSameChunk(Page * p)602 Page* MemoryAllocator::FindLastPageInSameChunk(Page* p) {
603 int chunk_id = GetChunkId(p);
604 ASSERT(IsValidChunk(chunk_id));
605
606 Address chunk_start = chunks_[chunk_id].address();
607 size_t chunk_size = chunks_[chunk_id].size();
608
609 Address high = RoundDown(chunk_start + chunk_size, Page::kPageSize);
610 ASSERT(chunk_start <= p->address() && p->address() < high);
611
612 return Page::FromAddress(high - Page::kPageSize);
613 }
614
615
616 #ifdef DEBUG
ReportStatistics()617 void MemoryAllocator::ReportStatistics() {
618 float pct = static_cast<float>(capacity_ - size_) / capacity_;
619 PrintF(" capacity: %d, used: %d, available: %%%d\n\n",
620 capacity_, size_, static_cast<int>(pct*100));
621 }
622 #endif
623
624
625 // -----------------------------------------------------------------------------
626 // PagedSpace implementation
627
PagedSpace(int max_capacity,AllocationSpace id,Executability executable)628 PagedSpace::PagedSpace(int max_capacity,
629 AllocationSpace id,
630 Executability executable)
631 : Space(id, executable) {
632 max_capacity_ = (RoundDown(max_capacity, Page::kPageSize) / Page::kPageSize)
633 * Page::kObjectAreaSize;
634 accounting_stats_.Clear();
635
636 allocation_info_.top = NULL;
637 allocation_info_.limit = NULL;
638
639 mc_forwarding_info_.top = NULL;
640 mc_forwarding_info_.limit = NULL;
641 }
642
643
Setup(Address start,size_t size)644 bool PagedSpace::Setup(Address start, size_t size) {
645 if (HasBeenSetup()) return false;
646
647 int num_pages = 0;
648 // Try to use the virtual memory range passed to us. If it is too small to
649 // contain at least one page, ignore it and allocate instead.
650 int pages_in_chunk = PagesInChunk(start, size);
651 if (pages_in_chunk > 0) {
652 first_page_ = MemoryAllocator::CommitPages(RoundUp(start, Page::kPageSize),
653 Page::kPageSize * pages_in_chunk,
654 this, &num_pages);
655 } else {
656 int requested_pages = Min(MemoryAllocator::kPagesPerChunk,
657 max_capacity_ / Page::kObjectAreaSize);
658 first_page_ =
659 MemoryAllocator::AllocatePages(requested_pages, &num_pages, this);
660 if (!first_page_->is_valid()) return false;
661 }
662
663 // We are sure that the first page is valid and that we have at least one
664 // page.
665 ASSERT(first_page_->is_valid());
666 ASSERT(num_pages > 0);
667 accounting_stats_.ExpandSpace(num_pages * Page::kObjectAreaSize);
668 ASSERT(Capacity() <= max_capacity_);
669
670 // Sequentially initialize remembered sets in the newly allocated
671 // pages and cache the current last page in the space.
672 for (Page* p = first_page_; p->is_valid(); p = p->next_page()) {
673 p->ClearRSet();
674 last_page_ = p;
675 }
676
677 // Use first_page_ for allocation.
678 SetAllocationInfo(&allocation_info_, first_page_);
679
680 return true;
681 }
682
683
HasBeenSetup()684 bool PagedSpace::HasBeenSetup() {
685 return (Capacity() > 0);
686 }
687
688
TearDown()689 void PagedSpace::TearDown() {
690 first_page_ = MemoryAllocator::FreePages(first_page_);
691 ASSERT(!first_page_->is_valid());
692
693 accounting_stats_.Clear();
694 }
695
696
697 #ifdef ENABLE_HEAP_PROTECTION
698
Protect()699 void PagedSpace::Protect() {
700 Page* page = first_page_;
701 while (page->is_valid()) {
702 MemoryAllocator::ProtectChunkFromPage(page);
703 page = MemoryAllocator::FindLastPageInSameChunk(page)->next_page();
704 }
705 }
706
707
Unprotect()708 void PagedSpace::Unprotect() {
709 Page* page = first_page_;
710 while (page->is_valid()) {
711 MemoryAllocator::UnprotectChunkFromPage(page);
712 page = MemoryAllocator::FindLastPageInSameChunk(page)->next_page();
713 }
714 }
715
716 #endif
717
718
ClearRSet()719 void PagedSpace::ClearRSet() {
720 PageIterator it(this, PageIterator::ALL_PAGES);
721 while (it.has_next()) {
722 it.next()->ClearRSet();
723 }
724 }
725
726
FindObject(Address addr)727 Object* PagedSpace::FindObject(Address addr) {
728 // Note: this function can only be called before or after mark-compact GC
729 // because it accesses map pointers.
730 ASSERT(!MarkCompactCollector::in_use());
731
732 if (!Contains(addr)) return Failure::Exception();
733
734 Page* p = Page::FromAddress(addr);
735 ASSERT(IsUsed(p));
736 Address cur = p->ObjectAreaStart();
737 Address end = p->AllocationTop();
738 while (cur < end) {
739 HeapObject* obj = HeapObject::FromAddress(cur);
740 Address next = cur + obj->Size();
741 if ((cur <= addr) && (addr < next)) return obj;
742 cur = next;
743 }
744
745 UNREACHABLE();
746 return Failure::Exception();
747 }
748
749
IsUsed(Page * page)750 bool PagedSpace::IsUsed(Page* page) {
751 PageIterator it(this, PageIterator::PAGES_IN_USE);
752 while (it.has_next()) {
753 if (page == it.next()) return true;
754 }
755 return false;
756 }
757
758
SetAllocationInfo(AllocationInfo * alloc_info,Page * p)759 void PagedSpace::SetAllocationInfo(AllocationInfo* alloc_info, Page* p) {
760 alloc_info->top = p->ObjectAreaStart();
761 alloc_info->limit = p->ObjectAreaEnd();
762 ASSERT(alloc_info->VerifyPagedAllocation());
763 }
764
765
MCResetRelocationInfo()766 void PagedSpace::MCResetRelocationInfo() {
767 // Set page indexes.
768 int i = 0;
769 PageIterator it(this, PageIterator::ALL_PAGES);
770 while (it.has_next()) {
771 Page* p = it.next();
772 p->mc_page_index = i++;
773 }
774
775 // Set mc_forwarding_info_ to the first page in the space.
776 SetAllocationInfo(&mc_forwarding_info_, first_page_);
777 // All the bytes in the space are 'available'. We will rediscover
778 // allocated and wasted bytes during GC.
779 accounting_stats_.Reset();
780 }
781
782
MCSpaceOffsetForAddress(Address addr)783 int PagedSpace::MCSpaceOffsetForAddress(Address addr) {
784 #ifdef DEBUG
785 // The Contains function considers the address at the beginning of a
786 // page in the page, MCSpaceOffsetForAddress considers it is in the
787 // previous page.
788 if (Page::IsAlignedToPageSize(addr)) {
789 ASSERT(Contains(addr - kPointerSize));
790 } else {
791 ASSERT(Contains(addr));
792 }
793 #endif
794
795 // If addr is at the end of a page, it belongs to previous page
796 Page* p = Page::IsAlignedToPageSize(addr)
797 ? Page::FromAllocationTop(addr)
798 : Page::FromAddress(addr);
799 int index = p->mc_page_index;
800 return (index * Page::kPageSize) + p->Offset(addr);
801 }
802
803
804 // Slow case for reallocating and promoting objects during a compacting
805 // collection. This function is not space-specific.
SlowMCAllocateRaw(int size_in_bytes)806 HeapObject* PagedSpace::SlowMCAllocateRaw(int size_in_bytes) {
807 Page* current_page = TopPageOf(mc_forwarding_info_);
808 if (!current_page->next_page()->is_valid()) {
809 if (!Expand(current_page)) {
810 return NULL;
811 }
812 }
813
814 // There are surely more pages in the space now.
815 ASSERT(current_page->next_page()->is_valid());
816 // We do not add the top of page block for current page to the space's
817 // free list---the block may contain live objects so we cannot write
818 // bookkeeping information to it. Instead, we will recover top of page
819 // blocks when we move objects to their new locations.
820 //
821 // We do however write the allocation pointer to the page. The encoding
822 // of forwarding addresses is as an offset in terms of live bytes, so we
823 // need quick access to the allocation top of each page to decode
824 // forwarding addresses.
825 current_page->mc_relocation_top = mc_forwarding_info_.top;
826 SetAllocationInfo(&mc_forwarding_info_, current_page->next_page());
827 return AllocateLinearly(&mc_forwarding_info_, size_in_bytes);
828 }
829
830
Expand(Page * last_page)831 bool PagedSpace::Expand(Page* last_page) {
832 ASSERT(max_capacity_ % Page::kObjectAreaSize == 0);
833 ASSERT(Capacity() % Page::kObjectAreaSize == 0);
834
835 if (Capacity() == max_capacity_) return false;
836
837 ASSERT(Capacity() < max_capacity_);
838 // Last page must be valid and its next page is invalid.
839 ASSERT(last_page->is_valid() && !last_page->next_page()->is_valid());
840
841 int available_pages = (max_capacity_ - Capacity()) / Page::kObjectAreaSize;
842 if (available_pages <= 0) return false;
843
844 int desired_pages = Min(available_pages, MemoryAllocator::kPagesPerChunk);
845 Page* p = MemoryAllocator::AllocatePages(desired_pages, &desired_pages, this);
846 if (!p->is_valid()) return false;
847
848 accounting_stats_.ExpandSpace(desired_pages * Page::kObjectAreaSize);
849 ASSERT(Capacity() <= max_capacity_);
850
851 MemoryAllocator::SetNextPage(last_page, p);
852
853 // Sequentially clear remembered set of new pages and and cache the
854 // new last page in the space.
855 while (p->is_valid()) {
856 p->ClearRSet();
857 last_page_ = p;
858 p = p->next_page();
859 }
860
861 return true;
862 }
863
864
865 #ifdef DEBUG
CountTotalPages()866 int PagedSpace::CountTotalPages() {
867 int count = 0;
868 for (Page* p = first_page_; p->is_valid(); p = p->next_page()) {
869 count++;
870 }
871 return count;
872 }
873 #endif
874
875
Shrink()876 void PagedSpace::Shrink() {
877 // Release half of free pages.
878 Page* top_page = AllocationTopPage();
879 ASSERT(top_page->is_valid());
880
881 // Count the number of pages we would like to free.
882 int pages_to_free = 0;
883 for (Page* p = top_page->next_page(); p->is_valid(); p = p->next_page()) {
884 pages_to_free++;
885 }
886
887 // Free pages after top_page.
888 Page* p = MemoryAllocator::FreePages(top_page->next_page());
889 MemoryAllocator::SetNextPage(top_page, p);
890
891 // Find out how many pages we failed to free and update last_page_.
892 // Please note pages can only be freed in whole chunks.
893 last_page_ = top_page;
894 for (Page* p = top_page->next_page(); p->is_valid(); p = p->next_page()) {
895 pages_to_free--;
896 last_page_ = p;
897 }
898
899 accounting_stats_.ShrinkSpace(pages_to_free * Page::kObjectAreaSize);
900 ASSERT(Capacity() == CountTotalPages() * Page::kObjectAreaSize);
901 }
902
903
EnsureCapacity(int capacity)904 bool PagedSpace::EnsureCapacity(int capacity) {
905 if (Capacity() >= capacity) return true;
906
907 // Start from the allocation top and loop to the last page in the space.
908 Page* last_page = AllocationTopPage();
909 Page* next_page = last_page->next_page();
910 while (next_page->is_valid()) {
911 last_page = MemoryAllocator::FindLastPageInSameChunk(next_page);
912 next_page = last_page->next_page();
913 }
914
915 // Expand the space until it has the required capacity or expansion fails.
916 do {
917 if (!Expand(last_page)) return false;
918 ASSERT(last_page->next_page()->is_valid());
919 last_page =
920 MemoryAllocator::FindLastPageInSameChunk(last_page->next_page());
921 } while (Capacity() < capacity);
922
923 return true;
924 }
925
926
927 #ifdef DEBUG
Print()928 void PagedSpace::Print() { }
929 #endif
930
931
932 #ifdef DEBUG
933 // We do not assume that the PageIterator works, because it depends on the
934 // invariants we are checking during verification.
Verify(ObjectVisitor * visitor)935 void PagedSpace::Verify(ObjectVisitor* visitor) {
936 // The allocation pointer should be valid, and it should be in a page in the
937 // space.
938 ASSERT(allocation_info_.VerifyPagedAllocation());
939 Page* top_page = Page::FromAllocationTop(allocation_info_.top);
940 ASSERT(MemoryAllocator::IsPageInSpace(top_page, this));
941
942 // Loop over all the pages.
943 bool above_allocation_top = false;
944 Page* current_page = first_page_;
945 while (current_page->is_valid()) {
946 if (above_allocation_top) {
947 // We don't care what's above the allocation top.
948 } else {
949 // Unless this is the last page in the space containing allocated
950 // objects, the allocation top should be at a constant offset from the
951 // object area end.
952 Address top = current_page->AllocationTop();
953 if (current_page == top_page) {
954 ASSERT(top == allocation_info_.top);
955 // The next page will be above the allocation top.
956 above_allocation_top = true;
957 } else {
958 ASSERT(top == current_page->ObjectAreaEnd() - page_extra_);
959 }
960
961 // It should be packed with objects from the bottom to the top.
962 Address current = current_page->ObjectAreaStart();
963 while (current < top) {
964 HeapObject* object = HeapObject::FromAddress(current);
965
966 // The first word should be a map, and we expect all map pointers to
967 // be in map space.
968 Map* map = object->map();
969 ASSERT(map->IsMap());
970 ASSERT(Heap::map_space()->Contains(map));
971
972 // Perform space-specific object verification.
973 VerifyObject(object);
974
975 // The object itself should look OK.
976 object->Verify();
977
978 // All the interior pointers should be contained in the heap and
979 // have their remembered set bits set if required as determined
980 // by the visitor.
981 int size = object->Size();
982 object->IterateBody(map->instance_type(), size, visitor);
983
984 current += size;
985 }
986
987 // The allocation pointer should not be in the middle of an object.
988 ASSERT(current == top);
989 }
990
991 current_page = current_page->next_page();
992 }
993 }
994 #endif
995
996
997 // -----------------------------------------------------------------------------
998 // NewSpace implementation
999
1000
Setup(Address start,int size)1001 bool NewSpace::Setup(Address start, int size) {
1002 // Setup new space based on the preallocated memory block defined by
1003 // start and size. The provided space is divided into two semi-spaces.
1004 // To support fast containment testing in the new space, the size of
1005 // this chunk must be a power of two and it must be aligned to its size.
1006 int initial_semispace_capacity = Heap::InitialSemiSpaceSize();
1007 int maximum_semispace_capacity = Heap::MaxSemiSpaceSize();
1008
1009 ASSERT(initial_semispace_capacity <= maximum_semispace_capacity);
1010 ASSERT(IsPowerOf2(maximum_semispace_capacity));
1011
1012 // Allocate and setup the histogram arrays if necessary.
1013 #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
1014 allocated_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1);
1015 promoted_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1);
1016
1017 #define SET_NAME(name) allocated_histogram_[name].set_name(#name); \
1018 promoted_histogram_[name].set_name(#name);
1019 INSTANCE_TYPE_LIST(SET_NAME)
1020 #undef SET_NAME
1021 #endif
1022
1023 ASSERT(size == 2 * Heap::ReservedSemiSpaceSize());
1024 ASSERT(IsAddressAligned(start, size, 0));
1025
1026 if (!to_space_.Setup(start,
1027 initial_semispace_capacity,
1028 maximum_semispace_capacity)) {
1029 return false;
1030 }
1031 if (!from_space_.Setup(start + maximum_semispace_capacity,
1032 initial_semispace_capacity,
1033 maximum_semispace_capacity)) {
1034 return false;
1035 }
1036
1037 start_ = start;
1038 address_mask_ = ~(size - 1);
1039 object_mask_ = address_mask_ | kHeapObjectTag;
1040 object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag;
1041
1042 allocation_info_.top = to_space_.low();
1043 allocation_info_.limit = to_space_.high();
1044 mc_forwarding_info_.top = NULL;
1045 mc_forwarding_info_.limit = NULL;
1046
1047 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1048 return true;
1049 }
1050
1051
TearDown()1052 void NewSpace::TearDown() {
1053 #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
1054 if (allocated_histogram_) {
1055 DeleteArray(allocated_histogram_);
1056 allocated_histogram_ = NULL;
1057 }
1058 if (promoted_histogram_) {
1059 DeleteArray(promoted_histogram_);
1060 promoted_histogram_ = NULL;
1061 }
1062 #endif
1063
1064 start_ = NULL;
1065 allocation_info_.top = NULL;
1066 allocation_info_.limit = NULL;
1067 mc_forwarding_info_.top = NULL;
1068 mc_forwarding_info_.limit = NULL;
1069
1070 to_space_.TearDown();
1071 from_space_.TearDown();
1072 }
1073
1074
1075 #ifdef ENABLE_HEAP_PROTECTION
1076
Protect()1077 void NewSpace::Protect() {
1078 MemoryAllocator::Protect(ToSpaceLow(), Capacity());
1079 MemoryAllocator::Protect(FromSpaceLow(), Capacity());
1080 }
1081
1082
Unprotect()1083 void NewSpace::Unprotect() {
1084 MemoryAllocator::Unprotect(ToSpaceLow(), Capacity(),
1085 to_space_.executable());
1086 MemoryAllocator::Unprotect(FromSpaceLow(), Capacity(),
1087 from_space_.executable());
1088 }
1089
1090 #endif
1091
1092
Flip()1093 void NewSpace::Flip() {
1094 SemiSpace tmp = from_space_;
1095 from_space_ = to_space_;
1096 to_space_ = tmp;
1097 }
1098
1099
Grow()1100 void NewSpace::Grow() {
1101 ASSERT(Capacity() < MaximumCapacity());
1102 if (to_space_.Grow()) {
1103 // Only grow from space if we managed to grow to space.
1104 if (!from_space_.Grow()) {
1105 // If we managed to grow to space but couldn't grow from space,
1106 // attempt to shrink to space.
1107 if (!to_space_.ShrinkTo(from_space_.Capacity())) {
1108 // We are in an inconsistent state because we could not
1109 // commit/uncommit memory from new space.
1110 V8::FatalProcessOutOfMemory("Failed to grow new space.");
1111 }
1112 }
1113 }
1114 allocation_info_.limit = to_space_.high();
1115 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1116 }
1117
1118
Shrink()1119 void NewSpace::Shrink() {
1120 int new_capacity = Max(InitialCapacity(), 2 * Size());
1121 int rounded_new_capacity =
1122 RoundUp(new_capacity, static_cast<int>(OS::AllocateAlignment()));
1123 if (rounded_new_capacity < Capacity() &&
1124 to_space_.ShrinkTo(rounded_new_capacity)) {
1125 // Only shrink from space if we managed to shrink to space.
1126 if (!from_space_.ShrinkTo(rounded_new_capacity)) {
1127 // If we managed to shrink to space but couldn't shrink from
1128 // space, attempt to grow to space again.
1129 if (!to_space_.GrowTo(from_space_.Capacity())) {
1130 // We are in an inconsistent state because we could not
1131 // commit/uncommit memory from new space.
1132 V8::FatalProcessOutOfMemory("Failed to shrink new space.");
1133 }
1134 }
1135 }
1136 allocation_info_.limit = to_space_.high();
1137 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1138 }
1139
1140
ResetAllocationInfo()1141 void NewSpace::ResetAllocationInfo() {
1142 allocation_info_.top = to_space_.low();
1143 allocation_info_.limit = to_space_.high();
1144 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1145 }
1146
1147
MCResetRelocationInfo()1148 void NewSpace::MCResetRelocationInfo() {
1149 mc_forwarding_info_.top = from_space_.low();
1150 mc_forwarding_info_.limit = from_space_.high();
1151 ASSERT_SEMISPACE_ALLOCATION_INFO(mc_forwarding_info_, from_space_);
1152 }
1153
1154
MCCommitRelocationInfo()1155 void NewSpace::MCCommitRelocationInfo() {
1156 // Assumes that the spaces have been flipped so that mc_forwarding_info_ is
1157 // valid allocation info for the to space.
1158 allocation_info_.top = mc_forwarding_info_.top;
1159 allocation_info_.limit = to_space_.high();
1160 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1161 }
1162
1163
1164 #ifdef DEBUG
1165 // We do not use the SemispaceIterator because verification doesn't assume
1166 // that it works (it depends on the invariants we are checking).
Verify()1167 void NewSpace::Verify() {
1168 // The allocation pointer should be in the space or at the very end.
1169 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1170
1171 // There should be objects packed in from the low address up to the
1172 // allocation pointer.
1173 Address current = to_space_.low();
1174 while (current < top()) {
1175 HeapObject* object = HeapObject::FromAddress(current);
1176
1177 // The first word should be a map, and we expect all map pointers to
1178 // be in map space.
1179 Map* map = object->map();
1180 ASSERT(map->IsMap());
1181 ASSERT(Heap::map_space()->Contains(map));
1182
1183 // The object should not be code or a map.
1184 ASSERT(!object->IsMap());
1185 ASSERT(!object->IsCode());
1186
1187 // The object itself should look OK.
1188 object->Verify();
1189
1190 // All the interior pointers should be contained in the heap.
1191 VerifyPointersVisitor visitor;
1192 int size = object->Size();
1193 object->IterateBody(map->instance_type(), size, &visitor);
1194
1195 current += size;
1196 }
1197
1198 // The allocation pointer should not be in the middle of an object.
1199 ASSERT(current == top());
1200 }
1201 #endif
1202
1203
Commit()1204 bool SemiSpace::Commit() {
1205 ASSERT(!is_committed());
1206 if (!MemoryAllocator::CommitBlock(start_, capacity_, executable())) {
1207 return false;
1208 }
1209 committed_ = true;
1210 return true;
1211 }
1212
1213
Uncommit()1214 bool SemiSpace::Uncommit() {
1215 ASSERT(is_committed());
1216 if (!MemoryAllocator::UncommitBlock(start_, capacity_)) {
1217 return false;
1218 }
1219 committed_ = false;
1220 return true;
1221 }
1222
1223
1224 // -----------------------------------------------------------------------------
1225 // SemiSpace implementation
1226
Setup(Address start,int initial_capacity,int maximum_capacity)1227 bool SemiSpace::Setup(Address start,
1228 int initial_capacity,
1229 int maximum_capacity) {
1230 // Creates a space in the young generation. The constructor does not
1231 // allocate memory from the OS. A SemiSpace is given a contiguous chunk of
1232 // memory of size 'capacity' when set up, and does not grow or shrink
1233 // otherwise. In the mark-compact collector, the memory region of the from
1234 // space is used as the marking stack. It requires contiguous memory
1235 // addresses.
1236 initial_capacity_ = initial_capacity;
1237 capacity_ = initial_capacity;
1238 maximum_capacity_ = maximum_capacity;
1239 committed_ = false;
1240
1241 start_ = start;
1242 address_mask_ = ~(maximum_capacity - 1);
1243 object_mask_ = address_mask_ | kHeapObjectTag;
1244 object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag;
1245 age_mark_ = start_;
1246
1247 return Commit();
1248 }
1249
1250
TearDown()1251 void SemiSpace::TearDown() {
1252 start_ = NULL;
1253 capacity_ = 0;
1254 }
1255
1256
Grow()1257 bool SemiSpace::Grow() {
1258 // Double the semispace size but only up to maximum capacity.
1259 int maximum_extra = maximum_capacity_ - capacity_;
1260 int extra = Min(RoundUp(capacity_, static_cast<int>(OS::AllocateAlignment())),
1261 maximum_extra);
1262 if (!MemoryAllocator::CommitBlock(high(), extra, executable())) {
1263 return false;
1264 }
1265 capacity_ += extra;
1266 return true;
1267 }
1268
1269
GrowTo(int new_capacity)1270 bool SemiSpace::GrowTo(int new_capacity) {
1271 ASSERT(new_capacity <= maximum_capacity_);
1272 ASSERT(new_capacity > capacity_);
1273 size_t delta = new_capacity - capacity_;
1274 ASSERT(IsAligned(delta, OS::AllocateAlignment()));
1275 if (!MemoryAllocator::CommitBlock(high(), delta, executable())) {
1276 return false;
1277 }
1278 capacity_ = new_capacity;
1279 return true;
1280 }
1281
1282
ShrinkTo(int new_capacity)1283 bool SemiSpace::ShrinkTo(int new_capacity) {
1284 ASSERT(new_capacity >= initial_capacity_);
1285 ASSERT(new_capacity < capacity_);
1286 size_t delta = capacity_ - new_capacity;
1287 ASSERT(IsAligned(delta, OS::AllocateAlignment()));
1288 if (!MemoryAllocator::UncommitBlock(high() - delta, delta)) {
1289 return false;
1290 }
1291 capacity_ = new_capacity;
1292 return true;
1293 }
1294
1295
1296 #ifdef DEBUG
Print()1297 void SemiSpace::Print() { }
1298
1299
Verify()1300 void SemiSpace::Verify() { }
1301 #endif
1302
1303
1304 // -----------------------------------------------------------------------------
1305 // SemiSpaceIterator implementation.
SemiSpaceIterator(NewSpace * space)1306 SemiSpaceIterator::SemiSpaceIterator(NewSpace* space) {
1307 Initialize(space, space->bottom(), space->top(), NULL);
1308 }
1309
1310
SemiSpaceIterator(NewSpace * space,HeapObjectCallback size_func)1311 SemiSpaceIterator::SemiSpaceIterator(NewSpace* space,
1312 HeapObjectCallback size_func) {
1313 Initialize(space, space->bottom(), space->top(), size_func);
1314 }
1315
1316
SemiSpaceIterator(NewSpace * space,Address start)1317 SemiSpaceIterator::SemiSpaceIterator(NewSpace* space, Address start) {
1318 Initialize(space, start, space->top(), NULL);
1319 }
1320
1321
Initialize(NewSpace * space,Address start,Address end,HeapObjectCallback size_func)1322 void SemiSpaceIterator::Initialize(NewSpace* space, Address start,
1323 Address end,
1324 HeapObjectCallback size_func) {
1325 ASSERT(space->ToSpaceContains(start));
1326 ASSERT(space->ToSpaceLow() <= end
1327 && end <= space->ToSpaceHigh());
1328 space_ = &space->to_space_;
1329 current_ = start;
1330 limit_ = end;
1331 size_func_ = size_func;
1332 }
1333
1334
1335 #ifdef DEBUG
1336 // A static array of histogram info for each type.
1337 static HistogramInfo heap_histograms[LAST_TYPE+1];
1338 static JSObject::SpillInformation js_spill_information;
1339
1340 // heap_histograms is shared, always clear it before using it.
ClearHistograms()1341 static void ClearHistograms() {
1342 // We reset the name each time, though it hasn't changed.
1343 #define DEF_TYPE_NAME(name) heap_histograms[name].set_name(#name);
1344 INSTANCE_TYPE_LIST(DEF_TYPE_NAME)
1345 #undef DEF_TYPE_NAME
1346
1347 #define CLEAR_HISTOGRAM(name) heap_histograms[name].clear();
1348 INSTANCE_TYPE_LIST(CLEAR_HISTOGRAM)
1349 #undef CLEAR_HISTOGRAM
1350
1351 js_spill_information.Clear();
1352 }
1353
1354
1355 static int code_kind_statistics[Code::NUMBER_OF_KINDS];
1356
1357
ClearCodeKindStatistics()1358 static void ClearCodeKindStatistics() {
1359 for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
1360 code_kind_statistics[i] = 0;
1361 }
1362 }
1363
1364
ReportCodeKindStatistics()1365 static void ReportCodeKindStatistics() {
1366 const char* table[Code::NUMBER_OF_KINDS];
1367
1368 #define CASE(name) \
1369 case Code::name: table[Code::name] = #name; \
1370 break
1371
1372 for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
1373 switch (static_cast<Code::Kind>(i)) {
1374 CASE(FUNCTION);
1375 CASE(STUB);
1376 CASE(BUILTIN);
1377 CASE(LOAD_IC);
1378 CASE(KEYED_LOAD_IC);
1379 CASE(STORE_IC);
1380 CASE(KEYED_STORE_IC);
1381 CASE(CALL_IC);
1382 }
1383 }
1384
1385 #undef CASE
1386
1387 PrintF("\n Code kind histograms: \n");
1388 for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
1389 if (code_kind_statistics[i] > 0) {
1390 PrintF(" %-20s: %10d bytes\n", table[i], code_kind_statistics[i]);
1391 }
1392 }
1393 PrintF("\n");
1394 }
1395
1396
CollectHistogramInfo(HeapObject * obj)1397 static int CollectHistogramInfo(HeapObject* obj) {
1398 InstanceType type = obj->map()->instance_type();
1399 ASSERT(0 <= type && type <= LAST_TYPE);
1400 ASSERT(heap_histograms[type].name() != NULL);
1401 heap_histograms[type].increment_number(1);
1402 heap_histograms[type].increment_bytes(obj->Size());
1403
1404 if (FLAG_collect_heap_spill_statistics && obj->IsJSObject()) {
1405 JSObject::cast(obj)->IncrementSpillStatistics(&js_spill_information);
1406 }
1407
1408 return obj->Size();
1409 }
1410
1411
ReportHistogram(bool print_spill)1412 static void ReportHistogram(bool print_spill) {
1413 PrintF("\n Object Histogram:\n");
1414 for (int i = 0; i <= LAST_TYPE; i++) {
1415 if (heap_histograms[i].number() > 0) {
1416 PrintF(" %-33s%10d (%10d bytes)\n",
1417 heap_histograms[i].name(),
1418 heap_histograms[i].number(),
1419 heap_histograms[i].bytes());
1420 }
1421 }
1422 PrintF("\n");
1423
1424 // Summarize string types.
1425 int string_number = 0;
1426 int string_bytes = 0;
1427 #define INCREMENT(type, size, name, camel_name) \
1428 string_number += heap_histograms[type].number(); \
1429 string_bytes += heap_histograms[type].bytes();
1430 STRING_TYPE_LIST(INCREMENT)
1431 #undef INCREMENT
1432 if (string_number > 0) {
1433 PrintF(" %-33s%10d (%10d bytes)\n\n", "STRING_TYPE", string_number,
1434 string_bytes);
1435 }
1436
1437 if (FLAG_collect_heap_spill_statistics && print_spill) {
1438 js_spill_information.Print();
1439 }
1440 }
1441 #endif // DEBUG
1442
1443
1444 // Support for statistics gathering for --heap-stats and --log-gc.
1445 #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
ClearHistograms()1446 void NewSpace::ClearHistograms() {
1447 for (int i = 0; i <= LAST_TYPE; i++) {
1448 allocated_histogram_[i].clear();
1449 promoted_histogram_[i].clear();
1450 }
1451 }
1452
1453 // Because the copying collector does not touch garbage objects, we iterate
1454 // the new space before a collection to get a histogram of allocated objects.
1455 // This only happens (1) when compiled with DEBUG and the --heap-stats flag is
1456 // set, or when compiled with ENABLE_LOGGING_AND_PROFILING and the --log-gc
1457 // flag is set.
CollectStatistics()1458 void NewSpace::CollectStatistics() {
1459 ClearHistograms();
1460 SemiSpaceIterator it(this);
1461 for (HeapObject* obj = it.next(); obj != NULL; obj = it.next())
1462 RecordAllocation(obj);
1463 }
1464
1465
1466 #ifdef ENABLE_LOGGING_AND_PROFILING
DoReportStatistics(HistogramInfo * info,const char * description)1467 static void DoReportStatistics(HistogramInfo* info, const char* description) {
1468 LOG(HeapSampleBeginEvent("NewSpace", description));
1469 // Lump all the string types together.
1470 int string_number = 0;
1471 int string_bytes = 0;
1472 #define INCREMENT(type, size, name, camel_name) \
1473 string_number += info[type].number(); \
1474 string_bytes += info[type].bytes();
1475 STRING_TYPE_LIST(INCREMENT)
1476 #undef INCREMENT
1477 if (string_number > 0) {
1478 LOG(HeapSampleItemEvent("STRING_TYPE", string_number, string_bytes));
1479 }
1480
1481 // Then do the other types.
1482 for (int i = FIRST_NONSTRING_TYPE; i <= LAST_TYPE; ++i) {
1483 if (info[i].number() > 0) {
1484 LOG(HeapSampleItemEvent(info[i].name(), info[i].number(),
1485 info[i].bytes()));
1486 }
1487 }
1488 LOG(HeapSampleEndEvent("NewSpace", description));
1489 }
1490 #endif // ENABLE_LOGGING_AND_PROFILING
1491
1492
ReportStatistics()1493 void NewSpace::ReportStatistics() {
1494 #ifdef DEBUG
1495 if (FLAG_heap_stats) {
1496 float pct = static_cast<float>(Available()) / Capacity();
1497 PrintF(" capacity: %d, available: %d, %%%d\n",
1498 Capacity(), Available(), static_cast<int>(pct*100));
1499 PrintF("\n Object Histogram:\n");
1500 for (int i = 0; i <= LAST_TYPE; i++) {
1501 if (allocated_histogram_[i].number() > 0) {
1502 PrintF(" %-33s%10d (%10d bytes)\n",
1503 allocated_histogram_[i].name(),
1504 allocated_histogram_[i].number(),
1505 allocated_histogram_[i].bytes());
1506 }
1507 }
1508 PrintF("\n");
1509 }
1510 #endif // DEBUG
1511
1512 #ifdef ENABLE_LOGGING_AND_PROFILING
1513 if (FLAG_log_gc) {
1514 DoReportStatistics(allocated_histogram_, "allocated");
1515 DoReportStatistics(promoted_histogram_, "promoted");
1516 }
1517 #endif // ENABLE_LOGGING_AND_PROFILING
1518 }
1519
1520
RecordAllocation(HeapObject * obj)1521 void NewSpace::RecordAllocation(HeapObject* obj) {
1522 InstanceType type = obj->map()->instance_type();
1523 ASSERT(0 <= type && type <= LAST_TYPE);
1524 allocated_histogram_[type].increment_number(1);
1525 allocated_histogram_[type].increment_bytes(obj->Size());
1526 }
1527
1528
RecordPromotion(HeapObject * obj)1529 void NewSpace::RecordPromotion(HeapObject* obj) {
1530 InstanceType type = obj->map()->instance_type();
1531 ASSERT(0 <= type && type <= LAST_TYPE);
1532 promoted_histogram_[type].increment_number(1);
1533 promoted_histogram_[type].increment_bytes(obj->Size());
1534 }
1535 #endif // defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
1536
1537
1538 // -----------------------------------------------------------------------------
1539 // Free lists for old object spaces implementation
1540
set_size(int size_in_bytes)1541 void FreeListNode::set_size(int size_in_bytes) {
1542 ASSERT(size_in_bytes > 0);
1543 ASSERT(IsAligned(size_in_bytes, kPointerSize));
1544
1545 // We write a map and possibly size information to the block. If the block
1546 // is big enough to be a ByteArray with at least one extra word (the next
1547 // pointer), we set its map to be the byte array map and its size to an
1548 // appropriate array length for the desired size from HeapObject::Size().
1549 // If the block is too small (eg, one or two words), to hold both a size
1550 // field and a next pointer, we give it a filler map that gives it the
1551 // correct size.
1552 if (size_in_bytes > ByteArray::kAlignedSize) {
1553 set_map(Heap::raw_unchecked_byte_array_map());
1554 // Can't use ByteArray::cast because it fails during deserialization.
1555 ByteArray* this_as_byte_array = reinterpret_cast<ByteArray*>(this);
1556 this_as_byte_array->set_length(ByteArray::LengthFor(size_in_bytes));
1557 } else if (size_in_bytes == kPointerSize) {
1558 set_map(Heap::raw_unchecked_one_pointer_filler_map());
1559 } else if (size_in_bytes == 2 * kPointerSize) {
1560 set_map(Heap::raw_unchecked_two_pointer_filler_map());
1561 } else {
1562 UNREACHABLE();
1563 }
1564 // We would like to ASSERT(Size() == size_in_bytes) but this would fail during
1565 // deserialization because the byte array map is not done yet.
1566 }
1567
1568
next()1569 Address FreeListNode::next() {
1570 ASSERT(IsFreeListNode(this));
1571 if (map() == Heap::raw_unchecked_byte_array_map()) {
1572 ASSERT(Size() >= kNextOffset + kPointerSize);
1573 return Memory::Address_at(address() + kNextOffset);
1574 } else {
1575 return Memory::Address_at(address() + kPointerSize);
1576 }
1577 }
1578
1579
set_next(Address next)1580 void FreeListNode::set_next(Address next) {
1581 ASSERT(IsFreeListNode(this));
1582 if (map() == Heap::raw_unchecked_byte_array_map()) {
1583 ASSERT(Size() >= kNextOffset + kPointerSize);
1584 Memory::Address_at(address() + kNextOffset) = next;
1585 } else {
1586 Memory::Address_at(address() + kPointerSize) = next;
1587 }
1588 }
1589
1590
OldSpaceFreeList(AllocationSpace owner)1591 OldSpaceFreeList::OldSpaceFreeList(AllocationSpace owner) : owner_(owner) {
1592 Reset();
1593 }
1594
1595
Reset()1596 void OldSpaceFreeList::Reset() {
1597 available_ = 0;
1598 for (int i = 0; i < kFreeListsLength; i++) {
1599 free_[i].head_node_ = NULL;
1600 }
1601 needs_rebuild_ = false;
1602 finger_ = kHead;
1603 free_[kHead].next_size_ = kEnd;
1604 }
1605
1606
RebuildSizeList()1607 void OldSpaceFreeList::RebuildSizeList() {
1608 ASSERT(needs_rebuild_);
1609 int cur = kHead;
1610 for (int i = cur + 1; i < kFreeListsLength; i++) {
1611 if (free_[i].head_node_ != NULL) {
1612 free_[cur].next_size_ = i;
1613 cur = i;
1614 }
1615 }
1616 free_[cur].next_size_ = kEnd;
1617 needs_rebuild_ = false;
1618 }
1619
1620
Free(Address start,int size_in_bytes)1621 int OldSpaceFreeList::Free(Address start, int size_in_bytes) {
1622 #ifdef DEBUG
1623 MemoryAllocator::ZapBlock(start, size_in_bytes);
1624 #endif
1625 FreeListNode* node = FreeListNode::FromAddress(start);
1626 node->set_size(size_in_bytes);
1627
1628 // We don't use the freelists in compacting mode. This makes it more like a
1629 // GC that only has mark-sweep-compact and doesn't have a mark-sweep
1630 // collector.
1631 if (FLAG_always_compact) {
1632 return size_in_bytes;
1633 }
1634
1635 // Early return to drop too-small blocks on the floor (one or two word
1636 // blocks cannot hold a map pointer, a size field, and a pointer to the
1637 // next block in the free list).
1638 if (size_in_bytes < kMinBlockSize) {
1639 return size_in_bytes;
1640 }
1641
1642 // Insert other blocks at the head of an exact free list.
1643 int index = size_in_bytes >> kPointerSizeLog2;
1644 node->set_next(free_[index].head_node_);
1645 free_[index].head_node_ = node->address();
1646 available_ += size_in_bytes;
1647 needs_rebuild_ = true;
1648 return 0;
1649 }
1650
1651
Allocate(int size_in_bytes,int * wasted_bytes)1652 Object* OldSpaceFreeList::Allocate(int size_in_bytes, int* wasted_bytes) {
1653 ASSERT(0 < size_in_bytes);
1654 ASSERT(size_in_bytes <= kMaxBlockSize);
1655 ASSERT(IsAligned(size_in_bytes, kPointerSize));
1656
1657 if (needs_rebuild_) RebuildSizeList();
1658 int index = size_in_bytes >> kPointerSizeLog2;
1659 // Check for a perfect fit.
1660 if (free_[index].head_node_ != NULL) {
1661 FreeListNode* node = FreeListNode::FromAddress(free_[index].head_node_);
1662 // If this was the last block of its size, remove the size.
1663 if ((free_[index].head_node_ = node->next()) == NULL) RemoveSize(index);
1664 available_ -= size_in_bytes;
1665 *wasted_bytes = 0;
1666 ASSERT(!FLAG_always_compact); // We only use the freelists with mark-sweep.
1667 return node;
1668 }
1669 // Search the size list for the best fit.
1670 int prev = finger_ < index ? finger_ : kHead;
1671 int cur = FindSize(index, &prev);
1672 ASSERT(index < cur);
1673 if (cur == kEnd) {
1674 // No large enough size in list.
1675 *wasted_bytes = 0;
1676 return Failure::RetryAfterGC(size_in_bytes, owner_);
1677 }
1678 ASSERT(!FLAG_always_compact); // We only use the freelists with mark-sweep.
1679 int rem = cur - index;
1680 int rem_bytes = rem << kPointerSizeLog2;
1681 FreeListNode* cur_node = FreeListNode::FromAddress(free_[cur].head_node_);
1682 ASSERT(cur_node->Size() == (cur << kPointerSizeLog2));
1683 FreeListNode* rem_node = FreeListNode::FromAddress(free_[cur].head_node_ +
1684 size_in_bytes);
1685 // Distinguish the cases prev < rem < cur and rem <= prev < cur
1686 // to avoid many redundant tests and calls to Insert/RemoveSize.
1687 if (prev < rem) {
1688 // Simple case: insert rem between prev and cur.
1689 finger_ = prev;
1690 free_[prev].next_size_ = rem;
1691 // If this was the last block of size cur, remove the size.
1692 if ((free_[cur].head_node_ = cur_node->next()) == NULL) {
1693 free_[rem].next_size_ = free_[cur].next_size_;
1694 } else {
1695 free_[rem].next_size_ = cur;
1696 }
1697 // Add the remainder block.
1698 rem_node->set_size(rem_bytes);
1699 rem_node->set_next(free_[rem].head_node_);
1700 free_[rem].head_node_ = rem_node->address();
1701 } else {
1702 // If this was the last block of size cur, remove the size.
1703 if ((free_[cur].head_node_ = cur_node->next()) == NULL) {
1704 finger_ = prev;
1705 free_[prev].next_size_ = free_[cur].next_size_;
1706 }
1707 if (rem_bytes < kMinBlockSize) {
1708 // Too-small remainder is wasted.
1709 rem_node->set_size(rem_bytes);
1710 available_ -= size_in_bytes + rem_bytes;
1711 *wasted_bytes = rem_bytes;
1712 return cur_node;
1713 }
1714 // Add the remainder block and, if needed, insert its size.
1715 rem_node->set_size(rem_bytes);
1716 rem_node->set_next(free_[rem].head_node_);
1717 free_[rem].head_node_ = rem_node->address();
1718 if (rem_node->next() == NULL) InsertSize(rem);
1719 }
1720 available_ -= size_in_bytes;
1721 *wasted_bytes = 0;
1722 return cur_node;
1723 }
1724
1725
1726 #ifdef DEBUG
Contains(FreeListNode * node)1727 bool OldSpaceFreeList::Contains(FreeListNode* node) {
1728 for (int i = 0; i < kFreeListsLength; i++) {
1729 Address cur_addr = free_[i].head_node_;
1730 while (cur_addr != NULL) {
1731 FreeListNode* cur_node = FreeListNode::FromAddress(cur_addr);
1732 if (cur_node == node) return true;
1733 cur_addr = cur_node->next();
1734 }
1735 }
1736 return false;
1737 }
1738 #endif
1739
1740
FixedSizeFreeList(AllocationSpace owner,int object_size)1741 FixedSizeFreeList::FixedSizeFreeList(AllocationSpace owner, int object_size)
1742 : owner_(owner), object_size_(object_size) {
1743 Reset();
1744 }
1745
1746
Reset()1747 void FixedSizeFreeList::Reset() {
1748 available_ = 0;
1749 head_ = NULL;
1750 }
1751
1752
Free(Address start)1753 void FixedSizeFreeList::Free(Address start) {
1754 #ifdef DEBUG
1755 MemoryAllocator::ZapBlock(start, object_size_);
1756 #endif
1757 // We only use the freelists with mark-sweep.
1758 ASSERT(!MarkCompactCollector::IsCompacting());
1759 FreeListNode* node = FreeListNode::FromAddress(start);
1760 node->set_size(object_size_);
1761 node->set_next(head_);
1762 head_ = node->address();
1763 available_ += object_size_;
1764 }
1765
1766
Allocate()1767 Object* FixedSizeFreeList::Allocate() {
1768 if (head_ == NULL) {
1769 return Failure::RetryAfterGC(object_size_, owner_);
1770 }
1771
1772 ASSERT(!FLAG_always_compact); // We only use the freelists with mark-sweep.
1773 FreeListNode* node = FreeListNode::FromAddress(head_);
1774 head_ = node->next();
1775 available_ -= object_size_;
1776 return node;
1777 }
1778
1779
1780 // -----------------------------------------------------------------------------
1781 // OldSpace implementation
1782
PrepareForMarkCompact(bool will_compact)1783 void OldSpace::PrepareForMarkCompact(bool will_compact) {
1784 if (will_compact) {
1785 // Reset relocation info. During a compacting collection, everything in
1786 // the space is considered 'available' and we will rediscover live data
1787 // and waste during the collection.
1788 MCResetRelocationInfo();
1789 ASSERT(Available() == Capacity());
1790 } else {
1791 // During a non-compacting collection, everything below the linear
1792 // allocation pointer is considered allocated (everything above is
1793 // available) and we will rediscover available and wasted bytes during
1794 // the collection.
1795 accounting_stats_.AllocateBytes(free_list_.available());
1796 accounting_stats_.FillWastedBytes(Waste());
1797 }
1798
1799 // Clear the free list before a full GC---it will be rebuilt afterward.
1800 free_list_.Reset();
1801 }
1802
1803
MCCommitRelocationInfo()1804 void OldSpace::MCCommitRelocationInfo() {
1805 // Update fast allocation info.
1806 allocation_info_.top = mc_forwarding_info_.top;
1807 allocation_info_.limit = mc_forwarding_info_.limit;
1808 ASSERT(allocation_info_.VerifyPagedAllocation());
1809
1810 // The space is compacted and we haven't yet built free lists or
1811 // wasted any space.
1812 ASSERT(Waste() == 0);
1813 ASSERT(AvailableFree() == 0);
1814
1815 // Build the free list for the space.
1816 int computed_size = 0;
1817 PageIterator it(this, PageIterator::PAGES_USED_BY_MC);
1818 while (it.has_next()) {
1819 Page* p = it.next();
1820 // Space below the relocation pointer is allocated.
1821 computed_size +=
1822 static_cast<int>(p->mc_relocation_top - p->ObjectAreaStart());
1823 if (it.has_next()) {
1824 // Free the space at the top of the page. We cannot use
1825 // p->mc_relocation_top after the call to Free (because Free will clear
1826 // remembered set bits).
1827 int extra_size =
1828 static_cast<int>(p->ObjectAreaEnd() - p->mc_relocation_top);
1829 if (extra_size > 0) {
1830 int wasted_bytes = free_list_.Free(p->mc_relocation_top, extra_size);
1831 // The bytes we have just "freed" to add to the free list were
1832 // already accounted as available.
1833 accounting_stats_.WasteBytes(wasted_bytes);
1834 }
1835 }
1836 }
1837
1838 // Make sure the computed size - based on the used portion of the pages in
1839 // use - matches the size obtained while computing forwarding addresses.
1840 ASSERT(computed_size == Size());
1841 }
1842
1843
ReserveSpace(int bytes)1844 bool NewSpace::ReserveSpace(int bytes) {
1845 // We can't reliably unpack a partial snapshot that needs more new space
1846 // space than the minimum NewSpace size.
1847 ASSERT(bytes <= InitialCapacity());
1848 Address limit = allocation_info_.limit;
1849 Address top = allocation_info_.top;
1850 return limit - top >= bytes;
1851 }
1852
1853
ReserveSpace(int bytes)1854 bool PagedSpace::ReserveSpace(int bytes) {
1855 Address limit = allocation_info_.limit;
1856 Address top = allocation_info_.top;
1857 if (limit - top >= bytes) return true;
1858
1859 // There wasn't enough space in the current page. Lets put the rest
1860 // of the page on the free list and start a fresh page.
1861 PutRestOfCurrentPageOnFreeList(TopPageOf(allocation_info_));
1862
1863 Page* reserved_page = TopPageOf(allocation_info_);
1864 int bytes_left_to_reserve = bytes;
1865 while (bytes_left_to_reserve > 0) {
1866 if (!reserved_page->next_page()->is_valid()) {
1867 if (Heap::OldGenerationAllocationLimitReached()) return false;
1868 Expand(reserved_page);
1869 }
1870 bytes_left_to_reserve -= Page::kPageSize;
1871 reserved_page = reserved_page->next_page();
1872 if (!reserved_page->is_valid()) return false;
1873 }
1874 ASSERT(TopPageOf(allocation_info_)->next_page()->is_valid());
1875 SetAllocationInfo(&allocation_info_,
1876 TopPageOf(allocation_info_)->next_page());
1877 return true;
1878 }
1879
1880
1881 // You have to call this last, since the implementation from PagedSpace
1882 // doesn't know that memory was 'promised' to large object space.
ReserveSpace(int bytes)1883 bool LargeObjectSpace::ReserveSpace(int bytes) {
1884 return Heap::OldGenerationSpaceAvailable() >= bytes;
1885 }
1886
1887
1888 // Slow case for normal allocation. Try in order: (1) allocate in the next
1889 // page in the space, (2) allocate off the space's free list, (3) expand the
1890 // space, (4) fail.
SlowAllocateRaw(int size_in_bytes)1891 HeapObject* OldSpace::SlowAllocateRaw(int size_in_bytes) {
1892 // Linear allocation in this space has failed. If there is another page
1893 // in the space, move to that page and allocate there. This allocation
1894 // should succeed (size_in_bytes should not be greater than a page's
1895 // object area size).
1896 Page* current_page = TopPageOf(allocation_info_);
1897 if (current_page->next_page()->is_valid()) {
1898 return AllocateInNextPage(current_page, size_in_bytes);
1899 }
1900
1901 // There is no next page in this space. Try free list allocation unless that
1902 // is currently forbidden.
1903 if (!Heap::linear_allocation()) {
1904 int wasted_bytes;
1905 Object* result = free_list_.Allocate(size_in_bytes, &wasted_bytes);
1906 accounting_stats_.WasteBytes(wasted_bytes);
1907 if (!result->IsFailure()) {
1908 accounting_stats_.AllocateBytes(size_in_bytes);
1909 return HeapObject::cast(result);
1910 }
1911 }
1912
1913 // Free list allocation failed and there is no next page. Fail if we have
1914 // hit the old generation size limit that should cause a garbage
1915 // collection.
1916 if (!Heap::always_allocate() && Heap::OldGenerationAllocationLimitReached()) {
1917 return NULL;
1918 }
1919
1920 // Try to expand the space and allocate in the new next page.
1921 ASSERT(!current_page->next_page()->is_valid());
1922 if (Expand(current_page)) {
1923 return AllocateInNextPage(current_page, size_in_bytes);
1924 }
1925
1926 // Finally, fail.
1927 return NULL;
1928 }
1929
1930
PutRestOfCurrentPageOnFreeList(Page * current_page)1931 void OldSpace::PutRestOfCurrentPageOnFreeList(Page* current_page) {
1932 int free_size =
1933 static_cast<int>(current_page->ObjectAreaEnd() - allocation_info_.top);
1934 if (free_size > 0) {
1935 int wasted_bytes = free_list_.Free(allocation_info_.top, free_size);
1936 accounting_stats_.WasteBytes(wasted_bytes);
1937 }
1938 }
1939
1940
PutRestOfCurrentPageOnFreeList(Page * current_page)1941 void FixedSpace::PutRestOfCurrentPageOnFreeList(Page* current_page) {
1942 int free_size =
1943 static_cast<int>(current_page->ObjectAreaEnd() - allocation_info_.top);
1944 // In the fixed space free list all the free list items have the right size.
1945 // We use up the rest of the page while preserving this invariant.
1946 while (free_size >= object_size_in_bytes_) {
1947 free_list_.Free(allocation_info_.top);
1948 allocation_info_.top += object_size_in_bytes_;
1949 free_size -= object_size_in_bytes_;
1950 accounting_stats_.WasteBytes(object_size_in_bytes_);
1951 }
1952 }
1953
1954
1955 // Add the block at the top of the page to the space's free list, set the
1956 // allocation info to the next page (assumed to be one), and allocate
1957 // linearly there.
AllocateInNextPage(Page * current_page,int size_in_bytes)1958 HeapObject* OldSpace::AllocateInNextPage(Page* current_page,
1959 int size_in_bytes) {
1960 ASSERT(current_page->next_page()->is_valid());
1961 PutRestOfCurrentPageOnFreeList(current_page);
1962 SetAllocationInfo(&allocation_info_, current_page->next_page());
1963 return AllocateLinearly(&allocation_info_, size_in_bytes);
1964 }
1965
1966
1967 #ifdef DEBUG
1968 struct CommentStatistic {
1969 const char* comment;
1970 int size;
1971 int count;
Clearv8::internal::CommentStatistic1972 void Clear() {
1973 comment = NULL;
1974 size = 0;
1975 count = 0;
1976 }
1977 };
1978
1979
1980 // must be small, since an iteration is used for lookup
1981 const int kMaxComments = 64;
1982 static CommentStatistic comments_statistics[kMaxComments+1];
1983
1984
ReportCodeStatistics()1985 void PagedSpace::ReportCodeStatistics() {
1986 ReportCodeKindStatistics();
1987 PrintF("Code comment statistics (\" [ comment-txt : size/ "
1988 "count (average)\"):\n");
1989 for (int i = 0; i <= kMaxComments; i++) {
1990 const CommentStatistic& cs = comments_statistics[i];
1991 if (cs.size > 0) {
1992 PrintF(" %-30s: %10d/%6d (%d)\n", cs.comment, cs.size, cs.count,
1993 cs.size/cs.count);
1994 }
1995 }
1996 PrintF("\n");
1997 }
1998
1999
ResetCodeStatistics()2000 void PagedSpace::ResetCodeStatistics() {
2001 ClearCodeKindStatistics();
2002 for (int i = 0; i < kMaxComments; i++) comments_statistics[i].Clear();
2003 comments_statistics[kMaxComments].comment = "Unknown";
2004 comments_statistics[kMaxComments].size = 0;
2005 comments_statistics[kMaxComments].count = 0;
2006 }
2007
2008
2009 // Adds comment to 'comment_statistics' table. Performance OK sa long as
2010 // 'kMaxComments' is small
EnterComment(const char * comment,int delta)2011 static void EnterComment(const char* comment, int delta) {
2012 // Do not count empty comments
2013 if (delta <= 0) return;
2014 CommentStatistic* cs = &comments_statistics[kMaxComments];
2015 // Search for a free or matching entry in 'comments_statistics': 'cs'
2016 // points to result.
2017 for (int i = 0; i < kMaxComments; i++) {
2018 if (comments_statistics[i].comment == NULL) {
2019 cs = &comments_statistics[i];
2020 cs->comment = comment;
2021 break;
2022 } else if (strcmp(comments_statistics[i].comment, comment) == 0) {
2023 cs = &comments_statistics[i];
2024 break;
2025 }
2026 }
2027 // Update entry for 'comment'
2028 cs->size += delta;
2029 cs->count += 1;
2030 }
2031
2032
2033 // Call for each nested comment start (start marked with '[ xxx', end marked
2034 // with ']'. RelocIterator 'it' must point to a comment reloc info.
CollectCommentStatistics(RelocIterator * it)2035 static void CollectCommentStatistics(RelocIterator* it) {
2036 ASSERT(!it->done());
2037 ASSERT(it->rinfo()->rmode() == RelocInfo::COMMENT);
2038 const char* tmp = reinterpret_cast<const char*>(it->rinfo()->data());
2039 if (tmp[0] != '[') {
2040 // Not a nested comment; skip
2041 return;
2042 }
2043
2044 // Search for end of nested comment or a new nested comment
2045 const char* const comment_txt =
2046 reinterpret_cast<const char*>(it->rinfo()->data());
2047 const byte* prev_pc = it->rinfo()->pc();
2048 int flat_delta = 0;
2049 it->next();
2050 while (true) {
2051 // All nested comments must be terminated properly, and therefore exit
2052 // from loop.
2053 ASSERT(!it->done());
2054 if (it->rinfo()->rmode() == RelocInfo::COMMENT) {
2055 const char* const txt =
2056 reinterpret_cast<const char*>(it->rinfo()->data());
2057 flat_delta += static_cast<int>(it->rinfo()->pc() - prev_pc);
2058 if (txt[0] == ']') break; // End of nested comment
2059 // A new comment
2060 CollectCommentStatistics(it);
2061 // Skip code that was covered with previous comment
2062 prev_pc = it->rinfo()->pc();
2063 }
2064 it->next();
2065 }
2066 EnterComment(comment_txt, flat_delta);
2067 }
2068
2069
2070 // Collects code size statistics:
2071 // - by code kind
2072 // - by code comment
CollectCodeStatistics()2073 void PagedSpace::CollectCodeStatistics() {
2074 HeapObjectIterator obj_it(this);
2075 for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next()) {
2076 if (obj->IsCode()) {
2077 Code* code = Code::cast(obj);
2078 code_kind_statistics[code->kind()] += code->Size();
2079 RelocIterator it(code);
2080 int delta = 0;
2081 const byte* prev_pc = code->instruction_start();
2082 while (!it.done()) {
2083 if (it.rinfo()->rmode() == RelocInfo::COMMENT) {
2084 delta += static_cast<int>(it.rinfo()->pc() - prev_pc);
2085 CollectCommentStatistics(&it);
2086 prev_pc = it.rinfo()->pc();
2087 }
2088 it.next();
2089 }
2090
2091 ASSERT(code->instruction_start() <= prev_pc &&
2092 prev_pc <= code->relocation_start());
2093 delta += static_cast<int>(code->relocation_start() - prev_pc);
2094 EnterComment("NoComment", delta);
2095 }
2096 }
2097 }
2098
2099
ReportStatistics()2100 void OldSpace::ReportStatistics() {
2101 int pct = Available() * 100 / Capacity();
2102 PrintF(" capacity: %d, waste: %d, available: %d, %%%d\n",
2103 Capacity(), Waste(), Available(), pct);
2104
2105 // Report remembered set statistics.
2106 int rset_marked_pointers = 0;
2107 int rset_marked_arrays = 0;
2108 int rset_marked_array_elements = 0;
2109 int cross_gen_pointers = 0;
2110 int cross_gen_array_elements = 0;
2111
2112 PageIterator page_it(this, PageIterator::PAGES_IN_USE);
2113 while (page_it.has_next()) {
2114 Page* p = page_it.next();
2115
2116 for (Address rset_addr = p->RSetStart();
2117 rset_addr < p->RSetEnd();
2118 rset_addr += kIntSize) {
2119 int rset = Memory::int_at(rset_addr);
2120 if (rset != 0) {
2121 // Bits were set
2122 int intoff =
2123 static_cast<int>(rset_addr - p->address() - Page::kRSetOffset);
2124 int bitoff = 0;
2125 for (; bitoff < kBitsPerInt; ++bitoff) {
2126 if ((rset & (1 << bitoff)) != 0) {
2127 int bitpos = intoff*kBitsPerByte + bitoff;
2128 Address slot = p->OffsetToAddress(bitpos << kObjectAlignmentBits);
2129 Object** obj = reinterpret_cast<Object**>(slot);
2130 if (*obj == Heap::raw_unchecked_fixed_array_map()) {
2131 rset_marked_arrays++;
2132 FixedArray* fa = FixedArray::cast(HeapObject::FromAddress(slot));
2133
2134 rset_marked_array_elements += fa->length();
2135 // Manually inline FixedArray::IterateBody
2136 Address elm_start = slot + FixedArray::kHeaderSize;
2137 Address elm_stop = elm_start + fa->length() * kPointerSize;
2138 for (Address elm_addr = elm_start;
2139 elm_addr < elm_stop; elm_addr += kPointerSize) {
2140 // Filter non-heap-object pointers
2141 Object** elm_p = reinterpret_cast<Object**>(elm_addr);
2142 if (Heap::InNewSpace(*elm_p))
2143 cross_gen_array_elements++;
2144 }
2145 } else {
2146 rset_marked_pointers++;
2147 if (Heap::InNewSpace(*obj))
2148 cross_gen_pointers++;
2149 }
2150 }
2151 }
2152 }
2153 }
2154 }
2155
2156 pct = rset_marked_pointers == 0 ?
2157 0 : cross_gen_pointers * 100 / rset_marked_pointers;
2158 PrintF(" rset-marked pointers %d, to-new-space %d (%%%d)\n",
2159 rset_marked_pointers, cross_gen_pointers, pct);
2160 PrintF(" rset_marked arrays %d, ", rset_marked_arrays);
2161 PrintF(" elements %d, ", rset_marked_array_elements);
2162 pct = rset_marked_array_elements == 0 ? 0
2163 : cross_gen_array_elements * 100 / rset_marked_array_elements;
2164 PrintF(" pointers to new space %d (%%%d)\n", cross_gen_array_elements, pct);
2165 PrintF(" total rset-marked bits %d\n",
2166 (rset_marked_pointers + rset_marked_arrays));
2167 pct = (rset_marked_pointers + rset_marked_array_elements) == 0 ? 0
2168 : (cross_gen_pointers + cross_gen_array_elements) * 100 /
2169 (rset_marked_pointers + rset_marked_array_elements);
2170 PrintF(" total rset pointers %d, true cross generation ones %d (%%%d)\n",
2171 (rset_marked_pointers + rset_marked_array_elements),
2172 (cross_gen_pointers + cross_gen_array_elements),
2173 pct);
2174
2175 ClearHistograms();
2176 HeapObjectIterator obj_it(this);
2177 for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next())
2178 CollectHistogramInfo(obj);
2179 ReportHistogram(true);
2180 }
2181
2182
2183 // Dump the range of remembered set words between [start, end) corresponding
2184 // to the pointers starting at object_p. The allocation_top is an object
2185 // pointer which should not be read past. This is important for large object
2186 // pages, where some bits in the remembered set range do not correspond to
2187 // allocated addresses.
PrintRSetRange(Address start,Address end,Object ** object_p,Address allocation_top)2188 static void PrintRSetRange(Address start, Address end, Object** object_p,
2189 Address allocation_top) {
2190 Address rset_address = start;
2191
2192 // If the range starts on on odd numbered word (eg, for large object extra
2193 // remembered set ranges), print some spaces.
2194 if ((reinterpret_cast<uintptr_t>(start) / kIntSize) % 2 == 1) {
2195 PrintF(" ");
2196 }
2197
2198 // Loop over all the words in the range.
2199 while (rset_address < end) {
2200 uint32_t rset_word = Memory::uint32_at(rset_address);
2201 int bit_position = 0;
2202
2203 // Loop over all the bits in the word.
2204 while (bit_position < kBitsPerInt) {
2205 if (object_p == reinterpret_cast<Object**>(allocation_top)) {
2206 // Print a bar at the allocation pointer.
2207 PrintF("|");
2208 } else if (object_p > reinterpret_cast<Object**>(allocation_top)) {
2209 // Do not dereference object_p past the allocation pointer.
2210 PrintF("#");
2211 } else if ((rset_word & (1 << bit_position)) == 0) {
2212 // Print a dot for zero bits.
2213 PrintF(".");
2214 } else if (Heap::InNewSpace(*object_p)) {
2215 // Print an X for one bits for pointers to new space.
2216 PrintF("X");
2217 } else {
2218 // Print a circle for one bits for pointers to old space.
2219 PrintF("o");
2220 }
2221
2222 // Print a space after every 8th bit except the last.
2223 if (bit_position % 8 == 7 && bit_position != (kBitsPerInt - 1)) {
2224 PrintF(" ");
2225 }
2226
2227 // Advance to next bit.
2228 bit_position++;
2229 object_p++;
2230 }
2231
2232 // Print a newline after every odd numbered word, otherwise a space.
2233 if ((reinterpret_cast<uintptr_t>(rset_address) / kIntSize) % 2 == 1) {
2234 PrintF("\n");
2235 } else {
2236 PrintF(" ");
2237 }
2238
2239 // Advance to next remembered set word.
2240 rset_address += kIntSize;
2241 }
2242 }
2243
2244
DoPrintRSet(const char * space_name)2245 void PagedSpace::DoPrintRSet(const char* space_name) {
2246 PageIterator it(this, PageIterator::PAGES_IN_USE);
2247 while (it.has_next()) {
2248 Page* p = it.next();
2249 PrintF("%s page 0x%x:\n", space_name, p);
2250 PrintRSetRange(p->RSetStart(), p->RSetEnd(),
2251 reinterpret_cast<Object**>(p->ObjectAreaStart()),
2252 p->AllocationTop());
2253 PrintF("\n");
2254 }
2255 }
2256
2257
PrintRSet()2258 void OldSpace::PrintRSet() { DoPrintRSet("old"); }
2259 #endif
2260
2261 // -----------------------------------------------------------------------------
2262 // FixedSpace implementation
2263
PrepareForMarkCompact(bool will_compact)2264 void FixedSpace::PrepareForMarkCompact(bool will_compact) {
2265 if (will_compact) {
2266 // Reset relocation info.
2267 MCResetRelocationInfo();
2268
2269 // During a compacting collection, everything in the space is considered
2270 // 'available' (set by the call to MCResetRelocationInfo) and we will
2271 // rediscover live and wasted bytes during the collection.
2272 ASSERT(Available() == Capacity());
2273 } else {
2274 // During a non-compacting collection, everything below the linear
2275 // allocation pointer except wasted top-of-page blocks is considered
2276 // allocated and we will rediscover available bytes during the
2277 // collection.
2278 accounting_stats_.AllocateBytes(free_list_.available());
2279 }
2280
2281 // Clear the free list before a full GC---it will be rebuilt afterward.
2282 free_list_.Reset();
2283 }
2284
2285
MCCommitRelocationInfo()2286 void FixedSpace::MCCommitRelocationInfo() {
2287 // Update fast allocation info.
2288 allocation_info_.top = mc_forwarding_info_.top;
2289 allocation_info_.limit = mc_forwarding_info_.limit;
2290 ASSERT(allocation_info_.VerifyPagedAllocation());
2291
2292 // The space is compacted and we haven't yet wasted any space.
2293 ASSERT(Waste() == 0);
2294
2295 // Update allocation_top of each page in use and compute waste.
2296 int computed_size = 0;
2297 PageIterator it(this, PageIterator::PAGES_USED_BY_MC);
2298 while (it.has_next()) {
2299 Page* page = it.next();
2300 Address page_top = page->AllocationTop();
2301 computed_size += static_cast<int>(page_top - page->ObjectAreaStart());
2302 if (it.has_next()) {
2303 accounting_stats_.WasteBytes(
2304 static_cast<int>(page->ObjectAreaEnd() - page_top));
2305 }
2306 }
2307
2308 // Make sure the computed size - based on the used portion of the
2309 // pages in use - matches the size we adjust during allocation.
2310 ASSERT(computed_size == Size());
2311 }
2312
2313
2314 // Slow case for normal allocation. Try in order: (1) allocate in the next
2315 // page in the space, (2) allocate off the space's free list, (3) expand the
2316 // space, (4) fail.
SlowAllocateRaw(int size_in_bytes)2317 HeapObject* FixedSpace::SlowAllocateRaw(int size_in_bytes) {
2318 ASSERT_EQ(object_size_in_bytes_, size_in_bytes);
2319 // Linear allocation in this space has failed. If there is another page
2320 // in the space, move to that page and allocate there. This allocation
2321 // should succeed.
2322 Page* current_page = TopPageOf(allocation_info_);
2323 if (current_page->next_page()->is_valid()) {
2324 return AllocateInNextPage(current_page, size_in_bytes);
2325 }
2326
2327 // There is no next page in this space. Try free list allocation unless
2328 // that is currently forbidden. The fixed space free list implicitly assumes
2329 // that all free blocks are of the fixed size.
2330 if (!Heap::linear_allocation()) {
2331 Object* result = free_list_.Allocate();
2332 if (!result->IsFailure()) {
2333 accounting_stats_.AllocateBytes(size_in_bytes);
2334 return HeapObject::cast(result);
2335 }
2336 }
2337
2338 // Free list allocation failed and there is no next page. Fail if we have
2339 // hit the old generation size limit that should cause a garbage
2340 // collection.
2341 if (!Heap::always_allocate() && Heap::OldGenerationAllocationLimitReached()) {
2342 return NULL;
2343 }
2344
2345 // Try to expand the space and allocate in the new next page.
2346 ASSERT(!current_page->next_page()->is_valid());
2347 if (Expand(current_page)) {
2348 return AllocateInNextPage(current_page, size_in_bytes);
2349 }
2350
2351 // Finally, fail.
2352 return NULL;
2353 }
2354
2355
2356 // Move to the next page (there is assumed to be one) and allocate there.
2357 // The top of page block is always wasted, because it is too small to hold a
2358 // map.
AllocateInNextPage(Page * current_page,int size_in_bytes)2359 HeapObject* FixedSpace::AllocateInNextPage(Page* current_page,
2360 int size_in_bytes) {
2361 ASSERT(current_page->next_page()->is_valid());
2362 ASSERT(current_page->ObjectAreaEnd() - allocation_info_.top == page_extra_);
2363 ASSERT_EQ(object_size_in_bytes_, size_in_bytes);
2364 accounting_stats_.WasteBytes(page_extra_);
2365 SetAllocationInfo(&allocation_info_, current_page->next_page());
2366 return AllocateLinearly(&allocation_info_, size_in_bytes);
2367 }
2368
2369
2370 #ifdef DEBUG
ReportStatistics()2371 void FixedSpace::ReportStatistics() {
2372 int pct = Available() * 100 / Capacity();
2373 PrintF(" capacity: %d, waste: %d, available: %d, %%%d\n",
2374 Capacity(), Waste(), Available(), pct);
2375
2376 // Report remembered set statistics.
2377 int rset_marked_pointers = 0;
2378 int cross_gen_pointers = 0;
2379
2380 PageIterator page_it(this, PageIterator::PAGES_IN_USE);
2381 while (page_it.has_next()) {
2382 Page* p = page_it.next();
2383
2384 for (Address rset_addr = p->RSetStart();
2385 rset_addr < p->RSetEnd();
2386 rset_addr += kIntSize) {
2387 int rset = Memory::int_at(rset_addr);
2388 if (rset != 0) {
2389 // Bits were set
2390 int intoff =
2391 static_cast<int>(rset_addr - p->address() - Page::kRSetOffset);
2392 int bitoff = 0;
2393 for (; bitoff < kBitsPerInt; ++bitoff) {
2394 if ((rset & (1 << bitoff)) != 0) {
2395 int bitpos = intoff*kBitsPerByte + bitoff;
2396 Address slot = p->OffsetToAddress(bitpos << kObjectAlignmentBits);
2397 Object** obj = reinterpret_cast<Object**>(slot);
2398 rset_marked_pointers++;
2399 if (Heap::InNewSpace(*obj))
2400 cross_gen_pointers++;
2401 }
2402 }
2403 }
2404 }
2405 }
2406
2407 pct = rset_marked_pointers == 0 ?
2408 0 : cross_gen_pointers * 100 / rset_marked_pointers;
2409 PrintF(" rset-marked pointers %d, to-new-space %d (%%%d)\n",
2410 rset_marked_pointers, cross_gen_pointers, pct);
2411
2412 ClearHistograms();
2413 HeapObjectIterator obj_it(this);
2414 for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next())
2415 CollectHistogramInfo(obj);
2416 ReportHistogram(false);
2417 }
2418
2419
PrintRSet()2420 void FixedSpace::PrintRSet() { DoPrintRSet(name_); }
2421 #endif
2422
2423
2424 // -----------------------------------------------------------------------------
2425 // MapSpace implementation
2426
PrepareForMarkCompact(bool will_compact)2427 void MapSpace::PrepareForMarkCompact(bool will_compact) {
2428 // Call prepare of the super class.
2429 FixedSpace::PrepareForMarkCompact(will_compact);
2430
2431 if (will_compact) {
2432 // Initialize map index entry.
2433 int page_count = 0;
2434 PageIterator it(this, PageIterator::ALL_PAGES);
2435 while (it.has_next()) {
2436 ASSERT_MAP_PAGE_INDEX(page_count);
2437
2438 Page* p = it.next();
2439 ASSERT(p->mc_page_index == page_count);
2440
2441 page_addresses_[page_count++] = p->address();
2442 }
2443 }
2444 }
2445
2446
2447 #ifdef DEBUG
VerifyObject(HeapObject * object)2448 void MapSpace::VerifyObject(HeapObject* object) {
2449 // The object should be a map or a free-list node.
2450 ASSERT(object->IsMap() || object->IsByteArray());
2451 }
2452 #endif
2453
2454
2455 // -----------------------------------------------------------------------------
2456 // GlobalPropertyCellSpace implementation
2457
2458 #ifdef DEBUG
VerifyObject(HeapObject * object)2459 void CellSpace::VerifyObject(HeapObject* object) {
2460 // The object should be a global object property cell or a free-list node.
2461 ASSERT(object->IsJSGlobalPropertyCell() ||
2462 object->map() == Heap::two_pointer_filler_map());
2463 }
2464 #endif
2465
2466
2467 // -----------------------------------------------------------------------------
2468 // LargeObjectIterator
2469
LargeObjectIterator(LargeObjectSpace * space)2470 LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space) {
2471 current_ = space->first_chunk_;
2472 size_func_ = NULL;
2473 }
2474
2475
LargeObjectIterator(LargeObjectSpace * space,HeapObjectCallback size_func)2476 LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space,
2477 HeapObjectCallback size_func) {
2478 current_ = space->first_chunk_;
2479 size_func_ = size_func;
2480 }
2481
2482
next()2483 HeapObject* LargeObjectIterator::next() {
2484 if (current_ == NULL) return NULL;
2485
2486 HeapObject* object = current_->GetObject();
2487 current_ = current_->next();
2488 return object;
2489 }
2490
2491
2492 // -----------------------------------------------------------------------------
2493 // LargeObjectChunk
2494
New(int size_in_bytes,size_t * chunk_size,Executability executable)2495 LargeObjectChunk* LargeObjectChunk::New(int size_in_bytes,
2496 size_t* chunk_size,
2497 Executability executable) {
2498 size_t requested = ChunkSizeFor(size_in_bytes);
2499 void* mem = MemoryAllocator::AllocateRawMemory(requested,
2500 chunk_size,
2501 executable);
2502 if (mem == NULL) return NULL;
2503 LOG(NewEvent("LargeObjectChunk", mem, *chunk_size));
2504 if (*chunk_size < requested) {
2505 MemoryAllocator::FreeRawMemory(mem, *chunk_size);
2506 LOG(DeleteEvent("LargeObjectChunk", mem));
2507 return NULL;
2508 }
2509 return reinterpret_cast<LargeObjectChunk*>(mem);
2510 }
2511
2512
ChunkSizeFor(int size_in_bytes)2513 int LargeObjectChunk::ChunkSizeFor(int size_in_bytes) {
2514 int os_alignment = static_cast<int>(OS::AllocateAlignment());
2515 if (os_alignment < Page::kPageSize)
2516 size_in_bytes += (Page::kPageSize - os_alignment);
2517 return size_in_bytes + Page::kObjectStartOffset;
2518 }
2519
2520 // -----------------------------------------------------------------------------
2521 // LargeObjectSpace
2522
LargeObjectSpace(AllocationSpace id)2523 LargeObjectSpace::LargeObjectSpace(AllocationSpace id)
2524 : Space(id, NOT_EXECUTABLE), // Managed on a per-allocation basis
2525 first_chunk_(NULL),
2526 size_(0),
2527 page_count_(0) {}
2528
2529
Setup()2530 bool LargeObjectSpace::Setup() {
2531 first_chunk_ = NULL;
2532 size_ = 0;
2533 page_count_ = 0;
2534 return true;
2535 }
2536
2537
TearDown()2538 void LargeObjectSpace::TearDown() {
2539 while (first_chunk_ != NULL) {
2540 LargeObjectChunk* chunk = first_chunk_;
2541 first_chunk_ = first_chunk_->next();
2542 LOG(DeleteEvent("LargeObjectChunk", chunk->address()));
2543 MemoryAllocator::FreeRawMemory(chunk->address(), chunk->size());
2544 }
2545
2546 size_ = 0;
2547 page_count_ = 0;
2548 }
2549
2550
2551 #ifdef ENABLE_HEAP_PROTECTION
2552
Protect()2553 void LargeObjectSpace::Protect() {
2554 LargeObjectChunk* chunk = first_chunk_;
2555 while (chunk != NULL) {
2556 MemoryAllocator::Protect(chunk->address(), chunk->size());
2557 chunk = chunk->next();
2558 }
2559 }
2560
2561
Unprotect()2562 void LargeObjectSpace::Unprotect() {
2563 LargeObjectChunk* chunk = first_chunk_;
2564 while (chunk != NULL) {
2565 bool is_code = chunk->GetObject()->IsCode();
2566 MemoryAllocator::Unprotect(chunk->address(), chunk->size(),
2567 is_code ? EXECUTABLE : NOT_EXECUTABLE);
2568 chunk = chunk->next();
2569 }
2570 }
2571
2572 #endif
2573
2574
AllocateRawInternal(int requested_size,int object_size,Executability executable)2575 Object* LargeObjectSpace::AllocateRawInternal(int requested_size,
2576 int object_size,
2577 Executability executable) {
2578 ASSERT(0 < object_size && object_size <= requested_size);
2579
2580 // Check if we want to force a GC before growing the old space further.
2581 // If so, fail the allocation.
2582 if (!Heap::always_allocate() && Heap::OldGenerationAllocationLimitReached()) {
2583 return Failure::RetryAfterGC(requested_size, identity());
2584 }
2585
2586 size_t chunk_size;
2587 LargeObjectChunk* chunk =
2588 LargeObjectChunk::New(requested_size, &chunk_size, executable);
2589 if (chunk == NULL) {
2590 return Failure::RetryAfterGC(requested_size, identity());
2591 }
2592
2593 size_ += static_cast<int>(chunk_size);
2594 page_count_++;
2595 chunk->set_next(first_chunk_);
2596 chunk->set_size(chunk_size);
2597 first_chunk_ = chunk;
2598
2599 // Set the object address and size in the page header and clear its
2600 // remembered set.
2601 Page* page = Page::FromAddress(RoundUp(chunk->address(), Page::kPageSize));
2602 Address object_address = page->ObjectAreaStart();
2603 // Clear the low order bit of the second word in the page to flag it as a
2604 // large object page. If the chunk_size happened to be written there, its
2605 // low order bit should already be clear.
2606 ASSERT((chunk_size & 0x1) == 0);
2607 page->is_normal_page &= ~0x1;
2608 page->ClearRSet();
2609 int extra_bytes = requested_size - object_size;
2610 if (extra_bytes > 0) {
2611 // The extra memory for the remembered set should be cleared.
2612 memset(object_address + object_size, 0, extra_bytes);
2613 }
2614
2615 return HeapObject::FromAddress(object_address);
2616 }
2617
2618
AllocateRawCode(int size_in_bytes)2619 Object* LargeObjectSpace::AllocateRawCode(int size_in_bytes) {
2620 ASSERT(0 < size_in_bytes);
2621 return AllocateRawInternal(size_in_bytes,
2622 size_in_bytes,
2623 EXECUTABLE);
2624 }
2625
2626
AllocateRawFixedArray(int size_in_bytes)2627 Object* LargeObjectSpace::AllocateRawFixedArray(int size_in_bytes) {
2628 ASSERT(0 < size_in_bytes);
2629 int extra_rset_bytes = ExtraRSetBytesFor(size_in_bytes);
2630 return AllocateRawInternal(size_in_bytes + extra_rset_bytes,
2631 size_in_bytes,
2632 NOT_EXECUTABLE);
2633 }
2634
2635
AllocateRaw(int size_in_bytes)2636 Object* LargeObjectSpace::AllocateRaw(int size_in_bytes) {
2637 ASSERT(0 < size_in_bytes);
2638 return AllocateRawInternal(size_in_bytes,
2639 size_in_bytes,
2640 NOT_EXECUTABLE);
2641 }
2642
2643
2644 // GC support
FindObject(Address a)2645 Object* LargeObjectSpace::FindObject(Address a) {
2646 for (LargeObjectChunk* chunk = first_chunk_;
2647 chunk != NULL;
2648 chunk = chunk->next()) {
2649 Address chunk_address = chunk->address();
2650 if (chunk_address <= a && a < chunk_address + chunk->size()) {
2651 return chunk->GetObject();
2652 }
2653 }
2654 return Failure::Exception();
2655 }
2656
2657
ClearRSet()2658 void LargeObjectSpace::ClearRSet() {
2659 ASSERT(Page::is_rset_in_use());
2660
2661 LargeObjectIterator it(this);
2662 for (HeapObject* object = it.next(); object != NULL; object = it.next()) {
2663 // We only have code, sequential strings, or fixed arrays in large
2664 // object space, and only fixed arrays need remembered set support.
2665 if (object->IsFixedArray()) {
2666 // Clear the normal remembered set region of the page;
2667 Page* page = Page::FromAddress(object->address());
2668 page->ClearRSet();
2669
2670 // Clear the extra remembered set.
2671 int size = object->Size();
2672 int extra_rset_bytes = ExtraRSetBytesFor(size);
2673 memset(object->address() + size, 0, extra_rset_bytes);
2674 }
2675 }
2676 }
2677
2678
IterateRSet(ObjectSlotCallback copy_object_func)2679 void LargeObjectSpace::IterateRSet(ObjectSlotCallback copy_object_func) {
2680 ASSERT(Page::is_rset_in_use());
2681
2682 static void* lo_rset_histogram = StatsTable::CreateHistogram(
2683 "V8.RSetLO",
2684 0,
2685 // Keeping this histogram's buckets the same as the paged space histogram.
2686 Page::kObjectAreaSize / kPointerSize,
2687 30);
2688
2689 LargeObjectIterator it(this);
2690 for (HeapObject* object = it.next(); object != NULL; object = it.next()) {
2691 // We only have code, sequential strings, or fixed arrays in large
2692 // object space, and only fixed arrays can possibly contain pointers to
2693 // the young generation.
2694 if (object->IsFixedArray()) {
2695 // Iterate the normal page remembered set range.
2696 Page* page = Page::FromAddress(object->address());
2697 Address object_end = object->address() + object->Size();
2698 int count = Heap::IterateRSetRange(page->ObjectAreaStart(),
2699 Min(page->ObjectAreaEnd(), object_end),
2700 page->RSetStart(),
2701 copy_object_func);
2702
2703 // Iterate the extra array elements.
2704 if (object_end > page->ObjectAreaEnd()) {
2705 count += Heap::IterateRSetRange(page->ObjectAreaEnd(), object_end,
2706 object_end, copy_object_func);
2707 }
2708 if (lo_rset_histogram != NULL) {
2709 StatsTable::AddHistogramSample(lo_rset_histogram, count);
2710 }
2711 }
2712 }
2713 }
2714
2715
FreeUnmarkedObjects()2716 void LargeObjectSpace::FreeUnmarkedObjects() {
2717 LargeObjectChunk* previous = NULL;
2718 LargeObjectChunk* current = first_chunk_;
2719 while (current != NULL) {
2720 HeapObject* object = current->GetObject();
2721 if (object->IsMarked()) {
2722 object->ClearMark();
2723 MarkCompactCollector::tracer()->decrement_marked_count();
2724 previous = current;
2725 current = current->next();
2726 } else {
2727 Address chunk_address = current->address();
2728 size_t chunk_size = current->size();
2729
2730 // Cut the chunk out from the chunk list.
2731 current = current->next();
2732 if (previous == NULL) {
2733 first_chunk_ = current;
2734 } else {
2735 previous->set_next(current);
2736 }
2737
2738 // Free the chunk.
2739 MarkCompactCollector::ReportDeleteIfNeeded(object);
2740 size_ -= static_cast<int>(chunk_size);
2741 page_count_--;
2742 MemoryAllocator::FreeRawMemory(chunk_address, chunk_size);
2743 LOG(DeleteEvent("LargeObjectChunk", chunk_address));
2744 }
2745 }
2746 }
2747
2748
Contains(HeapObject * object)2749 bool LargeObjectSpace::Contains(HeapObject* object) {
2750 Address address = object->address();
2751 Page* page = Page::FromAddress(address);
2752
2753 SLOW_ASSERT(!page->IsLargeObjectPage()
2754 || !FindObject(address)->IsFailure());
2755
2756 return page->IsLargeObjectPage();
2757 }
2758
2759
2760 #ifdef DEBUG
2761 // We do not assume that the large object iterator works, because it depends
2762 // on the invariants we are checking during verification.
Verify()2763 void LargeObjectSpace::Verify() {
2764 for (LargeObjectChunk* chunk = first_chunk_;
2765 chunk != NULL;
2766 chunk = chunk->next()) {
2767 // Each chunk contains an object that starts at the large object page's
2768 // object area start.
2769 HeapObject* object = chunk->GetObject();
2770 Page* page = Page::FromAddress(object->address());
2771 ASSERT(object->address() == page->ObjectAreaStart());
2772
2773 // The first word should be a map, and we expect all map pointers to be
2774 // in map space.
2775 Map* map = object->map();
2776 ASSERT(map->IsMap());
2777 ASSERT(Heap::map_space()->Contains(map));
2778
2779 // We have only code, sequential strings, external strings
2780 // (sequential strings that have been morphed into external
2781 // strings), fixed arrays, and byte arrays in large object space.
2782 ASSERT(object->IsCode() || object->IsSeqString() ||
2783 object->IsExternalString() || object->IsFixedArray() ||
2784 object->IsByteArray());
2785
2786 // The object itself should look OK.
2787 object->Verify();
2788
2789 // Byte arrays and strings don't have interior pointers.
2790 if (object->IsCode()) {
2791 VerifyPointersVisitor code_visitor;
2792 object->IterateBody(map->instance_type(),
2793 object->Size(),
2794 &code_visitor);
2795 } else if (object->IsFixedArray()) {
2796 // We loop over fixed arrays ourselves, rather then using the visitor,
2797 // because the visitor doesn't support the start/offset iteration
2798 // needed for IsRSetSet.
2799 FixedArray* array = FixedArray::cast(object);
2800 for (int j = 0; j < array->length(); j++) {
2801 Object* element = array->get(j);
2802 if (element->IsHeapObject()) {
2803 HeapObject* element_object = HeapObject::cast(element);
2804 ASSERT(Heap::Contains(element_object));
2805 ASSERT(element_object->map()->IsMap());
2806 if (Heap::InNewSpace(element_object)) {
2807 ASSERT(Page::IsRSetSet(object->address(),
2808 FixedArray::kHeaderSize + j * kPointerSize));
2809 }
2810 }
2811 }
2812 }
2813 }
2814 }
2815
2816
Print()2817 void LargeObjectSpace::Print() {
2818 LargeObjectIterator it(this);
2819 for (HeapObject* obj = it.next(); obj != NULL; obj = it.next()) {
2820 obj->Print();
2821 }
2822 }
2823
2824
ReportStatistics()2825 void LargeObjectSpace::ReportStatistics() {
2826 PrintF(" size: %d\n", size_);
2827 int num_objects = 0;
2828 ClearHistograms();
2829 LargeObjectIterator it(this);
2830 for (HeapObject* obj = it.next(); obj != NULL; obj = it.next()) {
2831 num_objects++;
2832 CollectHistogramInfo(obj);
2833 }
2834
2835 PrintF(" number of objects %d\n", num_objects);
2836 if (num_objects > 0) ReportHistogram(false);
2837 }
2838
2839
CollectCodeStatistics()2840 void LargeObjectSpace::CollectCodeStatistics() {
2841 LargeObjectIterator obj_it(this);
2842 for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next()) {
2843 if (obj->IsCode()) {
2844 Code* code = Code::cast(obj);
2845 code_kind_statistics[code->kind()] += code->Size();
2846 }
2847 }
2848 }
2849
2850
PrintRSet()2851 void LargeObjectSpace::PrintRSet() {
2852 LargeObjectIterator it(this);
2853 for (HeapObject* object = it.next(); object != NULL; object = it.next()) {
2854 if (object->IsFixedArray()) {
2855 Page* page = Page::FromAddress(object->address());
2856
2857 Address allocation_top = object->address() + object->Size();
2858 PrintF("large page 0x%x:\n", page);
2859 PrintRSetRange(page->RSetStart(), page->RSetEnd(),
2860 reinterpret_cast<Object**>(object->address()),
2861 allocation_top);
2862 int extra_array_bytes = object->Size() - Page::kObjectAreaSize;
2863 int extra_rset_bits = RoundUp(extra_array_bytes / kPointerSize,
2864 kBitsPerInt);
2865 PrintF("------------------------------------------------------------"
2866 "-----------\n");
2867 PrintRSetRange(allocation_top,
2868 allocation_top + extra_rset_bits / kBitsPerByte,
2869 reinterpret_cast<Object**>(object->address()
2870 + Page::kObjectAreaSize),
2871 allocation_top);
2872 PrintF("\n");
2873 }
2874 }
2875 }
2876 #endif // DEBUG
2877
2878 } } // namespace v8::internal
2879