1 /*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 // #define LOG_NDEBUG 0
18 #define LOG_TAG "libutils.threads"
19
20 #include <utils/threads.h>
21 #include <utils/Log.h>
22
23 #include <cutils/sched_policy.h>
24 #include <cutils/properties.h>
25
26 #include <stdio.h>
27 #include <stdlib.h>
28 #include <memory.h>
29 #include <errno.h>
30 #include <assert.h>
31 #include <unistd.h>
32
33 #if defined(HAVE_PTHREADS)
34 # include <pthread.h>
35 # include <sched.h>
36 # include <sys/resource.h>
37 #elif defined(HAVE_WIN32_THREADS)
38 # include <windows.h>
39 # include <stdint.h>
40 # include <process.h>
41 # define HAVE_CREATETHREAD // Cygwin, vs. HAVE__BEGINTHREADEX for MinGW
42 #endif
43
44 #if defined(HAVE_PRCTL)
45 #include <sys/prctl.h>
46 #endif
47
48 /*
49 * ===========================================================================
50 * Thread wrappers
51 * ===========================================================================
52 */
53
54 using namespace android;
55
56 // ----------------------------------------------------------------------------
57 #if defined(HAVE_PTHREADS)
58 // ----------------------------------------------------------------------------
59
60 /*
61 * Create and run a new thread.
62 *
63 * We create it "detached", so it cleans up after itself.
64 */
65
66 typedef void* (*android_pthread_entry)(void*);
67
68 static pthread_once_t gDoSchedulingGroupOnce = PTHREAD_ONCE_INIT;
69 static bool gDoSchedulingGroup = true;
70
checkDoSchedulingGroup(void)71 static void checkDoSchedulingGroup(void) {
72 char buf[PROPERTY_VALUE_MAX];
73 int len = property_get("debug.sys.noschedgroups", buf, "");
74 if (len > 0) {
75 int temp;
76 if (sscanf(buf, "%d", &temp) == 1) {
77 gDoSchedulingGroup = temp == 0;
78 }
79 }
80 }
81
82 struct thread_data_t {
83 thread_func_t entryFunction;
84 void* userData;
85 int priority;
86 char * threadName;
87
88 // we use this trampoline when we need to set the priority with
89 // nice/setpriority.
trampolinethread_data_t90 static int trampoline(const thread_data_t* t) {
91 thread_func_t f = t->entryFunction;
92 void* u = t->userData;
93 int prio = t->priority;
94 char * name = t->threadName;
95 delete t;
96 setpriority(PRIO_PROCESS, 0, prio);
97 pthread_once(&gDoSchedulingGroupOnce, checkDoSchedulingGroup);
98 if (gDoSchedulingGroup) {
99 if (prio >= ANDROID_PRIORITY_BACKGROUND) {
100 set_sched_policy(androidGetTid(), SP_BACKGROUND);
101 } else {
102 set_sched_policy(androidGetTid(), SP_FOREGROUND);
103 }
104 }
105
106 if (name) {
107 #if defined(HAVE_PRCTL)
108 // Mac OS doesn't have this, and we build libutil for the host too
109 int hasAt = 0;
110 int hasDot = 0;
111 char *s = name;
112 while (*s) {
113 if (*s == '.') hasDot = 1;
114 else if (*s == '@') hasAt = 1;
115 s++;
116 }
117 int len = s - name;
118 if (len < 15 || hasAt || !hasDot) {
119 s = name;
120 } else {
121 s = name + len - 15;
122 }
123 prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0);
124 #endif
125 free(name);
126 }
127 return f(u);
128 }
129 };
130
androidCreateRawThreadEtc(android_thread_func_t entryFunction,void * userData,const char * threadName,int32_t threadPriority,size_t threadStackSize,android_thread_id_t * threadId)131 int androidCreateRawThreadEtc(android_thread_func_t entryFunction,
132 void *userData,
133 const char* threadName,
134 int32_t threadPriority,
135 size_t threadStackSize,
136 android_thread_id_t *threadId)
137 {
138 pthread_attr_t attr;
139 pthread_attr_init(&attr);
140 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
141
142 #ifdef HAVE_ANDROID_OS /* valgrind is rejecting RT-priority create reqs */
143 if (threadPriority != PRIORITY_DEFAULT || threadName != NULL) {
144 // We could avoid the trampoline if there was a way to get to the
145 // android_thread_id_t (pid) from pthread_t
146 thread_data_t* t = new thread_data_t;
147 t->priority = threadPriority;
148 t->threadName = threadName ? strdup(threadName) : NULL;
149 t->entryFunction = entryFunction;
150 t->userData = userData;
151 entryFunction = (android_thread_func_t)&thread_data_t::trampoline;
152 userData = t;
153 }
154 #endif
155
156 if (threadStackSize) {
157 pthread_attr_setstacksize(&attr, threadStackSize);
158 }
159
160 errno = 0;
161 pthread_t thread;
162 int result = pthread_create(&thread, &attr,
163 (android_pthread_entry)entryFunction, userData);
164 if (result != 0) {
165 LOGE("androidCreateRawThreadEtc failed (entry=%p, res=%d, errno=%d)\n"
166 "(android threadPriority=%d)",
167 entryFunction, result, errno, threadPriority);
168 return 0;
169 }
170
171 if (threadId != NULL) {
172 *threadId = (android_thread_id_t)thread; // XXX: this is not portable
173 }
174 return 1;
175 }
176
androidGetThreadId()177 android_thread_id_t androidGetThreadId()
178 {
179 return (android_thread_id_t)pthread_self();
180 }
181
182 // ----------------------------------------------------------------------------
183 #elif defined(HAVE_WIN32_THREADS)
184 // ----------------------------------------------------------------------------
185
186 /*
187 * Trampoline to make us __stdcall-compliant.
188 *
189 * We're expected to delete "vDetails" when we're done.
190 */
191 struct threadDetails {
192 int (*func)(void*);
193 void* arg;
194 };
threadIntermediary(void * vDetails)195 static __stdcall unsigned int threadIntermediary(void* vDetails)
196 {
197 struct threadDetails* pDetails = (struct threadDetails*) vDetails;
198 int result;
199
200 result = (*(pDetails->func))(pDetails->arg);
201
202 delete pDetails;
203
204 LOG(LOG_VERBOSE, "thread", "thread exiting\n");
205 return (unsigned int) result;
206 }
207
208 /*
209 * Create and run a new thread.
210 */
doCreateThread(android_thread_func_t fn,void * arg,android_thread_id_t * id)211 static bool doCreateThread(android_thread_func_t fn, void* arg, android_thread_id_t *id)
212 {
213 HANDLE hThread;
214 struct threadDetails* pDetails = new threadDetails; // must be on heap
215 unsigned int thrdaddr;
216
217 pDetails->func = fn;
218 pDetails->arg = arg;
219
220 #if defined(HAVE__BEGINTHREADEX)
221 hThread = (HANDLE) _beginthreadex(NULL, 0, threadIntermediary, pDetails, 0,
222 &thrdaddr);
223 if (hThread == 0)
224 #elif defined(HAVE_CREATETHREAD)
225 hThread = CreateThread(NULL, 0,
226 (LPTHREAD_START_ROUTINE) threadIntermediary,
227 (void*) pDetails, 0, (DWORD*) &thrdaddr);
228 if (hThread == NULL)
229 #endif
230 {
231 LOG(LOG_WARN, "thread", "WARNING: thread create failed\n");
232 return false;
233 }
234
235 #if defined(HAVE_CREATETHREAD)
236 /* close the management handle */
237 CloseHandle(hThread);
238 #endif
239
240 if (id != NULL) {
241 *id = (android_thread_id_t)thrdaddr;
242 }
243
244 return true;
245 }
246
androidCreateRawThreadEtc(android_thread_func_t fn,void * userData,const char * threadName,int32_t threadPriority,size_t threadStackSize,android_thread_id_t * threadId)247 int androidCreateRawThreadEtc(android_thread_func_t fn,
248 void *userData,
249 const char* threadName,
250 int32_t threadPriority,
251 size_t threadStackSize,
252 android_thread_id_t *threadId)
253 {
254 return doCreateThread( fn, userData, threadId);
255 }
256
androidGetThreadId()257 android_thread_id_t androidGetThreadId()
258 {
259 return (android_thread_id_t)GetCurrentThreadId();
260 }
261
262 // ----------------------------------------------------------------------------
263 #else
264 #error "Threads not supported"
265 #endif
266
267 // ----------------------------------------------------------------------------
268
androidCreateThread(android_thread_func_t fn,void * arg)269 int androidCreateThread(android_thread_func_t fn, void* arg)
270 {
271 return createThreadEtc(fn, arg);
272 }
273
androidCreateThreadGetID(android_thread_func_t fn,void * arg,android_thread_id_t * id)274 int androidCreateThreadGetID(android_thread_func_t fn, void *arg, android_thread_id_t *id)
275 {
276 return createThreadEtc(fn, arg, "android:unnamed_thread",
277 PRIORITY_DEFAULT, 0, id);
278 }
279
280 static android_create_thread_fn gCreateThreadFn = androidCreateRawThreadEtc;
281
androidCreateThreadEtc(android_thread_func_t entryFunction,void * userData,const char * threadName,int32_t threadPriority,size_t threadStackSize,android_thread_id_t * threadId)282 int androidCreateThreadEtc(android_thread_func_t entryFunction,
283 void *userData,
284 const char* threadName,
285 int32_t threadPriority,
286 size_t threadStackSize,
287 android_thread_id_t *threadId)
288 {
289 return gCreateThreadFn(entryFunction, userData, threadName,
290 threadPriority, threadStackSize, threadId);
291 }
292
androidSetCreateThreadFunc(android_create_thread_fn func)293 void androidSetCreateThreadFunc(android_create_thread_fn func)
294 {
295 gCreateThreadFn = func;
296 }
297
androidGetTid()298 pid_t androidGetTid()
299 {
300 #ifdef HAVE_GETTID
301 return gettid();
302 #else
303 return getpid();
304 #endif
305 }
306
androidSetThreadSchedulingGroup(pid_t tid,int grp)307 int androidSetThreadSchedulingGroup(pid_t tid, int grp)
308 {
309 if (grp > ANDROID_TGROUP_MAX || grp < 0) {
310 return BAD_VALUE;
311 }
312
313 #if defined(HAVE_PTHREADS)
314 pthread_once(&gDoSchedulingGroupOnce, checkDoSchedulingGroup);
315 if (gDoSchedulingGroup) {
316 if (set_sched_policy(tid, (grp == ANDROID_TGROUP_BG_NONINTERACT) ?
317 SP_BACKGROUND : SP_FOREGROUND)) {
318 return PERMISSION_DENIED;
319 }
320 }
321 #endif
322
323 return NO_ERROR;
324 }
325
androidSetThreadPriority(pid_t tid,int pri)326 int androidSetThreadPriority(pid_t tid, int pri)
327 {
328 int rc = 0;
329
330 #if defined(HAVE_PTHREADS)
331 int lasterr = 0;
332
333 pthread_once(&gDoSchedulingGroupOnce, checkDoSchedulingGroup);
334 if (gDoSchedulingGroup) {
335 if (pri >= ANDROID_PRIORITY_BACKGROUND) {
336 rc = set_sched_policy(tid, SP_BACKGROUND);
337 } else if (getpriority(PRIO_PROCESS, tid) >= ANDROID_PRIORITY_BACKGROUND) {
338 rc = set_sched_policy(tid, SP_FOREGROUND);
339 }
340 }
341
342 if (rc) {
343 lasterr = errno;
344 }
345
346 if (setpriority(PRIO_PROCESS, tid, pri) < 0) {
347 rc = INVALID_OPERATION;
348 } else {
349 errno = lasterr;
350 }
351 #endif
352
353 return rc;
354 }
355
356 namespace android {
357
358 /*
359 * ===========================================================================
360 * Mutex class
361 * ===========================================================================
362 */
363
364 #if defined(HAVE_PTHREADS)
365 // implemented as inlines in threads.h
366 #elif defined(HAVE_WIN32_THREADS)
367
368 Mutex::Mutex()
369 {
370 HANDLE hMutex;
371
372 assert(sizeof(hMutex) == sizeof(mState));
373
374 hMutex = CreateMutex(NULL, FALSE, NULL);
375 mState = (void*) hMutex;
376 }
377
378 Mutex::Mutex(const char* name)
379 {
380 // XXX: name not used for now
381 HANDLE hMutex;
382
383 assert(sizeof(hMutex) == sizeof(mState));
384
385 hMutex = CreateMutex(NULL, FALSE, NULL);
386 mState = (void*) hMutex;
387 }
388
389 Mutex::Mutex(int type, const char* name)
390 {
391 // XXX: type and name not used for now
392 HANDLE hMutex;
393
394 assert(sizeof(hMutex) == sizeof(mState));
395
396 hMutex = CreateMutex(NULL, FALSE, NULL);
397 mState = (void*) hMutex;
398 }
399
400 Mutex::~Mutex()
401 {
402 CloseHandle((HANDLE) mState);
403 }
404
405 status_t Mutex::lock()
406 {
407 DWORD dwWaitResult;
408 dwWaitResult = WaitForSingleObject((HANDLE) mState, INFINITE);
409 return dwWaitResult != WAIT_OBJECT_0 ? -1 : NO_ERROR;
410 }
411
412 void Mutex::unlock()
413 {
414 if (!ReleaseMutex((HANDLE) mState))
415 LOG(LOG_WARN, "thread", "WARNING: bad result from unlocking mutex\n");
416 }
417
418 status_t Mutex::tryLock()
419 {
420 DWORD dwWaitResult;
421
422 dwWaitResult = WaitForSingleObject((HANDLE) mState, 0);
423 if (dwWaitResult != WAIT_OBJECT_0 && dwWaitResult != WAIT_TIMEOUT)
424 LOG(LOG_WARN, "thread", "WARNING: bad result from try-locking mutex\n");
425 return (dwWaitResult == WAIT_OBJECT_0) ? 0 : -1;
426 }
427
428 #else
429 #error "Somebody forgot to implement threads for this platform."
430 #endif
431
432
433 /*
434 * ===========================================================================
435 * Condition class
436 * ===========================================================================
437 */
438
439 #if defined(HAVE_PTHREADS)
440 // implemented as inlines in threads.h
441 #elif defined(HAVE_WIN32_THREADS)
442
443 /*
444 * Windows doesn't have a condition variable solution. It's possible
445 * to create one, but it's easy to get it wrong. For a discussion, and
446 * the origin of this implementation, see:
447 *
448 * http://www.cs.wustl.edu/~schmidt/win32-cv-1.html
449 *
450 * The implementation shown on the page does NOT follow POSIX semantics.
451 * As an optimization they require acquiring the external mutex before
452 * calling signal() and broadcast(), whereas POSIX only requires grabbing
453 * it before calling wait(). The implementation here has been un-optimized
454 * to have the correct behavior.
455 */
456 typedef struct WinCondition {
457 // Number of waiting threads.
458 int waitersCount;
459
460 // Serialize access to waitersCount.
461 CRITICAL_SECTION waitersCountLock;
462
463 // Semaphore used to queue up threads waiting for the condition to
464 // become signaled.
465 HANDLE sema;
466
467 // An auto-reset event used by the broadcast/signal thread to wait
468 // for all the waiting thread(s) to wake up and be released from
469 // the semaphore.
470 HANDLE waitersDone;
471
472 // This mutex wouldn't be necessary if we required that the caller
473 // lock the external mutex before calling signal() and broadcast().
474 // I'm trying to mimic pthread semantics though.
475 HANDLE internalMutex;
476
477 // Keeps track of whether we were broadcasting or signaling. This
478 // allows us to optimize the code if we're just signaling.
479 bool wasBroadcast;
480
481 status_t wait(WinCondition* condState, HANDLE hMutex, nsecs_t* abstime)
482 {
483 // Increment the wait count, avoiding race conditions.
484 EnterCriticalSection(&condState->waitersCountLock);
485 condState->waitersCount++;
486 //printf("+++ wait: incr waitersCount to %d (tid=%ld)\n",
487 // condState->waitersCount, getThreadId());
488 LeaveCriticalSection(&condState->waitersCountLock);
489
490 DWORD timeout = INFINITE;
491 if (abstime) {
492 nsecs_t reltime = *abstime - systemTime();
493 if (reltime < 0)
494 reltime = 0;
495 timeout = reltime/1000000;
496 }
497
498 // Atomically release the external mutex and wait on the semaphore.
499 DWORD res =
500 SignalObjectAndWait(hMutex, condState->sema, timeout, FALSE);
501
502 //printf("+++ wait: awake (tid=%ld)\n", getThreadId());
503
504 // Reacquire lock to avoid race conditions.
505 EnterCriticalSection(&condState->waitersCountLock);
506
507 // No longer waiting.
508 condState->waitersCount--;
509
510 // Check to see if we're the last waiter after a broadcast.
511 bool lastWaiter = (condState->wasBroadcast && condState->waitersCount == 0);
512
513 //printf("+++ wait: lastWaiter=%d (wasBc=%d wc=%d)\n",
514 // lastWaiter, condState->wasBroadcast, condState->waitersCount);
515
516 LeaveCriticalSection(&condState->waitersCountLock);
517
518 // If we're the last waiter thread during this particular broadcast
519 // then signal broadcast() that we're all awake. It'll drop the
520 // internal mutex.
521 if (lastWaiter) {
522 // Atomically signal the "waitersDone" event and wait until we
523 // can acquire the internal mutex. We want to do this in one step
524 // because it ensures that everybody is in the mutex FIFO before
525 // any thread has a chance to run. Without it, another thread
526 // could wake up, do work, and hop back in ahead of us.
527 SignalObjectAndWait(condState->waitersDone, condState->internalMutex,
528 INFINITE, FALSE);
529 } else {
530 // Grab the internal mutex.
531 WaitForSingleObject(condState->internalMutex, INFINITE);
532 }
533
534 // Release the internal and grab the external.
535 ReleaseMutex(condState->internalMutex);
536 WaitForSingleObject(hMutex, INFINITE);
537
538 return res == WAIT_OBJECT_0 ? NO_ERROR : -1;
539 }
540 } WinCondition;
541
542 /*
543 * Constructor. Set up the WinCondition stuff.
544 */
545 Condition::Condition()
546 {
547 WinCondition* condState = new WinCondition;
548
549 condState->waitersCount = 0;
550 condState->wasBroadcast = false;
551 // semaphore: no security, initial value of 0
552 condState->sema = CreateSemaphore(NULL, 0, 0x7fffffff, NULL);
553 InitializeCriticalSection(&condState->waitersCountLock);
554 // auto-reset event, not signaled initially
555 condState->waitersDone = CreateEvent(NULL, FALSE, FALSE, NULL);
556 // used so we don't have to lock external mutex on signal/broadcast
557 condState->internalMutex = CreateMutex(NULL, FALSE, NULL);
558
559 mState = condState;
560 }
561
562 /*
563 * Destructor. Free Windows resources as well as our allocated storage.
564 */
565 Condition::~Condition()
566 {
567 WinCondition* condState = (WinCondition*) mState;
568 if (condState != NULL) {
569 CloseHandle(condState->sema);
570 CloseHandle(condState->waitersDone);
571 delete condState;
572 }
573 }
574
575
576 status_t Condition::wait(Mutex& mutex)
577 {
578 WinCondition* condState = (WinCondition*) mState;
579 HANDLE hMutex = (HANDLE) mutex.mState;
580
581 return ((WinCondition*)mState)->wait(condState, hMutex, NULL);
582 }
583
584 status_t Condition::waitRelative(Mutex& mutex, nsecs_t reltime)
585 {
586 WinCondition* condState = (WinCondition*) mState;
587 HANDLE hMutex = (HANDLE) mutex.mState;
588 nsecs_t absTime = systemTime()+reltime;
589
590 return ((WinCondition*)mState)->wait(condState, hMutex, &absTime);
591 }
592
593 /*
594 * Signal the condition variable, allowing one thread to continue.
595 */
596 void Condition::signal()
597 {
598 WinCondition* condState = (WinCondition*) mState;
599
600 // Lock the internal mutex. This ensures that we don't clash with
601 // broadcast().
602 WaitForSingleObject(condState->internalMutex, INFINITE);
603
604 EnterCriticalSection(&condState->waitersCountLock);
605 bool haveWaiters = (condState->waitersCount > 0);
606 LeaveCriticalSection(&condState->waitersCountLock);
607
608 // If no waiters, then this is a no-op. Otherwise, knock the semaphore
609 // down a notch.
610 if (haveWaiters)
611 ReleaseSemaphore(condState->sema, 1, 0);
612
613 // Release internal mutex.
614 ReleaseMutex(condState->internalMutex);
615 }
616
617 /*
618 * Signal the condition variable, allowing all threads to continue.
619 *
620 * First we have to wake up all threads waiting on the semaphore, then
621 * we wait until all of the threads have actually been woken before
622 * releasing the internal mutex. This ensures that all threads are woken.
623 */
624 void Condition::broadcast()
625 {
626 WinCondition* condState = (WinCondition*) mState;
627
628 // Lock the internal mutex. This keeps the guys we're waking up
629 // from getting too far.
630 WaitForSingleObject(condState->internalMutex, INFINITE);
631
632 EnterCriticalSection(&condState->waitersCountLock);
633 bool haveWaiters = false;
634
635 if (condState->waitersCount > 0) {
636 haveWaiters = true;
637 condState->wasBroadcast = true;
638 }
639
640 if (haveWaiters) {
641 // Wake up all the waiters.
642 ReleaseSemaphore(condState->sema, condState->waitersCount, 0);
643
644 LeaveCriticalSection(&condState->waitersCountLock);
645
646 // Wait for all awakened threads to acquire the counting semaphore.
647 // The last guy who was waiting sets this.
648 WaitForSingleObject(condState->waitersDone, INFINITE);
649
650 // Reset wasBroadcast. (No crit section needed because nobody
651 // else can wake up to poke at it.)
652 condState->wasBroadcast = 0;
653 } else {
654 // nothing to do
655 LeaveCriticalSection(&condState->waitersCountLock);
656 }
657
658 // Release internal mutex.
659 ReleaseMutex(condState->internalMutex);
660 }
661
662 #else
663 #error "condition variables not supported on this platform"
664 #endif
665
666 // ----------------------------------------------------------------------------
667
668 /*
669 * This is our thread object!
670 */
671
Thread(bool canCallJava)672 Thread::Thread(bool canCallJava)
673 : mCanCallJava(canCallJava),
674 mThread(thread_id_t(-1)),
675 mLock("Thread::mLock"),
676 mStatus(NO_ERROR),
677 mExitPending(false), mRunning(false)
678 {
679 }
680
~Thread()681 Thread::~Thread()
682 {
683 }
684
readyToRun()685 status_t Thread::readyToRun()
686 {
687 return NO_ERROR;
688 }
689
run(const char * name,int32_t priority,size_t stack)690 status_t Thread::run(const char* name, int32_t priority, size_t stack)
691 {
692 Mutex::Autolock _l(mLock);
693
694 if (mRunning) {
695 // thread already started
696 return INVALID_OPERATION;
697 }
698
699 // reset status and exitPending to their default value, so we can
700 // try again after an error happened (either below, or in readyToRun())
701 mStatus = NO_ERROR;
702 mExitPending = false;
703 mThread = thread_id_t(-1);
704
705 // hold a strong reference on ourself
706 mHoldSelf = this;
707
708 mRunning = true;
709
710 bool res;
711 if (mCanCallJava) {
712 res = createThreadEtc(_threadLoop,
713 this, name, priority, stack, &mThread);
714 } else {
715 res = androidCreateRawThreadEtc(_threadLoop,
716 this, name, priority, stack, &mThread);
717 }
718
719 if (res == false) {
720 mStatus = UNKNOWN_ERROR; // something happened!
721 mRunning = false;
722 mThread = thread_id_t(-1);
723 mHoldSelf.clear(); // "this" may have gone away after this.
724
725 return UNKNOWN_ERROR;
726 }
727
728 // Do not refer to mStatus here: The thread is already running (may, in fact
729 // already have exited with a valid mStatus result). The NO_ERROR indication
730 // here merely indicates successfully starting the thread and does not
731 // imply successful termination/execution.
732 return NO_ERROR;
733 }
734
_threadLoop(void * user)735 int Thread::_threadLoop(void* user)
736 {
737 Thread* const self = static_cast<Thread*>(user);
738 sp<Thread> strong(self->mHoldSelf);
739 wp<Thread> weak(strong);
740 self->mHoldSelf.clear();
741
742 #if HAVE_ANDROID_OS
743 // this is very useful for debugging with gdb
744 self->mTid = gettid();
745 #endif
746
747 bool first = true;
748
749 do {
750 bool result;
751 if (first) {
752 first = false;
753 self->mStatus = self->readyToRun();
754 result = (self->mStatus == NO_ERROR);
755
756 if (result && !self->mExitPending) {
757 // Binder threads (and maybe others) rely on threadLoop
758 // running at least once after a successful ::readyToRun()
759 // (unless, of course, the thread has already been asked to exit
760 // at that point).
761 // This is because threads are essentially used like this:
762 // (new ThreadSubclass())->run();
763 // The caller therefore does not retain a strong reference to
764 // the thread and the thread would simply disappear after the
765 // successful ::readyToRun() call instead of entering the
766 // threadLoop at least once.
767 result = self->threadLoop();
768 }
769 } else {
770 result = self->threadLoop();
771 }
772
773 if (result == false || self->mExitPending) {
774 self->mExitPending = true;
775 self->mLock.lock();
776 self->mRunning = false;
777 // clear thread ID so that requestExitAndWait() does not exit if
778 // called by a new thread using the same thread ID as this one.
779 self->mThread = thread_id_t(-1);
780 self->mThreadExitedCondition.broadcast();
781 self->mThread = thread_id_t(-1); // thread id could be reused
782 self->mLock.unlock();
783 break;
784 }
785
786 // Release our strong reference, to let a chance to the thread
787 // to die a peaceful death.
788 strong.clear();
789 // And immediately, re-acquire a strong reference for the next loop
790 strong = weak.promote();
791 } while(strong != 0);
792
793 return 0;
794 }
795
requestExit()796 void Thread::requestExit()
797 {
798 mExitPending = true;
799 }
800
requestExitAndWait()801 status_t Thread::requestExitAndWait()
802 {
803 if (mThread == getThreadId()) {
804 LOGW(
805 "Thread (this=%p): don't call waitForExit() from this "
806 "Thread object's thread. It's a guaranteed deadlock!",
807 this);
808
809 return WOULD_BLOCK;
810 }
811
812 requestExit();
813
814 Mutex::Autolock _l(mLock);
815 while (mRunning == true) {
816 mThreadExitedCondition.wait(mLock);
817 }
818 mExitPending = false;
819
820 return mStatus;
821 }
822
exitPending() const823 bool Thread::exitPending() const
824 {
825 return mExitPending;
826 }
827
828
829
830 }; // namespace android
831