• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
2  * project 2005.
3  */
4 /* ====================================================================
5  * Copyright (c) 2005 The OpenSSL Project.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  *
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  *
19  * 3. All advertising materials mentioning features or use of this
20  *    software must display the following acknowledgment:
21  *    "This product includes software developed by the OpenSSL Project
22  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
23  *
24  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25  *    endorse or promote products derived from this software without
26  *    prior written permission. For written permission, please contact
27  *    licensing@OpenSSL.org.
28  *
29  * 5. Products derived from this software may not be called "OpenSSL"
30  *    nor may "OpenSSL" appear in their names without prior written
31  *    permission of the OpenSSL Project.
32  *
33  * 6. Redistributions of any form whatsoever must retain the following
34  *    acknowledgment:
35  *    "This product includes software developed by the OpenSSL Project
36  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
37  *
38  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
39  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
42  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49  * OF THE POSSIBILITY OF SUCH DAMAGE.
50  * ====================================================================
51  *
52  * This product includes cryptographic software written by Eric Young
53  * (eay@cryptsoft.com).  This product includes software written by Tim
54  * Hudson (tjh@cryptsoft.com).
55  *
56  */
57 
58 /* Support for PVK format keys and related structures (such a PUBLICKEYBLOB
59  * and PRIVATEKEYBLOB).
60  */
61 
62 #include "cryptlib.h"
63 #include <openssl/pem.h>
64 #include <openssl/rand.h>
65 #include <openssl/bn.h>
66 #if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DSA)
67 #include <openssl/dsa.h>
68 #include <openssl/rsa.h>
69 
70 /* Utility function: read a DWORD (4 byte unsigned integer) in little endian
71  * format
72  */
73 
read_ledword(const unsigned char ** in)74 static unsigned int read_ledword(const unsigned char **in)
75 	{
76 	const unsigned char *p = *in;
77 	unsigned int ret;
78 	ret = *p++;
79 	ret |= (*p++ << 8);
80 	ret |= (*p++ << 16);
81 	ret |= (*p++ << 24);
82 	*in = p;
83 	return ret;
84 	}
85 
86 /* Read a BIGNUM in little endian format. The docs say that this should take up
87  * bitlen/8 bytes.
88  */
89 
read_lebn(const unsigned char ** in,unsigned int nbyte,BIGNUM ** r)90 static int read_lebn(const unsigned char **in, unsigned int nbyte, BIGNUM **r)
91 	{
92 	const unsigned char *p;
93 	unsigned char *tmpbuf, *q;
94 	unsigned int i;
95 	p = *in + nbyte - 1;
96 	tmpbuf = OPENSSL_malloc(nbyte);
97 	if (!tmpbuf)
98 		return 0;
99 	q = tmpbuf;
100 	for (i = 0; i < nbyte; i++)
101 		*q++ = *p--;
102 	*r = BN_bin2bn(tmpbuf, nbyte, NULL);
103 	OPENSSL_free(tmpbuf);
104 	if (*r)
105 		{
106 		*in += nbyte;
107 		return 1;
108 		}
109 	else
110 		return 0;
111 	}
112 
113 
114 /* Convert private key blob to EVP_PKEY: RSA and DSA keys supported */
115 
116 #define MS_PUBLICKEYBLOB	0x6
117 #define MS_PRIVATEKEYBLOB	0x7
118 #define MS_RSA1MAGIC		0x31415352L
119 #define MS_RSA2MAGIC		0x32415352L
120 #define MS_DSS1MAGIC		0x31535344L
121 #define MS_DSS2MAGIC		0x32535344L
122 
123 #define MS_KEYALG_RSA_KEYX	0xa400
124 #define MS_KEYALG_DSS_SIGN	0x2200
125 
126 #define MS_KEYTYPE_KEYX		0x1
127 #define MS_KEYTYPE_SIGN		0x2
128 
129 /* The PVK file magic number: seems to spell out "bobsfile", who is Bob? */
130 #define MS_PVKMAGIC		0xb0b5f11eL
131 /* Salt length for PVK files */
132 #define PVK_SALTLEN		0x10
133 
134 static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length,
135 						unsigned int bitlen, int ispub);
136 static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length,
137 						unsigned int bitlen, int ispub);
138 
do_blob_header(const unsigned char ** in,unsigned int length,unsigned int * pmagic,unsigned int * pbitlen,int * pisdss,int * pispub)139 static int do_blob_header(const unsigned char **in, unsigned int length,
140 				unsigned int *pmagic, unsigned int *pbitlen,
141 				int *pisdss, int *pispub)
142 	{
143 	const unsigned char *p = *in;
144 	if (length < 16)
145 		return 0;
146 	/* bType */
147 	if (*p == MS_PUBLICKEYBLOB)
148 		{
149 		if (*pispub == 0)
150 			{
151 			PEMerr(PEM_F_DO_BLOB_HEADER,
152 					PEM_R_EXPECTING_PRIVATE_KEY_BLOB);
153 			return 0;
154 			}
155 		*pispub = 1;
156 		}
157 	else if (*p == MS_PRIVATEKEYBLOB)
158 		{
159 		if (*pispub == 1)
160 			{
161 			PEMerr(PEM_F_DO_BLOB_HEADER,
162 					PEM_R_EXPECTING_PUBLIC_KEY_BLOB);
163 			return 0;
164 			}
165 		*pispub = 0;
166 		}
167 	else
168 		return 0;
169 	p++;
170 	/* Version */
171 	if (*p++ != 0x2)
172 		{
173 		PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_VERSION_NUMBER);
174 		return 0;
175 		}
176 	/* Ignore reserved, aiKeyAlg */
177 	p+= 6;
178 	*pmagic = read_ledword(&p);
179 	*pbitlen = read_ledword(&p);
180 	*pisdss = 0;
181 	switch (*pmagic)
182 		{
183 
184 		case MS_DSS1MAGIC:
185 		*pisdss = 1;
186 		case MS_RSA1MAGIC:
187 		if (*pispub == 0)
188 			{
189 			PEMerr(PEM_F_DO_BLOB_HEADER,
190 					PEM_R_EXPECTING_PRIVATE_KEY_BLOB);
191 			return 0;
192 			}
193 		break;
194 
195 		case MS_DSS2MAGIC:
196 		*pisdss = 1;
197 		case MS_RSA2MAGIC:
198 		if (*pispub == 1)
199 			{
200 			PEMerr(PEM_F_DO_BLOB_HEADER,
201 					PEM_R_EXPECTING_PUBLIC_KEY_BLOB);
202 			return 0;
203 			}
204 		break;
205 
206 		default:
207 		PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_MAGIC_NUMBER);
208 		return -1;
209 		}
210 	*in = p;
211 	return 1;
212 	}
213 
blob_length(unsigned bitlen,int isdss,int ispub)214 static unsigned int blob_length(unsigned bitlen, int isdss, int ispub)
215 	{
216 	unsigned int nbyte, hnbyte;
217 	nbyte = (bitlen + 7) >> 3;
218 	hnbyte = (bitlen + 15) >> 4;
219 	if (isdss)
220 		{
221 
222 		/* Expected length: 20 for q + 3 components bitlen each + 24
223 		 * for seed structure.
224 		 */
225 		if (ispub)
226 			return  44 + 3 * nbyte;
227 		/* Expected length: 20 for q, priv, 2 bitlen components + 24
228 		 * for seed structure.
229 		 */
230 		else
231 			return 64 + 2 * nbyte;
232 		}
233 	else
234 		{
235 		/* Expected length: 4 for 'e' + 'n' */
236 		if (ispub)
237 			return 4 + nbyte;
238 		else
239 		/* Expected length: 4 for 'e' and 7 other components.
240 		 * 2 components are bitlen size, 5 are bitlen/2
241 		 */
242 			return 4 + 2*nbyte + 5*hnbyte;
243 		}
244 
245 	}
246 
do_b2i(const unsigned char ** in,unsigned int length,int ispub)247 static EVP_PKEY *do_b2i(const unsigned char **in, unsigned int length,
248 								int ispub)
249 	{
250 	const unsigned char *p = *in;
251 	unsigned int bitlen, magic;
252 	int isdss;
253 	if (do_blob_header(&p, length, &magic, &bitlen, &isdss, &ispub) <= 0)
254 		{
255 		PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_HEADER_PARSE_ERROR);
256 		return NULL;
257 		}
258 	length -= 16;
259 	if (length < blob_length(bitlen, isdss, ispub))
260 		{
261 		PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_TOO_SHORT);
262 		return NULL;
263 		}
264 	if (isdss)
265 		return b2i_dss(&p, length, bitlen, ispub);
266 	else
267 		return b2i_rsa(&p, length, bitlen, ispub);
268 	}
269 
do_b2i_bio(BIO * in,int ispub)270 static EVP_PKEY *do_b2i_bio(BIO *in, int ispub)
271 	{
272 	const unsigned char *p;
273 	unsigned char hdr_buf[16], *buf = NULL;
274 	unsigned int bitlen, magic, length;
275 	int isdss;
276 	EVP_PKEY *ret = NULL;
277 	if (BIO_read(in, hdr_buf, 16) != 16)
278 		{
279 		PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT);
280 		return NULL;
281 		}
282 	p = hdr_buf;
283 	if (do_blob_header(&p, 16, &magic, &bitlen, &isdss, &ispub) <= 0)
284 		return NULL;
285 
286 	length = blob_length(bitlen, isdss, ispub);
287 	buf = OPENSSL_malloc(length);
288 	if (!buf)
289 		{
290 		PEMerr(PEM_F_DO_B2I_BIO, ERR_R_MALLOC_FAILURE);
291 		goto err;
292 		}
293 	p = buf;
294 	if (BIO_read(in, buf, length) != (int)length)
295 		{
296 		PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT);
297 		goto err;
298 		}
299 
300 	if (isdss)
301 		ret = b2i_dss(&p, length, bitlen, ispub);
302 	else
303 		ret = b2i_rsa(&p, length, bitlen, ispub);
304 
305 	err:
306 	if (buf)
307 		OPENSSL_free(buf);
308 	return ret;
309 	}
310 
b2i_dss(const unsigned char ** in,unsigned int length,unsigned int bitlen,int ispub)311 static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length,
312 						unsigned int bitlen, int ispub)
313 	{
314 	const unsigned char *p = *in;
315 	EVP_PKEY *ret = NULL;
316 	DSA *dsa = NULL;
317 	BN_CTX *ctx = NULL;
318 	unsigned int nbyte;
319 	nbyte = (bitlen + 7) >> 3;
320 
321 	dsa = DSA_new();
322 	ret = EVP_PKEY_new();
323 	if (!dsa || !ret)
324 		goto memerr;
325 	if (!read_lebn(&p, nbyte, &dsa->p))
326 		goto memerr;
327 	if (!read_lebn(&p, 20, &dsa->q))
328 		goto memerr;
329 	if (!read_lebn(&p, nbyte, &dsa->g))
330 		goto memerr;
331 	if (ispub)
332 		{
333 		if (!read_lebn(&p, nbyte, &dsa->pub_key))
334 			goto memerr;
335 		}
336 	else
337 		{
338 		if (!read_lebn(&p, 20, &dsa->priv_key))
339 			goto memerr;
340 		/* Calculate public key */
341 		if (!(dsa->pub_key = BN_new()))
342 			goto memerr;
343 		if (!(ctx = BN_CTX_new()))
344 			goto memerr;
345 
346 		if (!BN_mod_exp(dsa->pub_key, dsa->g,
347 						 dsa->priv_key, dsa->p, ctx))
348 
349 			goto memerr;
350 		BN_CTX_free(ctx);
351 		}
352 
353 	EVP_PKEY_set1_DSA(ret, dsa);
354 	DSA_free(dsa);
355 	*in = p;
356 	return ret;
357 
358 	memerr:
359 	PEMerr(PEM_F_B2I_DSS, ERR_R_MALLOC_FAILURE);
360 	if (dsa)
361 		DSA_free(dsa);
362 	if (ret)
363 		EVP_PKEY_free(ret);
364 	if (ctx)
365 		BN_CTX_free(ctx);
366 	return NULL;
367 	}
368 
b2i_rsa(const unsigned char ** in,unsigned int length,unsigned int bitlen,int ispub)369 static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length,
370 						unsigned int bitlen, int ispub)
371 
372 	{
373 	const unsigned char *p = *in;
374 	EVP_PKEY *ret = NULL;
375 	RSA *rsa = NULL;
376 	unsigned int nbyte, hnbyte;
377 	nbyte = (bitlen + 7) >> 3;
378 	hnbyte = (bitlen + 15) >> 4;
379 	rsa = RSA_new();
380 	ret = EVP_PKEY_new();
381 	if (!rsa || !ret)
382 		goto memerr;
383 	rsa->e = BN_new();
384 	if (!rsa->e)
385 		goto memerr;
386 	if (!BN_set_word(rsa->e, read_ledword(&p)))
387 		goto memerr;
388 	if (!read_lebn(&p, nbyte, &rsa->n))
389 		goto memerr;
390 	if (!ispub)
391 		{
392 		if (!read_lebn(&p, hnbyte, &rsa->p))
393 			goto memerr;
394 		if (!read_lebn(&p, hnbyte, &rsa->q))
395 			goto memerr;
396 		if (!read_lebn(&p, hnbyte, &rsa->dmp1))
397 			goto memerr;
398 		if (!read_lebn(&p, hnbyte, &rsa->dmq1))
399 			goto memerr;
400 		if (!read_lebn(&p, hnbyte, &rsa->iqmp))
401 			goto memerr;
402 		if (!read_lebn(&p, nbyte, &rsa->d))
403 			goto memerr;
404 		}
405 
406 	EVP_PKEY_set1_RSA(ret, rsa);
407 	RSA_free(rsa);
408 	*in = p;
409 	return ret;
410 	memerr:
411 	PEMerr(PEM_F_B2I_RSA, ERR_R_MALLOC_FAILURE);
412 	if (rsa)
413 		RSA_free(rsa);
414 	if (ret)
415 		EVP_PKEY_free(ret);
416 	return NULL;
417 	}
418 
b2i_PrivateKey(const unsigned char ** in,long length)419 EVP_PKEY *b2i_PrivateKey(const unsigned char **in, long length)
420 	{
421 	return do_b2i(in, length, 0);
422 	}
423 
b2i_PublicKey(const unsigned char ** in,long length)424 EVP_PKEY *b2i_PublicKey(const unsigned char **in, long length)
425 	{
426 	return do_b2i(in, length, 1);
427 	}
428 
429 
b2i_PrivateKey_bio(BIO * in)430 EVP_PKEY *b2i_PrivateKey_bio(BIO *in)
431 	{
432 	return do_b2i_bio(in, 0);
433 	}
434 
b2i_PublicKey_bio(BIO * in)435 EVP_PKEY *b2i_PublicKey_bio(BIO *in)
436 	{
437 	return do_b2i_bio(in, 1);
438 	}
439 
write_ledword(unsigned char ** out,unsigned int dw)440 static void write_ledword(unsigned char **out, unsigned int dw)
441 	{
442 	unsigned char *p = *out;
443 	*p++ = dw & 0xff;
444 	*p++ = (dw>>8) & 0xff;
445 	*p++ = (dw>>16) & 0xff;
446 	*p++ = (dw>>24) & 0xff;
447 	*out = p;
448 	}
449 
write_lebn(unsigned char ** out,const BIGNUM * bn,int len)450 static void write_lebn(unsigned char **out, const BIGNUM *bn, int len)
451 	{
452 	int nb, i;
453 	unsigned char *p = *out, *q, c;
454 	nb = BN_num_bytes(bn);
455 	BN_bn2bin(bn, p);
456 	q = p + nb - 1;
457 	/* In place byte order reversal */
458 	for (i = 0; i < nb/2; i++)
459 		{
460 		c = *p;
461 		*p++ = *q;
462 		*q-- = c;
463 		}
464 	*out += nb;
465 	/* Pad with zeroes if we have to */
466 	if (len > 0)
467 		{
468 		len -= nb;
469 		if (len > 0)
470 			{
471 			memset(*out, 0, len);
472 			*out += len;
473 			}
474 		}
475 	}
476 
477 
478 static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *magic);
479 static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *magic);
480 
481 static void write_rsa(unsigned char **out, RSA *rsa, int ispub);
482 static void write_dsa(unsigned char **out, DSA *dsa, int ispub);
483 
do_i2b(unsigned char ** out,EVP_PKEY * pk,int ispub)484 static int do_i2b(unsigned char **out, EVP_PKEY *pk, int ispub)
485 	{
486 	unsigned char *p;
487 	unsigned int bitlen, magic = 0, keyalg;
488 	int outlen, noinc = 0;
489 	if (pk->type == EVP_PKEY_DSA)
490 		{
491 		bitlen = check_bitlen_dsa(pk->pkey.dsa, ispub, &magic);
492 		keyalg = MS_KEYALG_DSS_SIGN;
493 		}
494 	else if (pk->type == EVP_PKEY_RSA)
495 		{
496 		bitlen = check_bitlen_rsa(pk->pkey.rsa, ispub, &magic);
497 		keyalg = MS_KEYALG_RSA_KEYX;
498 		}
499 	else
500 		return -1;
501 	if (bitlen == 0)
502 		return -1;
503 	outlen = 16 + blob_length(bitlen,
504 			keyalg == MS_KEYALG_DSS_SIGN ? 1 : 0, ispub);
505 	if (out == NULL)
506 		return outlen;
507 	if (*out)
508 		p = *out;
509 	else
510 		{
511 		p = OPENSSL_malloc(outlen);
512 		if (!p)
513 			return -1;
514 		*out = p;
515 		noinc = 1;
516 		}
517 	if (ispub)
518 		*p++ = MS_PUBLICKEYBLOB;
519 	else
520 		*p++ = MS_PRIVATEKEYBLOB;
521 	*p++ = 0x2;
522 	*p++ = 0;
523 	*p++ = 0;
524 	write_ledword(&p, keyalg);
525 	write_ledword(&p, magic);
526 	write_ledword(&p, bitlen);
527 	if (keyalg == MS_KEYALG_DSS_SIGN)
528 		write_dsa(&p, pk->pkey.dsa, ispub);
529 	else
530 		write_rsa(&p, pk->pkey.rsa, ispub);
531 	if (!noinc)
532 		*out += outlen;
533 	return outlen;
534 	}
535 
do_i2b_bio(BIO * out,EVP_PKEY * pk,int ispub)536 static int do_i2b_bio(BIO *out, EVP_PKEY *pk, int ispub)
537 	{
538 	unsigned char *tmp = NULL;
539 	int outlen, wrlen;
540 	outlen = do_i2b(&tmp, pk, ispub);
541 	if (outlen < 0)
542 		return -1;
543 	wrlen = BIO_write(out, tmp, outlen);
544 	OPENSSL_free(tmp);
545 	if (wrlen == outlen)
546 		return outlen;
547 	return -1;
548 	}
549 
check_bitlen_dsa(DSA * dsa,int ispub,unsigned int * pmagic)550 static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *pmagic)
551 	{
552 	int bitlen;
553 	bitlen = BN_num_bits(dsa->p);
554 	if ((bitlen & 7) || (BN_num_bits(dsa->q) != 160)
555 		|| (BN_num_bits(dsa->g) > bitlen))
556 		goto badkey;
557 	if (ispub)
558 		{
559 		if (BN_num_bits(dsa->pub_key) > bitlen)
560 			goto badkey;
561 		*pmagic = MS_DSS1MAGIC;
562 		}
563 	else
564 		{
565 		if (BN_num_bits(dsa->priv_key) > 160)
566 			goto badkey;
567 		*pmagic = MS_DSS2MAGIC;
568 		}
569 
570 	return bitlen;
571 	badkey:
572 	PEMerr(PEM_F_CHECK_BITLEN_DSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS);
573 	return 0;
574 	}
575 
check_bitlen_rsa(RSA * rsa,int ispub,unsigned int * pmagic)576 static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *pmagic)
577 	{
578 	int nbyte, hnbyte, bitlen;
579 	if (BN_num_bits(rsa->e) > 32)
580 		goto badkey;
581 	bitlen = BN_num_bits(rsa->n);
582 	nbyte = BN_num_bytes(rsa->n);
583 	hnbyte = (BN_num_bits(rsa->n) + 15) >> 4;
584 	if (ispub)
585 		{
586 		*pmagic = MS_RSA1MAGIC;
587 		return bitlen;
588 		}
589 	else
590 	{
591 		*pmagic = MS_RSA2MAGIC;
592 		/* For private key each component must fit within nbyte or
593 		 * hnbyte.
594 		 */
595 		if (BN_num_bytes(rsa->d) > nbyte)
596 			goto badkey;
597 		if ((BN_num_bytes(rsa->iqmp) > hnbyte)
598 			|| (BN_num_bytes(rsa->p) > hnbyte)
599 			|| (BN_num_bytes(rsa->q) > hnbyte)
600 			|| (BN_num_bytes(rsa->dmp1) > hnbyte)
601 			|| (BN_num_bytes(rsa->dmq1) > hnbyte))
602 			goto badkey;
603 	}
604 	return bitlen;
605 	badkey:
606 	PEMerr(PEM_F_CHECK_BITLEN_RSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS);
607 	return 0;
608 	}
609 
610 
write_rsa(unsigned char ** out,RSA * rsa,int ispub)611 static void write_rsa(unsigned char **out, RSA *rsa, int ispub)
612 	{
613 	int nbyte, hnbyte;
614 	nbyte = BN_num_bytes(rsa->n);
615 	hnbyte = (BN_num_bits(rsa->n) + 15) >> 4;
616 	write_lebn(out, rsa->e, 4);
617 	write_lebn(out, rsa->n, -1);
618 	if (ispub)
619 		return;
620 	write_lebn(out, rsa->p, hnbyte);
621 	write_lebn(out, rsa->q, hnbyte);
622 	write_lebn(out, rsa->dmp1, hnbyte);
623 	write_lebn(out, rsa->dmq1, hnbyte);
624 	write_lebn(out, rsa->iqmp, hnbyte);
625 	write_lebn(out, rsa->d, nbyte);
626 	}
627 
628 
write_dsa(unsigned char ** out,DSA * dsa,int ispub)629 static void write_dsa(unsigned char **out, DSA *dsa, int ispub)
630 	{
631 	int nbyte;
632 	nbyte = BN_num_bytes(dsa->p);
633 	write_lebn(out, dsa->p, nbyte);
634 	write_lebn(out, dsa->q, 20);
635 	write_lebn(out, dsa->g, nbyte);
636 	if (ispub)
637 		write_lebn(out, dsa->pub_key, nbyte);
638 	else
639 		write_lebn(out, dsa->priv_key, 20);
640 	/* Set "invalid" for seed structure values */
641 	memset(*out, 0xff, 24);
642 	*out += 24;
643 	return;
644 	}
645 
646 
i2b_PrivateKey_bio(BIO * out,EVP_PKEY * pk)647 int i2b_PrivateKey_bio(BIO *out, EVP_PKEY *pk)
648 	{
649 	return do_i2b_bio(out, pk, 0);
650 	}
651 
i2b_PublicKey_bio(BIO * out,EVP_PKEY * pk)652 int i2b_PublicKey_bio(BIO *out, EVP_PKEY *pk)
653 	{
654 	return do_i2b_bio(out, pk, 1);
655 	}
656 
657 #ifndef OPENSSL_NO_RC4
658 
do_PVK_header(const unsigned char ** in,unsigned int length,int skip_magic,unsigned int * psaltlen,unsigned int * pkeylen)659 static int do_PVK_header(const unsigned char **in, unsigned int length,
660 		int skip_magic,
661 	       	unsigned int *psaltlen, unsigned int *pkeylen)
662 
663 	{
664 	const unsigned char *p = *in;
665 	unsigned int pvk_magic, keytype, is_encrypted;
666 	if (skip_magic)
667 		{
668 		if (length < 20)
669 			{
670 			PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT);
671 			return 0;
672 			}
673 		length -= 20;
674 		}
675 	else
676 		{
677 		if (length < 24)
678 			{
679 			PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT);
680 			return 0;
681 			}
682 		length -= 24;
683 		pvk_magic = read_ledword(&p);
684 		if (pvk_magic != MS_PVKMAGIC)
685 			{
686 			PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_BAD_MAGIC_NUMBER);
687 			return 0;
688 			}
689 		}
690 	/* Skip reserved */
691 	p += 4;
692 	keytype = read_ledword(&p);
693 	is_encrypted = read_ledword(&p);
694 	*psaltlen = read_ledword(&p);
695 	*pkeylen = read_ledword(&p);
696 
697 	if (is_encrypted && !*psaltlen)
698 		{
699 		PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_INCONSISTENT_HEADER);
700 		return 0;
701 		}
702 
703 	*in = p;
704 	return 1;
705 	}
706 
derive_pvk_key(unsigned char * key,const unsigned char * salt,unsigned int saltlen,const unsigned char * pass,int passlen)707 static int derive_pvk_key(unsigned char *key,
708 			const unsigned char *salt, unsigned int saltlen,
709 			const unsigned char *pass, int passlen)
710 	{
711 	EVP_MD_CTX mctx;
712 	EVP_MD_CTX_init(&mctx);
713 	EVP_DigestInit_ex(&mctx, EVP_sha1(), NULL);
714 	EVP_DigestUpdate(&mctx, salt, saltlen);
715 	EVP_DigestUpdate(&mctx, pass, passlen);
716 	EVP_DigestFinal_ex(&mctx, key, NULL);
717 	EVP_MD_CTX_cleanup(&mctx);
718 	return 1;
719 	}
720 
721 
do_PVK_body(const unsigned char ** in,unsigned int saltlen,unsigned int keylen,pem_password_cb * cb,void * u)722 static EVP_PKEY *do_PVK_body(const unsigned char **in,
723 		unsigned int saltlen, unsigned int keylen,
724 		pem_password_cb *cb, void *u)
725 	{
726 	EVP_PKEY *ret = NULL;
727 	const unsigned char *p = *in;
728 	unsigned int magic;
729 	unsigned char *enctmp = NULL, *q;
730 	if (saltlen)
731 		{
732 		char psbuf[PEM_BUFSIZE];
733 		unsigned char keybuf[20];
734 		EVP_CIPHER_CTX cctx;
735 		int enctmplen, inlen;
736 		if (cb)
737 			inlen=cb(psbuf,PEM_BUFSIZE,0,u);
738 		else
739 			inlen=PEM_def_callback(psbuf,PEM_BUFSIZE,0,u);
740 		if (inlen <= 0)
741 			{
742 			PEMerr(PEM_F_DO_PVK_BODY,PEM_R_BAD_PASSWORD_READ);
743 			return NULL;
744 			}
745 		enctmp = OPENSSL_malloc(keylen + 8);
746 		if (!enctmp)
747 			{
748 			PEMerr(PEM_F_DO_PVK_BODY, ERR_R_MALLOC_FAILURE);
749 			return NULL;
750 			}
751 		if (!derive_pvk_key(keybuf, p, saltlen,
752 			    (unsigned char *)psbuf, inlen))
753 			return NULL;
754 		p += saltlen;
755 		/* Copy BLOBHEADER across, decrypt rest */
756 		memcpy(enctmp, p, 8);
757 		p += 8;
758 		inlen = keylen - 8;
759 		q = enctmp + 8;
760 		EVP_CIPHER_CTX_init(&cctx);
761 		EVP_DecryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, NULL);
762 		EVP_DecryptUpdate(&cctx, q, &enctmplen, p, inlen);
763 		EVP_DecryptFinal_ex(&cctx, q + enctmplen, &enctmplen);
764 		magic = read_ledword((const unsigned char **)&q);
765 		if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC)
766 			{
767 			q = enctmp + 8;
768 			memset(keybuf + 5, 0, 11);
769 			EVP_DecryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf,
770 								NULL);
771 			OPENSSL_cleanse(keybuf, 20);
772 			EVP_DecryptUpdate(&cctx, q, &enctmplen, p, inlen);
773 			EVP_DecryptFinal_ex(&cctx, q + enctmplen,
774 								&enctmplen);
775 			magic = read_ledword((const unsigned char **)&q);
776 			if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC)
777 				{
778 				EVP_CIPHER_CTX_cleanup(&cctx);
779 				PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_DECRYPT);
780 				goto err;
781 				}
782 			}
783 		else
784 			OPENSSL_cleanse(keybuf, 20);
785 		EVP_CIPHER_CTX_cleanup(&cctx);
786 		p = enctmp;
787 		}
788 
789 	ret = b2i_PrivateKey(&p, keylen);
790 	err:
791 	if (enctmp && saltlen)
792 		OPENSSL_free(enctmp);
793 	return ret;
794 	}
795 
796 
b2i_PVK_bio(BIO * in,pem_password_cb * cb,void * u)797 EVP_PKEY *b2i_PVK_bio(BIO *in, pem_password_cb *cb, void *u)
798 	{
799 	unsigned char pvk_hdr[24], *buf = NULL;
800 	const unsigned char *p;
801 	int buflen;
802 	EVP_PKEY *ret = NULL;
803 	unsigned int saltlen, keylen;
804 	if (BIO_read(in, pvk_hdr, 24) != 24)
805 		{
806 		PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT);
807 		return NULL;
808 		}
809 	p = pvk_hdr;
810 
811 	if (!do_PVK_header(&p, 24, 0, &saltlen, &keylen))
812 		return 0;
813 	buflen = (int) keylen + saltlen;
814 	buf = OPENSSL_malloc(buflen);
815 	if (!buf)
816 		{
817 		PEMerr(PEM_F_B2I_PVK_BIO, ERR_R_MALLOC_FAILURE);
818 		return 0;
819 		}
820 	p = buf;
821 	if (BIO_read(in, buf, buflen) != buflen)
822 		{
823 		PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT);
824 		goto err;
825 		}
826 	ret = do_PVK_body(&p, saltlen, keylen, cb, u);
827 
828 	err:
829 	if (buf)
830 		{
831 		OPENSSL_cleanse(buf, buflen);
832 		OPENSSL_free(buf);
833 		}
834 	return ret;
835 	}
836 
837 
838 
i2b_PVK(unsigned char ** out,EVP_PKEY * pk,int enclevel,pem_password_cb * cb,void * u)839 static int i2b_PVK(unsigned char **out, EVP_PKEY*pk, int enclevel,
840 		pem_password_cb *cb, void *u)
841 	{
842 	int outlen = 24, noinc, pklen;
843 	unsigned char *p, *salt = NULL;
844 	if (enclevel)
845 		outlen += PVK_SALTLEN;
846 	pklen = do_i2b(NULL, pk, 0);
847 	if (pklen < 0)
848 		return -1;
849 	outlen += pklen;
850 	if (!out)
851 		return outlen;
852 	if (*out)
853 		{
854 		p = *out;
855 		noinc = 0;
856 		}
857 	else
858 		{
859 		p = OPENSSL_malloc(outlen);
860 		if (!p)
861 			{
862 			PEMerr(PEM_F_I2B_PVK,ERR_R_MALLOC_FAILURE);
863 			return -1;
864 			}
865 		*out = p;
866 		noinc = 1;
867 		}
868 
869 	write_ledword(&p, MS_PVKMAGIC);
870 	write_ledword(&p, 0);
871 	if (pk->type == EVP_PKEY_DSA)
872 		write_ledword(&p, MS_KEYTYPE_SIGN);
873 	else
874 		write_ledword(&p, MS_KEYTYPE_KEYX);
875 	write_ledword(&p, enclevel ? 1 : 0);
876 	write_ledword(&p, enclevel ? PVK_SALTLEN: 0);
877 	write_ledword(&p, pklen);
878 	if (enclevel)
879 		{
880 		if (RAND_bytes(p, PVK_SALTLEN) <= 0)
881 			goto error;
882 		salt = p;
883 		p += PVK_SALTLEN;
884 		}
885 	do_i2b(&p, pk, 0);
886 	if (enclevel == 0)
887 		return outlen;
888 	else
889 		{
890 		char psbuf[PEM_BUFSIZE];
891 		unsigned char keybuf[20];
892 		EVP_CIPHER_CTX cctx;
893 		int enctmplen, inlen;
894 		if (cb)
895 			inlen=cb(psbuf,PEM_BUFSIZE,1,u);
896 		else
897 			inlen=PEM_def_callback(psbuf,PEM_BUFSIZE,1,u);
898 		if (inlen <= 0)
899 			{
900 			PEMerr(PEM_F_I2B_PVK,PEM_R_BAD_PASSWORD_READ);
901 			goto error;
902 			}
903 		if (!derive_pvk_key(keybuf, salt, PVK_SALTLEN,
904 			    (unsigned char *)psbuf, inlen))
905 			goto error;
906 		if (enclevel == 1)
907 			memset(keybuf + 5, 0, 11);
908 		p = salt + PVK_SALTLEN + 8;
909 		EVP_CIPHER_CTX_init(&cctx);
910 		EVP_EncryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, NULL);
911 		OPENSSL_cleanse(keybuf, 20);
912 		EVP_DecryptUpdate(&cctx, p, &enctmplen, p, pklen - 8);
913 		EVP_DecryptFinal_ex(&cctx, p + enctmplen, &enctmplen);
914 		EVP_CIPHER_CTX_cleanup(&cctx);
915 		}
916 	return outlen;
917 
918 	error:
919 	return -1;
920 	}
921 
i2b_PVK_bio(BIO * out,EVP_PKEY * pk,int enclevel,pem_password_cb * cb,void * u)922 int i2b_PVK_bio(BIO *out, EVP_PKEY *pk, int enclevel,
923 		pem_password_cb *cb, void *u)
924 	{
925 	unsigned char *tmp = NULL;
926 	int outlen, wrlen;
927 	outlen = i2b_PVK(&tmp, pk, enclevel, cb, u);
928 	if (outlen < 0)
929 		return -1;
930 	wrlen = BIO_write(out, tmp, outlen);
931 	OPENSSL_free(tmp);
932 	if (wrlen == outlen)
933 		{
934 		PEMerr(PEM_F_I2B_PVK_BIO, PEM_R_BIO_WRITE_FAILURE);
935 		return outlen;
936 		}
937 	return -1;
938 	}
939 
940 #endif
941 
942 #endif
943