1 /*
2 * ARM virtual CPU header
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
19 */
20 #ifndef CPU_ARM_H
21 #define CPU_ARM_H
22
23 #define TARGET_LONG_BITS 32
24
25 #define ELF_MACHINE EM_ARM
26
27 #define CPUState struct CPUARMState
28
29 #include "cpu-defs.h"
30
31 #include "softfloat.h"
32
33 #define TARGET_HAS_ICE 1
34
35 #define EXCP_UDEF 1 /* undefined instruction */
36 #define EXCP_SWI 2 /* software interrupt */
37 #define EXCP_PREFETCH_ABORT 3
38 #define EXCP_DATA_ABORT 4
39 #define EXCP_IRQ 5
40 #define EXCP_FIQ 6
41 #define EXCP_BKPT 7
42 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
43 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
44
45 #define ARMV7M_EXCP_RESET 1
46 #define ARMV7M_EXCP_NMI 2
47 #define ARMV7M_EXCP_HARD 3
48 #define ARMV7M_EXCP_MEM 4
49 #define ARMV7M_EXCP_BUS 5
50 #define ARMV7M_EXCP_USAGE 6
51 #define ARMV7M_EXCP_SVC 11
52 #define ARMV7M_EXCP_DEBUG 12
53 #define ARMV7M_EXCP_PENDSV 14
54 #define ARMV7M_EXCP_SYSTICK 15
55
56 typedef void ARMWriteCPFunc(void *opaque, int cp_info,
57 int srcreg, int operand, uint32_t value);
58 typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
59 int dstreg, int operand);
60
61 struct arm_boot_info;
62
63 #define NB_MMU_MODES 2
64
65 /* We currently assume float and double are IEEE single and double
66 precision respectively.
67 Doing runtime conversions is tricky because VFP registers may contain
68 integer values (eg. as the result of a FTOSI instruction).
69 s<2n> maps to the least significant half of d<n>
70 s<2n+1> maps to the most significant half of d<n>
71 */
72
73 typedef struct CPUARMState {
74 /* Regs for current mode. */
75 uint32_t regs[16];
76 /* Frequently accessed CPSR bits are stored separately for efficiently.
77 This contains all the other bits. Use cpsr_{read,write} to access
78 the whole CPSR. */
79 uint32_t uncached_cpsr;
80 uint32_t spsr;
81
82 /* Banked registers. */
83 uint32_t banked_spsr[6];
84 uint32_t banked_r13[6];
85 uint32_t banked_r14[6];
86
87 /* These hold r8-r12. */
88 uint32_t usr_regs[5];
89 uint32_t fiq_regs[5];
90
91 /* cpsr flag cache for faster execution */
92 uint32_t CF; /* 0 or 1 */
93 uint32_t VF; /* V is the bit 31. All other bits are undefined */
94 uint32_t NF; /* N is bit 31. All other bits are undefined. */
95 uint32_t ZF; /* Z set if zero. */
96 uint32_t QF; /* 0 or 1 */
97 uint32_t GE; /* cpsr[19:16] */
98 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
99 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
100
101 /* System control coprocessor (cp15) */
102 struct {
103 uint32_t c0_cpuid;
104 uint32_t c0_cachetype;
105 uint32_t c0_ccsid[16]; /* Cache size. */
106 uint32_t c0_clid; /* Cache level. */
107 uint32_t c0_cssel; /* Cache size selection. */
108 uint32_t c0_c1[8]; /* Feature registers. */
109 uint32_t c0_c2[8]; /* Instruction set registers. */
110 uint32_t c1_sys; /* System control register. */
111 uint32_t c1_coproc; /* Coprocessor access register. */
112 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
113 uint32_t c2_base0; /* MMU translation table base 0. */
114 uint32_t c2_base1; /* MMU translation table base 1. */
115 uint32_t c2_control; /* MMU translation table base control. */
116 uint32_t c2_mask; /* MMU translation table base selection mask. */
117 uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
118 uint32_t c2_data; /* MPU data cachable bits. */
119 uint32_t c2_insn; /* MPU instruction cachable bits. */
120 uint32_t c3; /* MMU domain access control register
121 MPU write buffer control. */
122 uint32_t c5_insn; /* Fault status registers. */
123 uint32_t c5_data;
124 uint32_t c6_region[8]; /* MPU base/size registers. */
125 uint32_t c6_insn; /* Fault address registers. */
126 uint32_t c6_data;
127 uint32_t c9_insn; /* Cache lockdown registers. */
128 uint32_t c9_data;
129 uint32_t c13_fcse; /* FCSE PID. */
130 uint32_t c13_context; /* Context ID. */
131 uint32_t c13_tls1; /* User RW Thread register. */
132 uint32_t c13_tls2; /* User RO Thread register. */
133 uint32_t c13_tls3; /* Privileged Thread register. */
134 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
135 uint32_t c15_ticonfig; /* TI925T configuration byte. */
136 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
137 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
138 uint32_t c15_threadid; /* TI debugger thread-ID. */
139 } cp15;
140
141 struct {
142 uint32_t other_sp;
143 uint32_t vecbase;
144 uint32_t basepri;
145 uint32_t control;
146 int current_sp;
147 int exception;
148 int pending_exception;
149 void *nvic;
150 } v7m;
151
152 /* Coprocessor IO used by peripherals */
153 struct {
154 ARMReadCPFunc *cp_read;
155 ARMWriteCPFunc *cp_write;
156 void *opaque;
157 } cp[15];
158
159 /* Thumb-2 EE state. */
160 uint32_t teecr;
161 uint32_t teehbr;
162
163 /* Internal CPU feature flags. */
164 uint32_t features;
165
166 /* Callback for vectored interrupt controller. */
167 int (*get_irq_vector)(struct CPUARMState *);
168 void *irq_opaque;
169
170 /* VFP coprocessor state. */
171 struct {
172 float64 regs[32];
173
174 uint32_t xregs[16];
175 /* We store these fpcsr fields separately for convenience. */
176 int vec_len;
177 int vec_stride;
178
179 /* scratch space when Tn are not sufficient. */
180 uint32_t scratch[8];
181
182 float_status fp_status;
183 } vfp;
184 #if defined(CONFIG_USER_ONLY)
185 struct mmon_state *mmon_entry;
186 #else
187 uint32_t mmon_addr;
188 #endif
189
190 /* iwMMXt coprocessor state. */
191 struct {
192 uint64_t regs[16];
193 uint64_t val;
194
195 uint32_t cregs[16];
196 } iwmmxt;
197
198 #if defined(CONFIG_USER_ONLY)
199 /* For usermode syscall translation. */
200 int eabi;
201 #endif
202
203 CPU_COMMON
204
205 /* These fields after the common ones so they are preserved on reset. */
206 struct arm_boot_info *boot_info;
207 } CPUARMState;
208
209 CPUARMState *cpu_arm_init(const char *cpu_model);
210 void arm_translate_init(void);
211 int cpu_arm_exec(CPUARMState *s);
212 void cpu_arm_close(CPUARMState *s);
213 void do_interrupt(CPUARMState *);
214 void switch_mode(CPUARMState *, int);
215 uint32_t do_arm_semihosting(CPUARMState *env);
216
217 /* you can call this signal handler from your SIGBUS and SIGSEGV
218 signal handlers to inform the virtual CPU of exceptions. non zero
219 is returned if the signal was handled by the virtual CPU. */
220 int cpu_arm_signal_handler(int host_signum, void *pinfo,
221 void *puc);
222 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
223 int mmu_idx, int is_softmuu);
224
225 void cpu_lock(void);
226 void cpu_unlock(void);
cpu_set_tls(CPUARMState * env,target_ulong newtls)227 static inline void cpu_set_tls(CPUARMState *env, target_ulong newtls)
228 {
229 env->cp15.c13_tls2 = newtls;
230 }
231
232 #define CPSR_M (0x1f)
233 #define CPSR_T (1 << 5)
234 #define CPSR_F (1 << 6)
235 #define CPSR_I (1 << 7)
236 #define CPSR_A (1 << 8)
237 #define CPSR_E (1 << 9)
238 #define CPSR_IT_2_7 (0xfc00)
239 #define CPSR_GE (0xf << 16)
240 #define CPSR_RESERVED (0xf << 20)
241 #define CPSR_J (1 << 24)
242 #define CPSR_IT_0_1 (3 << 25)
243 #define CPSR_Q (1 << 27)
244 #define CPSR_V (1 << 28)
245 #define CPSR_C (1 << 29)
246 #define CPSR_Z (1 << 30)
247 #define CPSR_N (1 << 31)
248 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
249
250 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
251 #define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
252 /* Bits writable in user mode. */
253 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
254 /* Execution state bits. MRS read as zero, MSR writes ignored. */
255 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
256
257 /* Return the current CPSR value. */
258 uint32_t cpsr_read(CPUARMState *env);
259 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
260 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
261
262 /* Return the current xPSR value. */
xpsr_read(CPUARMState * env)263 static inline uint32_t xpsr_read(CPUARMState *env)
264 {
265 int ZF;
266 ZF = (env->ZF == 0);
267 return (env->NF & 0x80000000) | (ZF << 30)
268 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
269 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
270 | ((env->condexec_bits & 0xfc) << 8)
271 | env->v7m.exception;
272 }
273
274 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
xpsr_write(CPUARMState * env,uint32_t val,uint32_t mask)275 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
276 {
277 if (mask & CPSR_NZCV) {
278 env->ZF = (~val) & CPSR_Z;
279 env->NF = val;
280 env->CF = (val >> 29) & 1;
281 env->VF = (val << 3) & 0x80000000;
282 }
283 if (mask & CPSR_Q)
284 env->QF = ((val & CPSR_Q) != 0);
285 if (mask & (1 << 24))
286 env->thumb = ((val & (1 << 24)) != 0);
287 if (mask & CPSR_IT_0_1) {
288 env->condexec_bits &= ~3;
289 env->condexec_bits |= (val >> 25) & 3;
290 }
291 if (mask & CPSR_IT_2_7) {
292 env->condexec_bits &= 3;
293 env->condexec_bits |= (val >> 8) & 0xfc;
294 }
295 if (mask & 0x1ff) {
296 env->v7m.exception = val & 0x1ff;
297 }
298 }
299
300 enum arm_cpu_mode {
301 ARM_CPU_MODE_USR = 0x10,
302 ARM_CPU_MODE_FIQ = 0x11,
303 ARM_CPU_MODE_IRQ = 0x12,
304 ARM_CPU_MODE_SVC = 0x13,
305 ARM_CPU_MODE_ABT = 0x17,
306 ARM_CPU_MODE_UND = 0x1b,
307 ARM_CPU_MODE_SYS = 0x1f
308 };
309
310 /* VFP system registers. */
311 #define ARM_VFP_FPSID 0
312 #define ARM_VFP_FPSCR 1
313 #define ARM_VFP_MVFR1 6
314 #define ARM_VFP_MVFR0 7
315 #define ARM_VFP_FPEXC 8
316 #define ARM_VFP_FPINST 9
317 #define ARM_VFP_FPINST2 10
318
319 /* iwMMXt coprocessor control registers. */
320 #define ARM_IWMMXT_wCID 0
321 #define ARM_IWMMXT_wCon 1
322 #define ARM_IWMMXT_wCSSF 2
323 #define ARM_IWMMXT_wCASF 3
324 #define ARM_IWMMXT_wCGR0 8
325 #define ARM_IWMMXT_wCGR1 9
326 #define ARM_IWMMXT_wCGR2 10
327 #define ARM_IWMMXT_wCGR3 11
328
329 enum arm_features {
330 ARM_FEATURE_VFP,
331 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
332 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
333 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
334 ARM_FEATURE_V6,
335 ARM_FEATURE_V6K,
336 ARM_FEATURE_V7,
337 ARM_FEATURE_THUMB2,
338 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
339 ARM_FEATURE_VFP3,
340 ARM_FEATURE_NEON,
341 ARM_FEATURE_DIV,
342 ARM_FEATURE_M, /* Microcontroller profile. */
343 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
344 ARM_FEATURE_THUMB2EE
345 };
346
arm_feature(CPUARMState * env,int feature)347 static inline int arm_feature(CPUARMState *env, int feature)
348 {
349 return (env->features & (1u << feature)) != 0;
350 }
351
352 void arm_cpu_list(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
353
354 /* Interface between CPU and Interrupt controller. */
355 void armv7m_nvic_set_pending(void *opaque, int irq);
356 int armv7m_nvic_acknowledge_irq(void *opaque);
357 void armv7m_nvic_complete_irq(void *opaque, int irq);
358
359 void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
360 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
361 void *opaque);
362
363 /* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
364 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
365 conventional cores (ie. Application or Realtime profile). */
366
367 #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
368 #define ARM_CPUID(env) (env->cp15.c0_cpuid)
369
370 #define ARM_CPUID_ARM1026 0x4106a262
371 #define ARM_CPUID_ARM926 0x41069265
372 #define ARM_CPUID_ARM946 0x41059461
373 #define ARM_CPUID_TI915T 0x54029152
374 #define ARM_CPUID_TI925T 0x54029252
375 #define ARM_CPUID_PXA250 0x69052100
376 #define ARM_CPUID_PXA255 0x69052d00
377 #define ARM_CPUID_PXA260 0x69052903
378 #define ARM_CPUID_PXA261 0x69052d05
379 #define ARM_CPUID_PXA262 0x69052d06
380 #define ARM_CPUID_PXA270 0x69054110
381 #define ARM_CPUID_PXA270_A0 0x69054110
382 #define ARM_CPUID_PXA270_A1 0x69054111
383 #define ARM_CPUID_PXA270_B0 0x69054112
384 #define ARM_CPUID_PXA270_B1 0x69054113
385 #define ARM_CPUID_PXA270_C0 0x69054114
386 #define ARM_CPUID_PXA270_C5 0x69054117
387 #define ARM_CPUID_ARM1136 0x4117b363
388 #define ARM_CPUID_ARM1136_R2 0x4107b362
389 #define ARM_CPUID_ARM11MPCORE 0x410fb022
390 #define ARM_CPUID_CORTEXA8 0x410fc080
391 #define ARM_CPUID_CORTEXM3 0x410fc231
392 #define ARM_CPUID_ANY 0xffffffff
393
394 #if defined(CONFIG_USER_ONLY)
395 #define TARGET_PAGE_BITS 12
396 #else
397 /* The ARM MMU allows 1k pages. */
398 /* ??? Linux doesn't actually use these, and they're deprecated in recent
399 architecture revisions. Maybe a configure option to disable them. */
400 #define TARGET_PAGE_BITS 10
401 #endif
402
403 #define cpu_init cpu_arm_init
404 #define cpu_exec cpu_arm_exec
405 #define cpu_gen_code cpu_arm_gen_code
406 #define cpu_signal_handler cpu_arm_signal_handler
407 #define cpu_list arm_cpu_list
408
409 #define CPU_SAVE_VERSION 1
410
411 /* MMU modes definitions */
412 #define MMU_MODE0_SUFFIX _kernel
413 #define MMU_MODE1_SUFFIX _user
414 #define MMU_USER_IDX 1
cpu_mmu_index(CPUState * env)415 static inline int cpu_mmu_index (CPUState *env)
416 {
417 return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0;
418 }
419
is_cpu_user(CPUState * env)420 static inline int is_cpu_user (CPUState *env)
421 {
422 #ifdef CONFIG_USER_ONLY
423 return 1;
424 #else
425 return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR;
426 #endif // CONFIG_USER_ONLY
427 }
428
429 #if defined(CONFIG_USER_ONLY)
cpu_clone_regs(CPUState * env,target_ulong newsp)430 static inline void cpu_clone_regs(CPUState *env, target_ulong newsp)
431 {
432 if (newsp)
433 env->regs[13] = newsp;
434 env->regs[0] = 0;
435 }
436 #endif
437
438 #include "cpu-all.h"
439 #include "exec-all.h"
440
cpu_pc_from_tb(CPUState * env,TranslationBlock * tb)441 static inline void cpu_pc_from_tb(CPUState *env, TranslationBlock *tb)
442 {
443 env->regs[15] = tb->pc;
444 }
445
cpu_get_tb_cpu_state(CPUState * env,target_ulong * pc,target_ulong * cs_base,int * flags)446 static inline void cpu_get_tb_cpu_state(CPUState *env, target_ulong *pc,
447 target_ulong *cs_base, int *flags)
448 {
449 *pc = env->regs[15];
450 *cs_base = 0;
451 *flags = env->thumb | (env->vfp.vec_len << 1)
452 | (env->vfp.vec_stride << 4) | (env->condexec_bits << 8);
453 if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
454 *flags |= (1 << 6);
455 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
456 *flags |= (1 << 7);
457 }
458
459 #endif
460