1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 /*
18 * Main interpreter entry point and support functions.
19 *
20 * The entry point selects the "standard" or "debug" interpreter and
21 * facilitates switching between them. The standard interpreter may
22 * use the "fast" or "portable" implementation.
23 *
24 * Some debugger support functions are included here.
25 */
26 #include "Dalvik.h"
27 #include "interp/InterpDefs.h"
28
29
30 /*
31 * ===========================================================================
32 * Debugger support
33 * ===========================================================================
34 */
35
36 // fwd
37 static BreakpointSet* dvmBreakpointSetAlloc(void);
38 static void dvmBreakpointSetFree(BreakpointSet* pSet);
39
40 /*
41 * Initialize global breakpoint structures.
42 */
dvmBreakpointStartup(void)43 bool dvmBreakpointStartup(void)
44 {
45 gDvm.breakpointSet = dvmBreakpointSetAlloc();
46 return (gDvm.breakpointSet != NULL);
47 }
48
49 /*
50 * Free resources.
51 */
dvmBreakpointShutdown(void)52 void dvmBreakpointShutdown(void)
53 {
54 dvmBreakpointSetFree(gDvm.breakpointSet);
55 }
56
57
58 /*
59 * This represents a breakpoint inserted in the instruction stream.
60 *
61 * The debugger may ask us to create the same breakpoint multiple times.
62 * We only remove the breakpoint when the last instance is cleared.
63 */
64 typedef struct {
65 Method* method; /* method we're associated with */
66 u2* addr; /* absolute memory address */
67 u1 originalOpCode; /* original 8-bit opcode value */
68 int setCount; /* #of times this breakpoint was set */
69 } Breakpoint;
70
71 /*
72 * Set of breakpoints.
73 */
74 struct BreakpointSet {
75 /* grab lock before reading or writing anything else in here */
76 pthread_mutex_t lock;
77
78 /* vector of breakpoint structures */
79 int alloc;
80 int count;
81 Breakpoint* breakpoints;
82 };
83
84 /*
85 * Initialize a BreakpointSet. Initially empty.
86 */
dvmBreakpointSetAlloc(void)87 static BreakpointSet* dvmBreakpointSetAlloc(void)
88 {
89 BreakpointSet* pSet = (BreakpointSet*) calloc(1, sizeof(*pSet));
90
91 dvmInitMutex(&pSet->lock);
92 /* leave the rest zeroed -- will alloc on first use */
93
94 return pSet;
95 }
96
97 /*
98 * Free storage associated with a BreakpointSet.
99 */
dvmBreakpointSetFree(BreakpointSet * pSet)100 static void dvmBreakpointSetFree(BreakpointSet* pSet)
101 {
102 if (pSet == NULL)
103 return;
104
105 free(pSet->breakpoints);
106 free(pSet);
107 }
108
109 /*
110 * Lock the breakpoint set.
111 *
112 * It's not currently necessary to switch to VMWAIT in the event of
113 * contention, because nothing in here can block. However, it's possible
114 * that the bytecode-updater code could become fancier in the future, so
115 * we do the trylock dance as a bit of future-proofing.
116 */
dvmBreakpointSetLock(BreakpointSet * pSet)117 static void dvmBreakpointSetLock(BreakpointSet* pSet)
118 {
119 if (dvmTryLockMutex(&pSet->lock) != 0) {
120 Thread* self = dvmThreadSelf();
121 ThreadStatus oldStatus = dvmChangeStatus(self, THREAD_VMWAIT);
122 dvmLockMutex(&pSet->lock);
123 dvmChangeStatus(self, oldStatus);
124 }
125 }
126
127 /*
128 * Unlock the breakpoint set.
129 */
dvmBreakpointSetUnlock(BreakpointSet * pSet)130 static void dvmBreakpointSetUnlock(BreakpointSet* pSet)
131 {
132 dvmUnlockMutex(&pSet->lock);
133 }
134
135 /*
136 * Return the #of breakpoints.
137 */
dvmBreakpointSetCount(const BreakpointSet * pSet)138 static int dvmBreakpointSetCount(const BreakpointSet* pSet)
139 {
140 return pSet->count;
141 }
142
143 /*
144 * See if we already have an entry for this address.
145 *
146 * The BreakpointSet's lock must be acquired before calling here.
147 *
148 * Returns the index of the breakpoint entry, or -1 if not found.
149 */
dvmBreakpointSetFind(const BreakpointSet * pSet,const u2 * addr)150 static int dvmBreakpointSetFind(const BreakpointSet* pSet, const u2* addr)
151 {
152 int i;
153
154 for (i = 0; i < pSet->count; i++) {
155 Breakpoint* pBreak = &pSet->breakpoints[i];
156 if (pBreak->addr == addr)
157 return i;
158 }
159
160 return -1;
161 }
162
163 /*
164 * Retrieve the opcode that was originally at the specified location.
165 *
166 * The BreakpointSet's lock must be acquired before calling here.
167 *
168 * Returns "true" with the opcode in *pOrig on success.
169 */
dvmBreakpointSetOriginalOpCode(const BreakpointSet * pSet,const u2 * addr,u1 * pOrig)170 static bool dvmBreakpointSetOriginalOpCode(const BreakpointSet* pSet,
171 const u2* addr, u1* pOrig)
172 {
173 int idx = dvmBreakpointSetFind(pSet, addr);
174 if (idx < 0)
175 return false;
176
177 *pOrig = pSet->breakpoints[idx].originalOpCode;
178 return true;
179 }
180
181 /*
182 * Check the opcode. If it's a "magic" NOP, indicating the start of
183 * switch or array data in the instruction stream, we don't want to set
184 * a breakpoint.
185 *
186 * This can happen because the line number information dx generates
187 * associates the switch data with the switch statement's line number,
188 * and some debuggers put breakpoints at every address associated with
189 * a given line. The result is that the breakpoint stomps on the NOP
190 * instruction that doubles as a data table magic number, and an explicit
191 * check in the interpreter results in an exception being thrown.
192 *
193 * We don't want to simply refuse to add the breakpoint to the table,
194 * because that confuses the housekeeping. We don't want to reject the
195 * debugger's event request, and we want to be sure that there's exactly
196 * one un-set operation for every set op.
197 */
instructionIsMagicNop(const u2 * addr)198 static bool instructionIsMagicNop(const u2* addr)
199 {
200 u2 curVal = *addr;
201 return ((curVal & 0xff) == OP_NOP && (curVal >> 8) != 0);
202 }
203
204 /*
205 * Add a breakpoint at a specific address. If the address is already
206 * present in the table, this just increments the count.
207 *
208 * For a new entry, this will extract and preserve the current opcode from
209 * the instruction stream, and replace it with a breakpoint opcode.
210 *
211 * The BreakpointSet's lock must be acquired before calling here.
212 *
213 * Returns "true" on success.
214 */
dvmBreakpointSetAdd(BreakpointSet * pSet,Method * method,unsigned int instrOffset)215 static bool dvmBreakpointSetAdd(BreakpointSet* pSet, Method* method,
216 unsigned int instrOffset)
217 {
218 const int kBreakpointGrowth = 10;
219 const u2* addr = method->insns + instrOffset;
220 int idx = dvmBreakpointSetFind(pSet, addr);
221 Breakpoint* pBreak;
222
223 if (idx < 0) {
224 if (pSet->count == pSet->alloc) {
225 int newSize = pSet->alloc + kBreakpointGrowth;
226 Breakpoint* newVec;
227
228 LOGV("+++ increasing breakpoint set size to %d\n", newSize);
229
230 /* pSet->breakpoints will be NULL on first entry */
231 newVec = realloc(pSet->breakpoints, newSize * sizeof(Breakpoint));
232 if (newVec == NULL)
233 return false;
234
235 pSet->breakpoints = newVec;
236 pSet->alloc = newSize;
237 }
238
239 pBreak = &pSet->breakpoints[pSet->count++];
240 pBreak->method = method;
241 pBreak->addr = (u2*)addr;
242 pBreak->originalOpCode = *(u1*)addr;
243 pBreak->setCount = 1;
244
245 /*
246 * Change the opcode. We must ensure that the BreakpointSet
247 * updates happen before we change the opcode.
248 *
249 * If the method has not been verified, we do NOT insert the
250 * breakpoint yet, since that will screw up the verifier. The
251 * debugger is allowed to insert breakpoints in unverified code,
252 * but since we don't execute unverified code we don't need to
253 * alter the bytecode yet.
254 *
255 * The class init code will "flush" all pending opcode writes
256 * before verification completes.
257 */
258 assert(*(u1*)addr != OP_BREAKPOINT);
259 if (dvmIsClassVerified(method->clazz)) {
260 LOGV("Class %s verified, adding breakpoint at %p\n",
261 method->clazz->descriptor, addr);
262 if (instructionIsMagicNop(addr)) {
263 LOGV("Refusing to set breakpoint on %04x at %s.%s + 0x%x\n",
264 *addr, method->clazz->descriptor, method->name,
265 instrOffset);
266 } else {
267 ANDROID_MEMBAR_FULL();
268 dvmDexChangeDex1(method->clazz->pDvmDex, (u1*)addr,
269 OP_BREAKPOINT);
270 }
271 } else {
272 LOGV("Class %s NOT verified, deferring breakpoint at %p\n",
273 method->clazz->descriptor, addr);
274 }
275 } else {
276 /*
277 * Breakpoint already exists, just increase the count.
278 */
279 pBreak = &pSet->breakpoints[idx];
280 pBreak->setCount++;
281 }
282
283 return true;
284 }
285
286 /*
287 * Remove one instance of the specified breakpoint. When the count
288 * reaches zero, the entry is removed from the table, and the original
289 * opcode is restored.
290 *
291 * The BreakpointSet's lock must be acquired before calling here.
292 */
dvmBreakpointSetRemove(BreakpointSet * pSet,Method * method,unsigned int instrOffset)293 static void dvmBreakpointSetRemove(BreakpointSet* pSet, Method* method,
294 unsigned int instrOffset)
295 {
296 const u2* addr = method->insns + instrOffset;
297 int idx = dvmBreakpointSetFind(pSet, addr);
298
299 if (idx < 0) {
300 /* breakpoint not found in set -- unexpected */
301 if (*(u1*)addr == OP_BREAKPOINT) {
302 LOGE("Unable to restore breakpoint opcode (%s.%s +0x%x)\n",
303 method->clazz->descriptor, method->name, instrOffset);
304 dvmAbort();
305 } else {
306 LOGW("Breakpoint was already restored? (%s.%s +0x%x)\n",
307 method->clazz->descriptor, method->name, instrOffset);
308 }
309 } else {
310 Breakpoint* pBreak = &pSet->breakpoints[idx];
311 if (pBreak->setCount == 1) {
312 /*
313 * Must restore opcode before removing set entry.
314 *
315 * If the breakpoint was never flushed, we could be ovewriting
316 * a value with the same value. Not a problem, though we
317 * could end up causing a copy-on-write here when we didn't
318 * need to. (Not worth worrying about.)
319 */
320 dvmDexChangeDex1(method->clazz->pDvmDex, (u1*)addr,
321 pBreak->originalOpCode);
322 ANDROID_MEMBAR_FULL();
323
324 if (idx != pSet->count-1) {
325 /* shift down */
326 memmove(&pSet->breakpoints[idx], &pSet->breakpoints[idx+1],
327 (pSet->count-1 - idx) * sizeof(pSet->breakpoints[0]));
328 }
329 pSet->count--;
330 pSet->breakpoints[pSet->count].addr = (u2*) 0xdecadead; // debug
331 } else {
332 pBreak->setCount--;
333 assert(pBreak->setCount > 0);
334 }
335 }
336 }
337
338 /*
339 * Flush any breakpoints associated with methods in "clazz". We want to
340 * change the opcode, which might not have happened when the breakpoint
341 * was initially set because the class was in the process of being
342 * verified.
343 *
344 * The BreakpointSet's lock must be acquired before calling here.
345 */
dvmBreakpointSetFlush(BreakpointSet * pSet,ClassObject * clazz)346 static void dvmBreakpointSetFlush(BreakpointSet* pSet, ClassObject* clazz)
347 {
348 int i;
349 for (i = 0; i < pSet->count; i++) {
350 Breakpoint* pBreak = &pSet->breakpoints[i];
351 if (pBreak->method->clazz == clazz) {
352 /*
353 * The breakpoint is associated with a method in this class.
354 * It might already be there or it might not; either way,
355 * flush it out.
356 */
357 LOGV("Flushing breakpoint at %p for %s\n",
358 pBreak->addr, clazz->descriptor);
359 if (instructionIsMagicNop(pBreak->addr)) {
360 LOGV("Refusing to flush breakpoint on %04x at %s.%s + 0x%x\n",
361 *pBreak->addr, pBreak->method->clazz->descriptor,
362 pBreak->method->name, pBreak->addr - pBreak->method->insns);
363 } else {
364 dvmDexChangeDex1(clazz->pDvmDex, (u1*)pBreak->addr,
365 OP_BREAKPOINT);
366 }
367 }
368 }
369 }
370
371
372 /*
373 * Do any debugger-attach-time initialization.
374 */
dvmInitBreakpoints(void)375 void dvmInitBreakpoints(void)
376 {
377 /* quick sanity check */
378 BreakpointSet* pSet = gDvm.breakpointSet;
379 dvmBreakpointSetLock(pSet);
380 if (dvmBreakpointSetCount(pSet) != 0) {
381 LOGW("WARNING: %d leftover breakpoints\n", dvmBreakpointSetCount(pSet));
382 /* generally not good, but we can keep going */
383 }
384 dvmBreakpointSetUnlock(pSet);
385 }
386
387 /*
388 * Add an address to the list, putting it in the first non-empty slot.
389 *
390 * Sometimes the debugger likes to add two entries for one breakpoint.
391 * We add two entries here, so that we get the right behavior when it's
392 * removed twice.
393 *
394 * This will only be run from the JDWP thread, and it will happen while
395 * we are updating the event list, which is synchronized. We're guaranteed
396 * to be the only one adding entries, and the lock ensures that nobody
397 * will be trying to remove them while we're in here.
398 *
399 * "addr" is the absolute address of the breakpoint bytecode.
400 */
dvmAddBreakAddr(Method * method,unsigned int instrOffset)401 void dvmAddBreakAddr(Method* method, unsigned int instrOffset)
402 {
403 BreakpointSet* pSet = gDvm.breakpointSet;
404 dvmBreakpointSetLock(pSet);
405 dvmBreakpointSetAdd(pSet, method, instrOffset);
406 dvmBreakpointSetUnlock(pSet);
407 }
408
409 /*
410 * Remove an address from the list by setting the entry to NULL.
411 *
412 * This can be called from the JDWP thread (because the debugger has
413 * cancelled the breakpoint) or from an event thread (because it's a
414 * single-shot breakpoint, e.g. "run to line"). We only get here as
415 * the result of removing an entry from the event list, which is
416 * synchronized, so it should not be possible for two threads to be
417 * updating breakpoints at the same time.
418 */
dvmClearBreakAddr(Method * method,unsigned int instrOffset)419 void dvmClearBreakAddr(Method* method, unsigned int instrOffset)
420 {
421 BreakpointSet* pSet = gDvm.breakpointSet;
422 dvmBreakpointSetLock(pSet);
423 dvmBreakpointSetRemove(pSet, method, instrOffset);
424 dvmBreakpointSetUnlock(pSet);
425 }
426
427 /*
428 * Get the original opcode from under a breakpoint.
429 *
430 * On SMP hardware it's possible one core might try to execute a breakpoint
431 * after another core has cleared it. We need to handle the case where
432 * there's no entry in the breakpoint set. (The memory barriers in the
433 * locks and in the breakpoint update code should ensure that, once we've
434 * observed the absence of a breakpoint entry, we will also now observe
435 * the restoration of the original opcode. The fact that we're holding
436 * the lock prevents other threads from confusing things further.)
437 */
dvmGetOriginalOpCode(const u2 * addr)438 u1 dvmGetOriginalOpCode(const u2* addr)
439 {
440 BreakpointSet* pSet = gDvm.breakpointSet;
441 u1 orig = 0;
442
443 dvmBreakpointSetLock(pSet);
444 if (!dvmBreakpointSetOriginalOpCode(pSet, addr, &orig)) {
445 orig = *(u1*)addr;
446 if (orig == OP_BREAKPOINT) {
447 LOGE("GLITCH: can't find breakpoint, opcode is still set\n");
448 dvmAbort();
449 }
450 }
451 dvmBreakpointSetUnlock(pSet);
452
453 return orig;
454 }
455
456 /*
457 * Flush any breakpoints associated with methods in "clazz".
458 *
459 * We don't want to modify the bytecode of a method before the verifier
460 * gets a chance to look at it, so we postpone opcode replacement until
461 * after verification completes.
462 */
dvmFlushBreakpoints(ClassObject * clazz)463 void dvmFlushBreakpoints(ClassObject* clazz)
464 {
465 BreakpointSet* pSet = gDvm.breakpointSet;
466
467 if (pSet == NULL)
468 return;
469
470 assert(dvmIsClassVerified(clazz));
471 dvmBreakpointSetLock(pSet);
472 dvmBreakpointSetFlush(pSet, clazz);
473 dvmBreakpointSetUnlock(pSet);
474 }
475
476 /*
477 * Add a single step event. Currently this is a global item.
478 *
479 * We set up some initial values based on the thread's current state. This
480 * won't work well if the thread is running, so it's up to the caller to
481 * verify that it's suspended.
482 *
483 * This is only called from the JDWP thread.
484 */
dvmAddSingleStep(Thread * thread,int size,int depth)485 bool dvmAddSingleStep(Thread* thread, int size, int depth)
486 {
487 StepControl* pCtrl = &gDvm.stepControl;
488
489 if (pCtrl->active && thread != pCtrl->thread) {
490 LOGW("WARNING: single-step active for %p; adding %p\n",
491 pCtrl->thread, thread);
492
493 /*
494 * Keep going, overwriting previous. This can happen if you
495 * suspend a thread in Object.wait, hit the single-step key, then
496 * switch to another thread and do the same thing again.
497 * The first thread's step is still pending.
498 *
499 * TODO: consider making single-step per-thread. Adds to the
500 * overhead, but could be useful in rare situations.
501 */
502 }
503
504 pCtrl->size = size;
505 pCtrl->depth = depth;
506 pCtrl->thread = thread;
507
508 /*
509 * We may be stepping into or over method calls, or running until we
510 * return from the current method. To make this work we need to track
511 * the current line, current method, and current stack depth. We need
512 * to be checking these after most instructions, notably those that
513 * call methods, return from methods, or are on a different line from the
514 * previous instruction.
515 *
516 * We have to start with a snapshot of the current state. If we're in
517 * an interpreted method, everything we need is in the current frame. If
518 * we're in a native method, possibly with some extra JNI frames pushed
519 * on by PushLocalFrame, we want to use the topmost native method.
520 */
521 const StackSaveArea* saveArea;
522 void* fp;
523 void* prevFp = NULL;
524
525 for (fp = thread->curFrame; fp != NULL; fp = saveArea->prevFrame) {
526 const Method* method;
527
528 saveArea = SAVEAREA_FROM_FP(fp);
529 method = saveArea->method;
530
531 if (!dvmIsBreakFrame(fp) && !dvmIsNativeMethod(method))
532 break;
533 prevFp = fp;
534 }
535 if (fp == NULL) {
536 LOGW("Unexpected: step req in native-only threadid=%d\n",
537 thread->threadId);
538 return false;
539 }
540 if (prevFp != NULL) {
541 /*
542 * First interpreted frame wasn't the one at the bottom. Break
543 * frames are only inserted when calling from native->interp, so we
544 * don't need to worry about one being here.
545 */
546 LOGV("##### init step while in native method\n");
547 fp = prevFp;
548 assert(!dvmIsBreakFrame(fp));
549 assert(dvmIsNativeMethod(SAVEAREA_FROM_FP(fp)->method));
550 saveArea = SAVEAREA_FROM_FP(fp);
551 }
552
553 /*
554 * Pull the goodies out. "xtra.currentPc" should be accurate since
555 * we update it on every instruction while the debugger is connected.
556 */
557 pCtrl->method = saveArea->method;
558 // Clear out any old address set
559 if (pCtrl->pAddressSet != NULL) {
560 // (discard const)
561 free((void *)pCtrl->pAddressSet);
562 pCtrl->pAddressSet = NULL;
563 }
564 if (dvmIsNativeMethod(pCtrl->method)) {
565 pCtrl->line = -1;
566 } else {
567 pCtrl->line = dvmLineNumFromPC(saveArea->method,
568 saveArea->xtra.currentPc - saveArea->method->insns);
569 pCtrl->pAddressSet
570 = dvmAddressSetForLine(saveArea->method, pCtrl->line);
571 }
572 pCtrl->frameDepth = dvmComputeVagueFrameDepth(thread, thread->curFrame);
573 pCtrl->active = true;
574
575 LOGV("##### step init: thread=%p meth=%p '%s' line=%d frameDepth=%d depth=%s size=%s\n",
576 pCtrl->thread, pCtrl->method, pCtrl->method->name,
577 pCtrl->line, pCtrl->frameDepth,
578 dvmJdwpStepDepthStr(pCtrl->depth),
579 dvmJdwpStepSizeStr(pCtrl->size));
580
581 return true;
582 }
583
584 /*
585 * Disable a single step event.
586 */
dvmClearSingleStep(Thread * thread)587 void dvmClearSingleStep(Thread* thread)
588 {
589 UNUSED_PARAMETER(thread);
590
591 gDvm.stepControl.active = false;
592 }
593
594
595 /*
596 * Recover the "this" pointer from the current interpreted method. "this"
597 * is always in "in0" for non-static methods.
598 *
599 * The "ins" start at (#of registers - #of ins). Note in0 != v0.
600 *
601 * This works because "dx" guarantees that it will work. It's probably
602 * fairly common to have a virtual method that doesn't use its "this"
603 * pointer, in which case we're potentially wasting a register. However,
604 * the debugger doesn't treat "this" as just another argument. For
605 * example, events (such as breakpoints) can be enabled for specific
606 * values of "this". There is also a separate StackFrame.ThisObject call
607 * in JDWP that is expected to work for any non-native non-static method.
608 *
609 * Because we need it when setting up debugger event filters, we want to
610 * be able to do this quickly.
611 */
dvmGetThisPtr(const Method * method,const u4 * fp)612 Object* dvmGetThisPtr(const Method* method, const u4* fp)
613 {
614 if (dvmIsStaticMethod(method))
615 return NULL;
616 return (Object*)fp[method->registersSize - method->insSize];
617 }
618
619
620 #if defined(WITH_TRACKREF_CHECKS)
621 /*
622 * Verify that all internally-tracked references have been released. If
623 * they haven't, print them and abort the VM.
624 *
625 * "debugTrackedRefStart" indicates how many refs were on the list when
626 * we were first invoked.
627 */
dvmInterpCheckTrackedRefs(Thread * self,const Method * method,int debugTrackedRefStart)628 void dvmInterpCheckTrackedRefs(Thread* self, const Method* method,
629 int debugTrackedRefStart)
630 {
631 if (dvmReferenceTableEntries(&self->internalLocalRefTable)
632 != (size_t) debugTrackedRefStart)
633 {
634 char* desc;
635 Object** top;
636 int count;
637
638 count = dvmReferenceTableEntries(&self->internalLocalRefTable);
639
640 LOGE("TRACK: unreleased internal reference (prev=%d total=%d)\n",
641 debugTrackedRefStart, count);
642 desc = dexProtoCopyMethodDescriptor(&method->prototype);
643 LOGE(" current method is %s.%s %s\n", method->clazz->descriptor,
644 method->name, desc);
645 free(desc);
646 top = self->internalLocalRefTable.table + debugTrackedRefStart;
647 while (top < self->internalLocalRefTable.nextEntry) {
648 LOGE(" %p (%s)\n",
649 *top,
650 ((*top)->clazz != NULL) ? (*top)->clazz->descriptor : "");
651 top++;
652 }
653 dvmDumpThread(self, false);
654
655 dvmAbort();
656 }
657 //LOGI("TRACK OK\n");
658 }
659 #endif
660
661
662 #ifdef LOG_INSTR
663 /*
664 * Dump the v-registers. Sent to the ILOG log tag.
665 */
dvmDumpRegs(const Method * method,const u4 * framePtr,bool inOnly)666 void dvmDumpRegs(const Method* method, const u4* framePtr, bool inOnly)
667 {
668 int i, localCount;
669
670 localCount = method->registersSize - method->insSize;
671
672 LOG(LOG_VERBOSE, LOG_TAG"i", "Registers (fp=%p):\n", framePtr);
673 for (i = method->registersSize-1; i >= 0; i--) {
674 if (i >= localCount) {
675 LOG(LOG_VERBOSE, LOG_TAG"i", " v%-2d in%-2d : 0x%08x\n",
676 i, i-localCount, framePtr[i]);
677 } else {
678 if (inOnly) {
679 LOG(LOG_VERBOSE, LOG_TAG"i", " [...]\n");
680 break;
681 }
682 const char* name = "";
683 #if 0 // "locals" structure has changed -- need to rewrite this
684 int j;
685 DexFile* pDexFile = method->clazz->pDexFile;
686 const DexCode* pDexCode = dvmGetMethodCode(method);
687 int localsSize = dexGetLocalsSize(pDexFile, pDexCode);
688 const DexLocal* locals = dvmDexGetLocals(pDexFile, pDexCode);
689 for (j = 0; j < localsSize, j++) {
690 if (locals[j].registerNum == (u4) i) {
691 name = dvmDexStringStr(locals[j].pName);
692 break;
693 }
694 }
695 #endif
696 LOG(LOG_VERBOSE, LOG_TAG"i", " v%-2d : 0x%08x %s\n",
697 i, framePtr[i], name);
698 }
699 }
700 }
701 #endif
702
703
704 /*
705 * ===========================================================================
706 * Entry point and general support functions
707 * ===========================================================================
708 */
709
710 /*
711 * Construct an s4 from two consecutive half-words of switch data.
712 * This needs to check endianness because the DEX optimizer only swaps
713 * half-words in instruction stream.
714 *
715 * "switchData" must be 32-bit aligned.
716 */
717 #if __BYTE_ORDER == __LITTLE_ENDIAN
s4FromSwitchData(const void * switchData)718 static inline s4 s4FromSwitchData(const void* switchData) {
719 return *(s4*) switchData;
720 }
721 #else
s4FromSwitchData(const void * switchData)722 static inline s4 s4FromSwitchData(const void* switchData) {
723 u2* data = switchData;
724 return data[0] | (((s4) data[1]) << 16);
725 }
726 #endif
727
728 /*
729 * Find the matching case. Returns the offset to the handler instructions.
730 *
731 * Returns 3 if we don't find a match (it's the size of the packed-switch
732 * instruction).
733 */
dvmInterpHandlePackedSwitch(const u2 * switchData,s4 testVal)734 s4 dvmInterpHandlePackedSwitch(const u2* switchData, s4 testVal)
735 {
736 const int kInstrLen = 3;
737 u2 size;
738 s4 firstKey;
739 const s4* entries;
740
741 /*
742 * Packed switch data format:
743 * ushort ident = 0x0100 magic value
744 * ushort size number of entries in the table
745 * int first_key first (and lowest) switch case value
746 * int targets[size] branch targets, relative to switch opcode
747 *
748 * Total size is (4+size*2) 16-bit code units.
749 */
750 if (*switchData++ != kPackedSwitchSignature) {
751 /* should have been caught by verifier */
752 dvmThrowException("Ljava/lang/InternalError;",
753 "bad packed switch magic");
754 return kInstrLen;
755 }
756
757 size = *switchData++;
758 assert(size > 0);
759
760 firstKey = *switchData++;
761 firstKey |= (*switchData++) << 16;
762
763 if (testVal < firstKey || testVal >= firstKey + size) {
764 LOGVV("Value %d not found in switch (%d-%d)\n",
765 testVal, firstKey, firstKey+size-1);
766 return kInstrLen;
767 }
768
769 /* The entries are guaranteed to be aligned on a 32-bit boundary;
770 * we can treat them as a native int array.
771 */
772 entries = (const s4*) switchData;
773 assert(((u4)entries & 0x3) == 0);
774
775 assert(testVal - firstKey >= 0 && testVal - firstKey < size);
776 LOGVV("Value %d found in slot %d (goto 0x%02x)\n",
777 testVal, testVal - firstKey,
778 s4FromSwitchData(&entries[testVal - firstKey]));
779 return s4FromSwitchData(&entries[testVal - firstKey]);
780 }
781
782 /*
783 * Find the matching case. Returns the offset to the handler instructions.
784 *
785 * Returns 3 if we don't find a match (it's the size of the sparse-switch
786 * instruction).
787 */
dvmInterpHandleSparseSwitch(const u2 * switchData,s4 testVal)788 s4 dvmInterpHandleSparseSwitch(const u2* switchData, s4 testVal)
789 {
790 const int kInstrLen = 3;
791 u2 size;
792 const s4* keys;
793 const s4* entries;
794
795 /*
796 * Sparse switch data format:
797 * ushort ident = 0x0200 magic value
798 * ushort size number of entries in the table; > 0
799 * int keys[size] keys, sorted low-to-high; 32-bit aligned
800 * int targets[size] branch targets, relative to switch opcode
801 *
802 * Total size is (2+size*4) 16-bit code units.
803 */
804
805 if (*switchData++ != kSparseSwitchSignature) {
806 /* should have been caught by verifier */
807 dvmThrowException("Ljava/lang/InternalError;",
808 "bad sparse switch magic");
809 return kInstrLen;
810 }
811
812 size = *switchData++;
813 assert(size > 0);
814
815 /* The keys are guaranteed to be aligned on a 32-bit boundary;
816 * we can treat them as a native int array.
817 */
818 keys = (const s4*) switchData;
819 assert(((u4)keys & 0x3) == 0);
820
821 /* The entries are guaranteed to be aligned on a 32-bit boundary;
822 * we can treat them as a native int array.
823 */
824 entries = keys + size;
825 assert(((u4)entries & 0x3) == 0);
826
827 /*
828 * Binary-search through the array of keys, which are guaranteed to
829 * be sorted low-to-high.
830 */
831 int lo = 0;
832 int hi = size - 1;
833 while (lo <= hi) {
834 int mid = (lo + hi) >> 1;
835
836 s4 foundVal = s4FromSwitchData(&keys[mid]);
837 if (testVal < foundVal) {
838 hi = mid - 1;
839 } else if (testVal > foundVal) {
840 lo = mid + 1;
841 } else {
842 LOGVV("Value %d found in entry %d (goto 0x%02x)\n",
843 testVal, mid, s4FromSwitchData(&entries[mid]));
844 return s4FromSwitchData(&entries[mid]);
845 }
846 }
847
848 LOGVV("Value %d not found in switch\n", testVal);
849 return kInstrLen;
850 }
851
852 /*
853 * Copy data for a fill-array-data instruction. On a little-endian machine
854 * we can just do a memcpy(), on a big-endian system we have work to do.
855 *
856 * The trick here is that dexopt has byte-swapped each code unit, which is
857 * exactly what we want for short/char data. For byte data we need to undo
858 * the swap, and for 4- or 8-byte values we need to swap pieces within
859 * each word.
860 */
copySwappedArrayData(void * dest,const u2 * src,u4 size,u2 width)861 static void copySwappedArrayData(void* dest, const u2* src, u4 size, u2 width)
862 {
863 #if __BYTE_ORDER == __LITTLE_ENDIAN
864 memcpy(dest, src, size*width);
865 #else
866 int i;
867
868 switch (width) {
869 case 1:
870 /* un-swap pairs of bytes as we go */
871 for (i = (size-1) & ~1; i >= 0; i -= 2) {
872 ((u1*)dest)[i] = ((u1*)src)[i+1];
873 ((u1*)dest)[i+1] = ((u1*)src)[i];
874 }
875 /*
876 * "src" is padded to end on a two-byte boundary, but we don't want to
877 * assume "dest" is, so we handle odd length specially.
878 */
879 if ((size & 1) != 0) {
880 ((u1*)dest)[size-1] = ((u1*)src)[size];
881 }
882 break;
883 case 2:
884 /* already swapped correctly */
885 memcpy(dest, src, size*width);
886 break;
887 case 4:
888 /* swap word halves */
889 for (i = 0; i < (int) size; i++) {
890 ((u4*)dest)[i] = (src[(i << 1) + 1] << 16) | src[i << 1];
891 }
892 break;
893 case 8:
894 /* swap word halves and words */
895 for (i = 0; i < (int) (size << 1); i += 2) {
896 ((int*)dest)[i] = (src[(i << 1) + 3] << 16) | src[(i << 1) + 2];
897 ((int*)dest)[i+1] = (src[(i << 1) + 1] << 16) | src[i << 1];
898 }
899 break;
900 default:
901 LOGE("Unexpected width %d in copySwappedArrayData\n", width);
902 dvmAbort();
903 break;
904 }
905 #endif
906 }
907
908 /*
909 * Fill the array with predefined constant values.
910 *
911 * Returns true if job is completed, otherwise false to indicate that
912 * an exception has been thrown.
913 */
dvmInterpHandleFillArrayData(ArrayObject * arrayObj,const u2 * arrayData)914 bool dvmInterpHandleFillArrayData(ArrayObject* arrayObj, const u2* arrayData)
915 {
916 u2 width;
917 u4 size;
918
919 if (arrayObj == NULL) {
920 dvmThrowException("Ljava/lang/NullPointerException;", NULL);
921 return false;
922 }
923 assert (!IS_CLASS_FLAG_SET(((Object *)arrayObj)->clazz,
924 CLASS_ISOBJECTARRAY));
925
926 /*
927 * Array data table format:
928 * ushort ident = 0x0300 magic value
929 * ushort width width of each element in the table
930 * uint size number of elements in the table
931 * ubyte data[size*width] table of data values (may contain a single-byte
932 * padding at the end)
933 *
934 * Total size is 4+(width * size + 1)/2 16-bit code units.
935 */
936 if (arrayData[0] != kArrayDataSignature) {
937 dvmThrowException("Ljava/lang/InternalError;", "bad array data magic");
938 return false;
939 }
940
941 width = arrayData[1];
942 size = arrayData[2] | (((u4)arrayData[3]) << 16);
943
944 if (size > arrayObj->length) {
945 dvmThrowException("Ljava/lang/ArrayIndexOutOfBoundsException;", NULL);
946 return false;
947 }
948 copySwappedArrayData(arrayObj->contents, &arrayData[4], size, width);
949 return true;
950 }
951
952 /*
953 * Find the concrete method that corresponds to "methodIdx". The code in
954 * "method" is executing invoke-method with "thisClass" as its first argument.
955 *
956 * Returns NULL with an exception raised on failure.
957 */
dvmInterpFindInterfaceMethod(ClassObject * thisClass,u4 methodIdx,const Method * method,DvmDex * methodClassDex)958 Method* dvmInterpFindInterfaceMethod(ClassObject* thisClass, u4 methodIdx,
959 const Method* method, DvmDex* methodClassDex)
960 {
961 Method* absMethod;
962 Method* methodToCall;
963 int i, vtableIndex;
964
965 /*
966 * Resolve the method. This gives us the abstract method from the
967 * interface class declaration.
968 */
969 absMethod = dvmDexGetResolvedMethod(methodClassDex, methodIdx);
970 if (absMethod == NULL) {
971 absMethod = dvmResolveInterfaceMethod(method->clazz, methodIdx);
972 if (absMethod == NULL) {
973 LOGV("+ unknown method\n");
974 return NULL;
975 }
976 }
977
978 /* make sure absMethod->methodIndex means what we think it means */
979 assert(dvmIsAbstractMethod(absMethod));
980
981 /*
982 * Run through the "this" object's iftable. Find the entry for
983 * absMethod's class, then use absMethod->methodIndex to find
984 * the method's entry. The value there is the offset into our
985 * vtable of the actual method to execute.
986 *
987 * The verifier does not guarantee that objects stored into
988 * interface references actually implement the interface, so this
989 * check cannot be eliminated.
990 */
991 for (i = 0; i < thisClass->iftableCount; i++) {
992 if (thisClass->iftable[i].clazz == absMethod->clazz)
993 break;
994 }
995 if (i == thisClass->iftableCount) {
996 /* impossible in verified DEX, need to check for it in unverified */
997 dvmThrowException("Ljava/lang/IncompatibleClassChangeError;",
998 "interface not implemented");
999 return NULL;
1000 }
1001
1002 assert(absMethod->methodIndex <
1003 thisClass->iftable[i].clazz->virtualMethodCount);
1004
1005 vtableIndex =
1006 thisClass->iftable[i].methodIndexArray[absMethod->methodIndex];
1007 assert(vtableIndex >= 0 && vtableIndex < thisClass->vtableCount);
1008 methodToCall = thisClass->vtable[vtableIndex];
1009
1010 #if 0
1011 /* this can happen when there's a stale class file */
1012 if (dvmIsAbstractMethod(methodToCall)) {
1013 dvmThrowException("Ljava/lang/AbstractMethodError;",
1014 "interface method not implemented");
1015 return NULL;
1016 }
1017 #else
1018 assert(!dvmIsAbstractMethod(methodToCall) ||
1019 methodToCall->nativeFunc != NULL);
1020 #endif
1021
1022 LOGVV("+++ interface=%s.%s concrete=%s.%s\n",
1023 absMethod->clazz->descriptor, absMethod->name,
1024 methodToCall->clazz->descriptor, methodToCall->name);
1025 assert(methodToCall != NULL);
1026
1027 return methodToCall;
1028 }
1029
1030
1031
1032 /*
1033 * Helpers for dvmThrowVerificationError().
1034 *
1035 * Each returns a newly-allocated string.
1036 */
1037 #define kThrowShow_accessFromClass 1
classNameFromIndex(const Method * method,int ref,VerifyErrorRefType refType,int flags)1038 static char* classNameFromIndex(const Method* method, int ref,
1039 VerifyErrorRefType refType, int flags)
1040 {
1041 static const int kBufLen = 256;
1042 const DvmDex* pDvmDex = method->clazz->pDvmDex;
1043
1044 if (refType == VERIFY_ERROR_REF_FIELD) {
1045 /* get class ID from field ID */
1046 const DexFieldId* pFieldId = dexGetFieldId(pDvmDex->pDexFile, ref);
1047 ref = pFieldId->classIdx;
1048 } else if (refType == VERIFY_ERROR_REF_METHOD) {
1049 /* get class ID from method ID */
1050 const DexMethodId* pMethodId = dexGetMethodId(pDvmDex->pDexFile, ref);
1051 ref = pMethodId->classIdx;
1052 }
1053
1054 const char* className = dexStringByTypeIdx(pDvmDex->pDexFile, ref);
1055 char* dotClassName = dvmDescriptorToDot(className);
1056 if (flags == 0)
1057 return dotClassName;
1058
1059 char* result = (char*) malloc(kBufLen);
1060
1061 if ((flags & kThrowShow_accessFromClass) != 0) {
1062 char* dotFromName = dvmDescriptorToDot(method->clazz->descriptor);
1063 snprintf(result, kBufLen, "tried to access class %s from class %s",
1064 dotClassName, dotFromName);
1065 free(dotFromName);
1066 } else {
1067 assert(false); // should've been caught above
1068 result[0] = '\0';
1069 }
1070
1071 free(dotClassName);
1072 return result;
1073 }
fieldNameFromIndex(const Method * method,int ref,VerifyErrorRefType refType,int flags)1074 static char* fieldNameFromIndex(const Method* method, int ref,
1075 VerifyErrorRefType refType, int flags)
1076 {
1077 static const int kBufLen = 256;
1078 const DvmDex* pDvmDex = method->clazz->pDvmDex;
1079 const DexFieldId* pFieldId;
1080 const char* className;
1081 const char* fieldName;
1082
1083 if (refType != VERIFY_ERROR_REF_FIELD) {
1084 LOGW("Expected ref type %d, got %d\n", VERIFY_ERROR_REF_FIELD, refType);
1085 return NULL; /* no message */
1086 }
1087
1088 pFieldId = dexGetFieldId(pDvmDex->pDexFile, ref);
1089 className = dexStringByTypeIdx(pDvmDex->pDexFile, pFieldId->classIdx);
1090 fieldName = dexStringById(pDvmDex->pDexFile, pFieldId->nameIdx);
1091
1092 char* dotName = dvmDescriptorToDot(className);
1093 char* result = (char*) malloc(kBufLen);
1094
1095 if ((flags & kThrowShow_accessFromClass) != 0) {
1096 char* dotFromName = dvmDescriptorToDot(method->clazz->descriptor);
1097 snprintf(result, kBufLen, "tried to access field %s.%s from class %s",
1098 dotName, fieldName, dotFromName);
1099 free(dotFromName);
1100 } else {
1101 snprintf(result, kBufLen, "%s.%s", dotName, fieldName);
1102 }
1103
1104 free(dotName);
1105 return result;
1106 }
methodNameFromIndex(const Method * method,int ref,VerifyErrorRefType refType,int flags)1107 static char* methodNameFromIndex(const Method* method, int ref,
1108 VerifyErrorRefType refType, int flags)
1109 {
1110 static const int kBufLen = 384;
1111 const DvmDex* pDvmDex = method->clazz->pDvmDex;
1112 const DexMethodId* pMethodId;
1113 const char* className;
1114 const char* methodName;
1115
1116 if (refType != VERIFY_ERROR_REF_METHOD) {
1117 LOGW("Expected ref type %d, got %d\n", VERIFY_ERROR_REF_METHOD,refType);
1118 return NULL; /* no message */
1119 }
1120
1121 pMethodId = dexGetMethodId(pDvmDex->pDexFile, ref);
1122 className = dexStringByTypeIdx(pDvmDex->pDexFile, pMethodId->classIdx);
1123 methodName = dexStringById(pDvmDex->pDexFile, pMethodId->nameIdx);
1124
1125 char* dotName = dvmDescriptorToDot(className);
1126 char* result = (char*) malloc(kBufLen);
1127
1128 if ((flags & kThrowShow_accessFromClass) != 0) {
1129 char* dotFromName = dvmDescriptorToDot(method->clazz->descriptor);
1130 char* desc = dexProtoCopyMethodDescriptor(&method->prototype);
1131 snprintf(result, kBufLen,
1132 "tried to access method %s.%s:%s from class %s",
1133 dotName, methodName, desc, dotFromName);
1134 free(dotFromName);
1135 free(desc);
1136 } else {
1137 snprintf(result, kBufLen, "%s.%s", dotName, methodName);
1138 }
1139
1140 free(dotName);
1141 return result;
1142 }
1143
1144 /*
1145 * Throw an exception for a problem identified by the verifier.
1146 *
1147 * This is used by the invoke-verification-error instruction. It always
1148 * throws an exception.
1149 *
1150 * "kind" indicates the kind of failure encountered by the verifier. It
1151 * has two parts, an error code and an indication of the reference type.
1152 */
dvmThrowVerificationError(const Method * method,int kind,int ref)1153 void dvmThrowVerificationError(const Method* method, int kind, int ref)
1154 {
1155 const int typeMask = 0xff << kVerifyErrorRefTypeShift;
1156 VerifyError errorKind = kind & ~typeMask;
1157 VerifyErrorRefType refType = kind >> kVerifyErrorRefTypeShift;
1158 const char* exceptionName = "Ljava/lang/VerifyError;";
1159 char* msg = NULL;
1160
1161 switch ((VerifyError) errorKind) {
1162 case VERIFY_ERROR_NO_CLASS:
1163 exceptionName = "Ljava/lang/NoClassDefFoundError;";
1164 msg = classNameFromIndex(method, ref, refType, 0);
1165 break;
1166 case VERIFY_ERROR_NO_FIELD:
1167 exceptionName = "Ljava/lang/NoSuchFieldError;";
1168 msg = fieldNameFromIndex(method, ref, refType, 0);
1169 break;
1170 case VERIFY_ERROR_NO_METHOD:
1171 exceptionName = "Ljava/lang/NoSuchMethodError;";
1172 msg = methodNameFromIndex(method, ref, refType, 0);
1173 break;
1174 case VERIFY_ERROR_ACCESS_CLASS:
1175 exceptionName = "Ljava/lang/IllegalAccessError;";
1176 msg = classNameFromIndex(method, ref, refType,
1177 kThrowShow_accessFromClass);
1178 break;
1179 case VERIFY_ERROR_ACCESS_FIELD:
1180 exceptionName = "Ljava/lang/IllegalAccessError;";
1181 msg = fieldNameFromIndex(method, ref, refType,
1182 kThrowShow_accessFromClass);
1183 break;
1184 case VERIFY_ERROR_ACCESS_METHOD:
1185 exceptionName = "Ljava/lang/IllegalAccessError;";
1186 msg = methodNameFromIndex(method, ref, refType,
1187 kThrowShow_accessFromClass);
1188 break;
1189 case VERIFY_ERROR_CLASS_CHANGE:
1190 exceptionName = "Ljava/lang/IncompatibleClassChangeError;";
1191 msg = classNameFromIndex(method, ref, refType, 0);
1192 break;
1193 case VERIFY_ERROR_INSTANTIATION:
1194 exceptionName = "Ljava/lang/InstantiationError;";
1195 msg = classNameFromIndex(method, ref, refType, 0);
1196 break;
1197
1198 case VERIFY_ERROR_GENERIC:
1199 /* generic VerifyError; use default exception, no message */
1200 break;
1201 case VERIFY_ERROR_NONE:
1202 /* should never happen; use default exception */
1203 assert(false);
1204 msg = strdup("weird - no error specified");
1205 break;
1206
1207 /* no default clause -- want warning if enum updated */
1208 }
1209
1210 dvmThrowException(exceptionName, msg);
1211 free(msg);
1212 }
1213
1214 /*
1215 * Main interpreter loop entry point. Select "standard" or "debug"
1216 * interpreter and switch between them as required.
1217 *
1218 * This begins executing code at the start of "method". On exit, "pResult"
1219 * holds the return value of the method (or, if "method" returns NULL, it
1220 * holds an undefined value).
1221 *
1222 * The interpreted stack frame, which holds the method arguments, has
1223 * already been set up.
1224 */
dvmInterpret(Thread * self,const Method * method,JValue * pResult)1225 void dvmInterpret(Thread* self, const Method* method, JValue* pResult)
1226 {
1227 InterpState interpState;
1228 bool change;
1229 #if defined(WITH_JIT)
1230 /* Target-specific save/restore */
1231 extern void dvmJitCalleeSave(double *saveArea);
1232 extern void dvmJitCalleeRestore(double *saveArea);
1233 /* Interpreter entry points from compiled code */
1234 extern void dvmJitToInterpNormal();
1235 extern void dvmJitToInterpNoChain();
1236 extern void dvmJitToInterpPunt();
1237 extern void dvmJitToInterpSingleStep();
1238 extern void dvmJitToInterpTraceSelectNoChain();
1239 extern void dvmJitToInterpTraceSelect();
1240 extern void dvmJitToPatchPredictedChain();
1241 #if defined(WITH_SELF_VERIFICATION)
1242 extern void dvmJitToInterpBackwardBranch();
1243 #endif
1244
1245 /*
1246 * Reserve a static entity here to quickly setup runtime contents as
1247 * gcc will issue block copy instructions.
1248 */
1249 static struct JitToInterpEntries jitToInterpEntries = {
1250 dvmJitToInterpNormal,
1251 dvmJitToInterpNoChain,
1252 dvmJitToInterpPunt,
1253 dvmJitToInterpSingleStep,
1254 dvmJitToInterpTraceSelectNoChain,
1255 dvmJitToInterpTraceSelect,
1256 dvmJitToPatchPredictedChain,
1257 #if defined(WITH_SELF_VERIFICATION)
1258 dvmJitToInterpBackwardBranch,
1259 #endif
1260 };
1261
1262 /*
1263 * If the previous VM left the code cache through single-stepping the
1264 * inJitCodeCache flag will be set when the VM is re-entered (for example,
1265 * in self-verification mode we single-step NEW_INSTANCE which may re-enter
1266 * the VM through findClassFromLoaderNoInit). Because of that, we cannot
1267 * assert that self->inJitCodeCache is NULL here.
1268 */
1269 #endif
1270
1271
1272 #if defined(WITH_TRACKREF_CHECKS)
1273 interpState.debugTrackedRefStart =
1274 dvmReferenceTableEntries(&self->internalLocalRefTable);
1275 #endif
1276 interpState.debugIsMethodEntry = true;
1277 #if defined(WITH_JIT)
1278 dvmJitCalleeSave(interpState.calleeSave);
1279 /* Initialize the state to kJitNot */
1280 interpState.jitState = kJitNot;
1281
1282 /* Setup the Jit-to-interpreter entry points */
1283 interpState.jitToInterpEntries = jitToInterpEntries;
1284
1285 /*
1286 * Initialize the threshold filter [don't bother to zero out the
1287 * actual table. We're looking for matches, and an occasional
1288 * false positive is acceptible.
1289 */
1290 interpState.lastThreshFilter = 0;
1291
1292 interpState.icRechainCount = PREDICTED_CHAIN_COUNTER_RECHAIN;
1293 #endif
1294
1295 /*
1296 * Initialize working state.
1297 *
1298 * No need to initialize "retval".
1299 */
1300 interpState.method = method;
1301 interpState.fp = (u4*) self->curFrame;
1302 interpState.pc = method->insns;
1303 interpState.entryPoint = kInterpEntryInstr;
1304
1305 if (dvmDebuggerOrProfilerActive())
1306 interpState.nextMode = INTERP_DBG;
1307 else
1308 interpState.nextMode = INTERP_STD;
1309
1310 assert(!dvmIsNativeMethod(method));
1311
1312 /*
1313 * Make sure the class is ready to go. Shouldn't be possible to get
1314 * here otherwise.
1315 */
1316 if (method->clazz->status < CLASS_INITIALIZING ||
1317 method->clazz->status == CLASS_ERROR)
1318 {
1319 LOGE("ERROR: tried to execute code in unprepared class '%s' (%d)\n",
1320 method->clazz->descriptor, method->clazz->status);
1321 dvmDumpThread(self, false);
1322 dvmAbort();
1323 }
1324
1325 typedef bool (*Interpreter)(Thread*, InterpState*);
1326 Interpreter stdInterp;
1327 if (gDvm.executionMode == kExecutionModeInterpFast)
1328 stdInterp = dvmMterpStd;
1329 #if defined(WITH_JIT)
1330 else if (gDvm.executionMode == kExecutionModeJit)
1331 /* If profiling overhead can be kept low enough, we can use a profiling
1332 * mterp fast for both Jit and "fast" modes. If overhead is too high,
1333 * create a specialized profiling interpreter.
1334 */
1335 stdInterp = dvmMterpStd;
1336 #endif
1337 else
1338 stdInterp = dvmInterpretStd;
1339
1340 change = true;
1341 while (change) {
1342 switch (interpState.nextMode) {
1343 case INTERP_STD:
1344 LOGVV("threadid=%d: interp STD\n", self->threadId);
1345 change = (*stdInterp)(self, &interpState);
1346 break;
1347 case INTERP_DBG:
1348 LOGVV("threadid=%d: interp DBG\n", self->threadId);
1349 change = dvmInterpretDbg(self, &interpState);
1350 break;
1351 default:
1352 dvmAbort();
1353 }
1354 }
1355
1356 *pResult = interpState.retval;
1357 #if defined(WITH_JIT)
1358 dvmJitCalleeRestore(interpState.calleeSave);
1359 #endif
1360 }
1361