1 // Copyright 2009 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #ifndef V8_X64_ASSEMBLER_X64_INL_H_
29 #define V8_X64_ASSEMBLER_X64_INL_H_
30
31 #include "cpu.h"
32 #include "memory.h"
33
34 namespace v8 {
35 namespace internal {
36
NegateCondition(Condition cc)37 Condition NegateCondition(Condition cc) {
38 return static_cast<Condition>(cc ^ 1);
39 }
40
41
42 // -----------------------------------------------------------------------------
43 // Implementation of Assembler
44
45
46
emitl(uint32_t x)47 void Assembler::emitl(uint32_t x) {
48 Memory::uint32_at(pc_) = x;
49 pc_ += sizeof(uint32_t);
50 }
51
52
emitq(uint64_t x,RelocInfo::Mode rmode)53 void Assembler::emitq(uint64_t x, RelocInfo::Mode rmode) {
54 Memory::uint64_at(pc_) = x;
55 if (rmode != RelocInfo::NONE) {
56 RecordRelocInfo(rmode, x);
57 }
58 pc_ += sizeof(uint64_t);
59 }
60
61
emitw(uint16_t x)62 void Assembler::emitw(uint16_t x) {
63 Memory::uint16_at(pc_) = x;
64 pc_ += sizeof(uint16_t);
65 }
66
67
emit_code_target(Handle<Code> target,RelocInfo::Mode rmode)68 void Assembler::emit_code_target(Handle<Code> target, RelocInfo::Mode rmode) {
69 ASSERT(RelocInfo::IsCodeTarget(rmode));
70 RecordRelocInfo(rmode);
71 int current = code_targets_.length();
72 if (current > 0 && code_targets_.last().is_identical_to(target)) {
73 // Optimization if we keep jumping to the same code target.
74 emitl(current - 1);
75 } else {
76 code_targets_.Add(target);
77 emitl(current);
78 }
79 }
80
81
emit_rex_64(Register reg,Register rm_reg)82 void Assembler::emit_rex_64(Register reg, Register rm_reg) {
83 emit(0x48 | reg.high_bit() << 2 | rm_reg.high_bit());
84 }
85
86
emit_rex_64(XMMRegister reg,Register rm_reg)87 void Assembler::emit_rex_64(XMMRegister reg, Register rm_reg) {
88 emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
89 }
90
91
emit_rex_64(Register reg,const Operand & op)92 void Assembler::emit_rex_64(Register reg, const Operand& op) {
93 emit(0x48 | reg.high_bit() << 2 | op.rex_);
94 }
95
96
emit_rex_64(XMMRegister reg,const Operand & op)97 void Assembler::emit_rex_64(XMMRegister reg, const Operand& op) {
98 emit(0x48 | (reg.code() & 0x8) >> 1 | op.rex_);
99 }
100
101
emit_rex_64(Register rm_reg)102 void Assembler::emit_rex_64(Register rm_reg) {
103 ASSERT_EQ(rm_reg.code() & 0xf, rm_reg.code());
104 emit(0x48 | rm_reg.high_bit());
105 }
106
107
emit_rex_64(const Operand & op)108 void Assembler::emit_rex_64(const Operand& op) {
109 emit(0x48 | op.rex_);
110 }
111
112
emit_rex_32(Register reg,Register rm_reg)113 void Assembler::emit_rex_32(Register reg, Register rm_reg) {
114 emit(0x40 | reg.high_bit() << 2 | rm_reg.high_bit());
115 }
116
117
emit_rex_32(Register reg,const Operand & op)118 void Assembler::emit_rex_32(Register reg, const Operand& op) {
119 emit(0x40 | reg.high_bit() << 2 | op.rex_);
120 }
121
122
emit_rex_32(Register rm_reg)123 void Assembler::emit_rex_32(Register rm_reg) {
124 emit(0x40 | rm_reg.high_bit());
125 }
126
127
emit_rex_32(const Operand & op)128 void Assembler::emit_rex_32(const Operand& op) {
129 emit(0x40 | op.rex_);
130 }
131
132
emit_optional_rex_32(Register reg,Register rm_reg)133 void Assembler::emit_optional_rex_32(Register reg, Register rm_reg) {
134 byte rex_bits = reg.high_bit() << 2 | rm_reg.high_bit();
135 if (rex_bits != 0) emit(0x40 | rex_bits);
136 }
137
138
emit_optional_rex_32(Register reg,const Operand & op)139 void Assembler::emit_optional_rex_32(Register reg, const Operand& op) {
140 byte rex_bits = reg.high_bit() << 2 | op.rex_;
141 if (rex_bits != 0) emit(0x40 | rex_bits);
142 }
143
144
emit_optional_rex_32(XMMRegister reg,const Operand & op)145 void Assembler::emit_optional_rex_32(XMMRegister reg, const Operand& op) {
146 byte rex_bits = (reg.code() & 0x8) >> 1 | op.rex_;
147 if (rex_bits != 0) emit(0x40 | rex_bits);
148 }
149
150
emit_optional_rex_32(XMMRegister reg,XMMRegister base)151 void Assembler::emit_optional_rex_32(XMMRegister reg, XMMRegister base) {
152 byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
153 if (rex_bits != 0) emit(0x40 | rex_bits);
154 }
155
156
emit_optional_rex_32(XMMRegister reg,Register base)157 void Assembler::emit_optional_rex_32(XMMRegister reg, Register base) {
158 byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
159 if (rex_bits != 0) emit(0x40 | rex_bits);
160 }
161
162
emit_optional_rex_32(Register rm_reg)163 void Assembler::emit_optional_rex_32(Register rm_reg) {
164 if (rm_reg.high_bit()) emit(0x41);
165 }
166
167
emit_optional_rex_32(const Operand & op)168 void Assembler::emit_optional_rex_32(const Operand& op) {
169 if (op.rex_ != 0) emit(0x40 | op.rex_);
170 }
171
172
target_address_at(Address pc)173 Address Assembler::target_address_at(Address pc) {
174 return Memory::int32_at(pc) + pc + 4;
175 }
176
177
set_target_address_at(Address pc,Address target)178 void Assembler::set_target_address_at(Address pc, Address target) {
179 Memory::int32_at(pc) = static_cast<int32_t>(target - pc - 4);
180 CPU::FlushICache(pc, sizeof(int32_t));
181 }
182
code_target_object_handle_at(Address pc)183 Handle<Object> Assembler::code_target_object_handle_at(Address pc) {
184 return code_targets_[Memory::int32_at(pc)];
185 }
186
187 // -----------------------------------------------------------------------------
188 // Implementation of RelocInfo
189
190 // The modes possibly affected by apply must be in kApplyMask.
apply(intptr_t delta)191 void RelocInfo::apply(intptr_t delta) {
192 if (IsInternalReference(rmode_)) {
193 // absolute code pointer inside code object moves with the code object.
194 Memory::Address_at(pc_) += static_cast<int32_t>(delta);
195 } else if (IsCodeTarget(rmode_)) {
196 Memory::int32_at(pc_) -= static_cast<int32_t>(delta);
197 } else if (rmode_ == JS_RETURN && IsPatchedReturnSequence()) {
198 // Special handling of js_return when a break point is set (call
199 // instruction has been inserted).
200 Memory::int32_at(pc_ + 1) -= static_cast<int32_t>(delta); // relocate entry
201 }
202 }
203
204
target_address()205 Address RelocInfo::target_address() {
206 ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
207 if (IsCodeTarget(rmode_)) {
208 return Assembler::target_address_at(pc_);
209 } else {
210 return Memory::Address_at(pc_);
211 }
212 }
213
214
target_address_address()215 Address RelocInfo::target_address_address() {
216 ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
217 return reinterpret_cast<Address>(pc_);
218 }
219
220
set_target_address(Address target)221 void RelocInfo::set_target_address(Address target) {
222 ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
223 if (IsCodeTarget(rmode_)) {
224 Assembler::set_target_address_at(pc_, target);
225 } else {
226 Memory::Address_at(pc_) = target;
227 }
228 }
229
230
target_object()231 Object* RelocInfo::target_object() {
232 ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
233 return Memory::Object_at(pc_);
234 }
235
236
target_object_handle(Assembler * origin)237 Handle<Object> RelocInfo::target_object_handle(Assembler *origin) {
238 ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
239 if (rmode_ == EMBEDDED_OBJECT) {
240 return Memory::Object_Handle_at(pc_);
241 } else {
242 return origin->code_target_object_handle_at(pc_);
243 }
244 }
245
246
target_object_address()247 Object** RelocInfo::target_object_address() {
248 ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
249 return reinterpret_cast<Object**>(pc_);
250 }
251
252
target_reference_address()253 Address* RelocInfo::target_reference_address() {
254 ASSERT(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
255 return reinterpret_cast<Address*>(pc_);
256 }
257
258
set_target_object(Object * target)259 void RelocInfo::set_target_object(Object* target) {
260 ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
261 *reinterpret_cast<Object**>(pc_) = target;
262 }
263
264
IsPatchedReturnSequence()265 bool RelocInfo::IsPatchedReturnSequence() {
266 // The recognized call sequence is:
267 // movq(kScratchRegister, immediate64); call(kScratchRegister);
268 // It only needs to be distinguished from a return sequence
269 // movq(rsp, rbp); pop(rbp); ret(n); int3 *6
270 // The 11th byte is int3 (0xCC) in the return sequence and
271 // REX.WB (0x48+register bit) for the call sequence.
272 #ifdef ENABLE_DEBUGGER_SUPPORT
273 return pc_[10] != 0xCC;
274 #else
275 return false;
276 #endif
277 }
278
279
call_address()280 Address RelocInfo::call_address() {
281 ASSERT(IsPatchedReturnSequence());
282 return Memory::Address_at(
283 pc_ + Assembler::kRealPatchReturnSequenceAddressOffset);
284 }
285
286
set_call_address(Address target)287 void RelocInfo::set_call_address(Address target) {
288 ASSERT(IsPatchedReturnSequence());
289 Memory::Address_at(pc_ + Assembler::kRealPatchReturnSequenceAddressOffset) =
290 target;
291 }
292
293
call_object()294 Object* RelocInfo::call_object() {
295 ASSERT(IsPatchedReturnSequence());
296 return *call_object_address();
297 }
298
299
set_call_object(Object * target)300 void RelocInfo::set_call_object(Object* target) {
301 ASSERT(IsPatchedReturnSequence());
302 *call_object_address() = target;
303 }
304
305
call_object_address()306 Object** RelocInfo::call_object_address() {
307 ASSERT(IsPatchedReturnSequence());
308 return reinterpret_cast<Object**>(
309 pc_ + Assembler::kPatchReturnSequenceAddressOffset);
310 }
311
312 // -----------------------------------------------------------------------------
313 // Implementation of Operand
314
set_modrm(int mod,Register rm_reg)315 void Operand::set_modrm(int mod, Register rm_reg) {
316 ASSERT(is_uint2(mod));
317 buf_[0] = mod << 6 | rm_reg.low_bits();
318 // Set REX.B to the high bit of rm.code().
319 rex_ |= rm_reg.high_bit();
320 }
321
322
set_sib(ScaleFactor scale,Register index,Register base)323 void Operand::set_sib(ScaleFactor scale, Register index, Register base) {
324 ASSERT(len_ == 1);
325 ASSERT(is_uint2(scale));
326 // Use SIB with no index register only for base rsp or r12. Otherwise we
327 // would skip the SIB byte entirely.
328 ASSERT(!index.is(rsp) || base.is(rsp) || base.is(r12));
329 buf_[1] = scale << 6 | index.low_bits() << 3 | base.low_bits();
330 rex_ |= index.high_bit() << 1 | base.high_bit();
331 len_ = 2;
332 }
333
set_disp8(int disp)334 void Operand::set_disp8(int disp) {
335 ASSERT(is_int8(disp));
336 ASSERT(len_ == 1 || len_ == 2);
337 int8_t* p = reinterpret_cast<int8_t*>(&buf_[len_]);
338 *p = disp;
339 len_ += sizeof(int8_t);
340 }
341
set_disp32(int disp)342 void Operand::set_disp32(int disp) {
343 ASSERT(len_ == 1 || len_ == 2);
344 int32_t* p = reinterpret_cast<int32_t*>(&buf_[len_]);
345 *p = disp;
346 len_ += sizeof(int32_t);
347 }
348
349
350 } } // namespace v8::internal
351
352 #endif // V8_X64_ASSEMBLER_X64_INL_H_
353