1 /*
2 ** This file is in the public domain, so clarified as of
3 ** 1996-06-05 by Arthur David Olson.
4 */
5
6 #ifndef lint
7 #ifndef NOID
8 static char elsieid[] = "@(#)localtime.c 8.3";
9 #endif /* !defined NOID */
10 #endif /* !defined lint */
11
12 /*
13 ** Leap second handling from Bradley White.
14 ** POSIX-style TZ environment variable handling from Guy Harris.
15 */
16
17 /*LINTLIBRARY*/
18
19 #include "private.h"
20 #include "tzfile.h"
21 #include "fcntl.h"
22 #include "float.h" /* for FLT_MAX and DBL_MAX */
23
24 #include "thread_private.h"
25 #include <sys/system_properties.h>
26
27 #ifndef TZ_ABBR_MAX_LEN
28 #define TZ_ABBR_MAX_LEN 16
29 #endif /* !defined TZ_ABBR_MAX_LEN */
30
31 #ifndef TZ_ABBR_CHAR_SET
32 #define TZ_ABBR_CHAR_SET \
33 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
34 #endif /* !defined TZ_ABBR_CHAR_SET */
35
36 #ifndef TZ_ABBR_ERR_CHAR
37 #define TZ_ABBR_ERR_CHAR '_'
38 #endif /* !defined TZ_ABBR_ERR_CHAR */
39
40 #define INDEXFILE "/system/usr/share/zoneinfo/zoneinfo.idx"
41 #define DATAFILE "/system/usr/share/zoneinfo/zoneinfo.dat"
42 #define NAMELEN 40
43 #define INTLEN 4
44 #define READLEN (NAMELEN + 3 * INTLEN)
45
46 /*
47 ** SunOS 4.1.1 headers lack O_BINARY.
48 */
49
50 #ifdef O_BINARY
51 #define OPEN_MODE (O_RDONLY | O_BINARY)
52 #endif /* defined O_BINARY */
53 #ifndef O_BINARY
54 #define OPEN_MODE O_RDONLY
55 #endif /* !defined O_BINARY */
56
57 #if 0
58 # define XLOG(xx) printf xx , fflush(stdout)
59 #else
60 # define XLOG(x) do{}while (0)
61 #endif
62
63 /* THREAD-SAFETY SUPPORT GOES HERE */
64 static pthread_mutex_t _tzMutex = PTHREAD_MUTEX_INITIALIZER;
65
_tzLock(void)66 static __inline__ void _tzLock(void)
67 {
68 if (__isthreaded)
69 pthread_mutex_lock(&_tzMutex);
70 }
71
_tzUnlock(void)72 static __inline__ void _tzUnlock(void)
73 {
74 if (__isthreaded)
75 pthread_mutex_unlock(&_tzMutex);
76 }
77
78 /* Complex computations to determine the min/max of time_t depending
79 * on TYPE_BIT / TYPE_SIGNED / TYPE_INTEGRAL.
80 * These macros cannot be used in pre-processor directives, so we
81 * let the C compiler do the work, which makes things a bit funky.
82 */
83 static const time_t TIME_T_MAX =
84 TYPE_INTEGRAL(time_t) ?
85 ( TYPE_SIGNED(time_t) ?
86 ~((time_t)1 << (TYPE_BIT(time_t)-1))
87 :
88 ~(time_t)0
89 )
90 : /* if time_t is a floating point number */
91 ( sizeof(time_t) > sizeof(float) ? (time_t)DBL_MAX : (time_t)FLT_MAX );
92
93 static const time_t TIME_T_MIN =
94 TYPE_INTEGRAL(time_t) ?
95 ( TYPE_SIGNED(time_t) ?
96 ((time_t)1 << (TYPE_BIT(time_t)-1))
97 :
98 0
99 )
100 :
101 ( sizeof(time_t) > sizeof(float) ? (time_t)DBL_MIN : (time_t)FLT_MIN );
102
103 #ifndef WILDABBR
104 /*
105 ** Someone might make incorrect use of a time zone abbreviation:
106 ** 1. They might reference tzname[0] before calling tzset (explicitly
107 ** or implicitly).
108 ** 2. They might reference tzname[1] before calling tzset (explicitly
109 ** or implicitly).
110 ** 3. They might reference tzname[1] after setting to a time zone
111 ** in which Daylight Saving Time is never observed.
112 ** 4. They might reference tzname[0] after setting to a time zone
113 ** in which Standard Time is never observed.
114 ** 5. They might reference tm.TM_ZONE after calling offtime.
115 ** What's best to do in the above cases is open to debate;
116 ** for now, we just set things up so that in any of the five cases
117 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
118 ** string "tzname[0] used before set", and similarly for the other cases.
119 ** And another: initialize tzname[0] to "ERA", with an explanation in the
120 ** manual page of what this "time zone abbreviation" means (doing this so
121 ** that tzname[0] has the "normal" length of three characters).
122 */
123 #define WILDABBR " "
124 #endif /* !defined WILDABBR */
125
126 static char wildabbr[] = WILDABBR;
127
128 static const char gmt[] = "GMT";
129
130 /*
131 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
132 ** We default to US rules as of 1999-08-17.
133 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
134 ** implementation dependent; for historical reasons, US rules are a
135 ** common default.
136 */
137 #ifndef TZDEFRULESTRING
138 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
139 #endif /* !defined TZDEFDST */
140
141 struct ttinfo { /* time type information */
142 long tt_gmtoff; /* UTC offset in seconds */
143 int tt_isdst; /* used to set tm_isdst */
144 int tt_abbrind; /* abbreviation list index */
145 int tt_ttisstd; /* TRUE if transition is std time */
146 int tt_ttisgmt; /* TRUE if transition is UTC */
147 };
148
149 struct lsinfo { /* leap second information */
150 time_t ls_trans; /* transition time */
151 long ls_corr; /* correction to apply */
152 };
153
154 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
155
156 #ifdef TZNAME_MAX
157 #define MY_TZNAME_MAX TZNAME_MAX
158 #endif /* defined TZNAME_MAX */
159 #ifndef TZNAME_MAX
160 #define MY_TZNAME_MAX 255
161 #endif /* !defined TZNAME_MAX */
162
163 /* XXX: This code should really use time64_t instead of time_t
164 * but we can't change it without re-generating the index
165 * file first with the correct data.
166 */
167 struct state {
168 int leapcnt;
169 int timecnt;
170 int typecnt;
171 int charcnt;
172 int goback;
173 int goahead;
174 time_t ats[TZ_MAX_TIMES];
175 unsigned char types[TZ_MAX_TIMES];
176 struct ttinfo ttis[TZ_MAX_TYPES];
177 char chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
178 (2 * (MY_TZNAME_MAX + 1)))];
179 struct lsinfo lsis[TZ_MAX_LEAPS];
180 };
181
182 struct rule {
183 int r_type; /* type of rule--see below */
184 int r_day; /* day number of rule */
185 int r_week; /* week number of rule */
186 int r_mon; /* month number of rule */
187 long r_time; /* transition time of rule */
188 };
189
190 #define JULIAN_DAY 0 /* Jn - Julian day */
191 #define DAY_OF_YEAR 1 /* n - day of year */
192 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
193
194 /*
195 ** Prototypes for static functions.
196 */
197
198 /* NOTE: all internal functions assume that _tzLock() was already called */
199
200 static long detzcode P((const char * codep));
201 static time_t detzcode64 P((const char * codep));
202 static int differ_by_repeat P((time_t t1, time_t t0));
203 static const char * getzname P((const char * strp));
204 static const char * getqzname P((const char * strp, const int delim));
205 static const char * getnum P((const char * strp, int * nump, int min,
206 int max));
207 static const char * getsecs P((const char * strp, long * secsp));
208 static const char * getoffset P((const char * strp, long * offsetp));
209 static const char * getrule P((const char * strp, struct rule * rulep));
210 static void gmtload P((struct state * sp));
211 static struct tm * gmtsub P((const time_t * timep, long offset,
212 struct tm * tmp));
213 static struct tm * localsub P((const time_t * timep, long offset,
214 struct tm * tmp));
215 static int increment_overflow P((int * number, int delta));
216 static int leaps_thru_end_of P((int y));
217 static int long_increment_overflow P((long * number, int delta));
218 static int long_normalize_overflow P((long * tensptr,
219 int * unitsptr, int base));
220 static int normalize_overflow P((int * tensptr, int * unitsptr,
221 int base));
222 static void settzname P((void));
223 static time_t time1 P((struct tm * tmp,
224 struct tm * (*funcp) P((const time_t *,
225 long, struct tm *)),
226 long offset));
227 static time_t time2 P((struct tm *tmp,
228 struct tm * (*funcp) P((const time_t *,
229 long, struct tm*)),
230 long offset, int * okayp));
231 static time_t time2sub P((struct tm *tmp,
232 struct tm * (*funcp) P((const time_t *,
233 long, struct tm*)),
234 long offset, int * okayp, int do_norm_secs));
235 static struct tm * timesub P((const time_t * timep, long offset,
236 const struct state * sp, struct tm * tmp));
237 static int tmcomp P((const struct tm * atmp,
238 const struct tm * btmp));
239 static time_t transtime P((time_t janfirst, int year,
240 const struct rule * rulep, long offset));
241 static int tzload P((const char * name, struct state * sp,
242 int doextend));
243 static int tzparse P((const char * name, struct state * sp,
244 int lastditch));
245
246 #ifdef ALL_STATE
247 static struct state * lclptr;
248 static struct state * gmtptr;
249 #endif /* defined ALL_STATE */
250
251 #ifndef ALL_STATE
252 static struct state lclmem;
253 static struct state gmtmem;
254 #define lclptr (&lclmem)
255 #define gmtptr (&gmtmem)
256 #endif /* State Farm */
257
258 #ifndef TZ_STRLEN_MAX
259 #define TZ_STRLEN_MAX 255
260 #endif /* !defined TZ_STRLEN_MAX */
261
262 static char lcl_TZname[TZ_STRLEN_MAX + 1];
263 static int lcl_is_set;
264 static int gmt_is_set;
265
266 char * tzname[2] = {
267 wildabbr,
268 wildabbr
269 };
270
271 /*
272 ** Section 4.12.3 of X3.159-1989 requires that
273 ** Except for the strftime function, these functions [asctime,
274 ** ctime, gmtime, localtime] return values in one of two static
275 ** objects: a broken-down time structure and an array of char.
276 ** Thanks to Paul Eggert for noting this.
277 */
278
279 static struct tm tmGlobal;
280
281 #ifdef USG_COMPAT
282 time_t timezone = 0;
283 int daylight = 0;
284 #endif /* defined USG_COMPAT */
285
286 #ifdef ALTZONE
287 time_t altzone = 0;
288 #endif /* defined ALTZONE */
289
290 static long
detzcode(codep)291 detzcode(codep)
292 const char * const codep;
293 {
294 register long result;
295 register int i;
296
297 result = (codep[0] & 0x80) ? ~0L : 0;
298 for (i = 0; i < 4; ++i)
299 result = (result << 8) | (codep[i] & 0xff);
300 return result;
301 }
302
303 static time_t
detzcode64(codep)304 detzcode64(codep)
305 const char * const codep;
306 {
307 register time_t result;
308 register int i;
309
310 result = (codep[0] & 0x80) ? (~(int_fast64_t) 0) : 0;
311 for (i = 0; i < 8; ++i)
312 result = result * 256 + (codep[i] & 0xff);
313 return result;
314 }
315
316 static void
settzname(void)317 settzname P((void))
318 {
319 register struct state * const sp = lclptr;
320 register int i;
321
322 tzname[0] = wildabbr;
323 tzname[1] = wildabbr;
324 #ifdef USG_COMPAT
325 daylight = 0;
326 timezone = 0;
327 #endif /* defined USG_COMPAT */
328 #ifdef ALTZONE
329 altzone = 0;
330 #endif /* defined ALTZONE */
331 #ifdef ALL_STATE
332 if (sp == NULL) {
333 tzname[0] = tzname[1] = gmt;
334 return;
335 }
336 #endif /* defined ALL_STATE */
337 for (i = 0; i < sp->typecnt; ++i) {
338 register const struct ttinfo * const ttisp = &sp->ttis[i];
339
340 tzname[ttisp->tt_isdst] =
341 &sp->chars[ttisp->tt_abbrind];
342 #ifdef USG_COMPAT
343 if (ttisp->tt_isdst)
344 daylight = 1;
345 if (i == 0 || !ttisp->tt_isdst)
346 timezone = -(ttisp->tt_gmtoff);
347 #endif /* defined USG_COMPAT */
348 #ifdef ALTZONE
349 if (i == 0 || ttisp->tt_isdst)
350 altzone = -(ttisp->tt_gmtoff);
351 #endif /* defined ALTZONE */
352 }
353 /*
354 ** And to get the latest zone names into tzname. . .
355 */
356 for (i = 0; i < sp->timecnt; ++i) {
357 register const struct ttinfo * const ttisp =
358 &sp->ttis[
359 sp->types[i]];
360
361 tzname[ttisp->tt_isdst] =
362 &sp->chars[ttisp->tt_abbrind];
363 }
364 /*
365 ** Finally, scrub the abbreviations.
366 ** First, replace bogus characters.
367 */
368 for (i = 0; i < sp->charcnt; ++i)
369 if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
370 sp->chars[i] = TZ_ABBR_ERR_CHAR;
371 /*
372 ** Second, truncate long abbreviations.
373 */
374 for (i = 0; i < sp->typecnt; ++i) {
375 register const struct ttinfo * const ttisp = &sp->ttis[i];
376 register char * cp = &sp->chars[ttisp->tt_abbrind];
377
378 if (strlen(cp) > TZ_ABBR_MAX_LEN &&
379 strcmp(cp, GRANDPARENTED) != 0)
380 *(cp + TZ_ABBR_MAX_LEN) = '\0';
381 }
382 }
383
384 static int
differ_by_repeat(t1,t0)385 differ_by_repeat(t1, t0)
386 const time_t t1;
387 const time_t t0;
388 {
389 if (TYPE_INTEGRAL(time_t) &&
390 TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
391 return 0;
392 #if SECSPERREPEAT_BITS <= 32 /* to avoid compiler warning (condition is always false) */
393 return (t1 - t0) == SECSPERREPEAT;
394 #else
395 return 0;
396 #endif
397 }
398
toint(unsigned char * s)399 static int toint(unsigned char *s) {
400 return (s[0] << 24) | (s[1] << 16) | (s[2] << 8) | s[3];
401 }
402
403 static int
tzload(name,sp,doextend)404 tzload(name, sp, doextend)
405 register const char * name;
406 register struct state * const sp;
407 register const int doextend;
408 {
409 register const char * p;
410 register int i;
411 register int fid;
412 register int stored;
413 register int nread;
414 union {
415 struct tzhead tzhead;
416 char buf[2 * sizeof(struct tzhead) +
417 2 * sizeof *sp +
418 4 * TZ_MAX_TIMES];
419 } u;
420 int toread = sizeof u.buf;
421
422 if (name == NULL && (name = TZDEFAULT) == NULL) {
423 XLOG(("tzload: null 'name' parameter\n" ));
424 return -1;
425 }
426 {
427 register int doaccess;
428 /*
429 ** Section 4.9.1 of the C standard says that
430 ** "FILENAME_MAX expands to an integral constant expression
431 ** that is the size needed for an array of char large enough
432 ** to hold the longest file name string that the implementation
433 ** guarantees can be opened."
434 */
435 char fullname[FILENAME_MAX + 1];
436 char *origname = (char*) name;
437
438 if (name[0] == ':')
439 ++name;
440 doaccess = name[0] == '/';
441 if (!doaccess) {
442 if ((p = TZDIR) == NULL) {
443 XLOG(("tzload: null TZDIR macro ?\n" ));
444 return -1;
445 }
446 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname) {
447 XLOG(( "tzload: path too long: %s/%s\n", p, name ));
448 return -1;
449 }
450 (void) strcpy(fullname, p);
451 (void) strcat(fullname, "/");
452 (void) strcat(fullname, name);
453 /*
454 ** Set doaccess if '.' (as in "../") shows up in name.
455 */
456 if (strchr(name, '.') != NULL)
457 doaccess = TRUE;
458 name = fullname;
459 }
460 if (doaccess && access(name, R_OK) != 0) {
461 XLOG(( "tzload: could not find '%s'\n", name ));
462 return -1;
463 }
464 if ((fid = open(name, OPEN_MODE)) == -1) {
465 char buf[READLEN];
466 char name[NAMELEN + 1];
467 int fidix = open(INDEXFILE, OPEN_MODE);
468 int off = -1;
469
470 XLOG(( "tzload: could not open '%s', trying '%s'\n", fullname, INDEXFILE ));
471 if (fidix < 0) {
472 XLOG(( "tzload: could not find '%s'\n", INDEXFILE ));
473 return -1;
474 }
475
476 while (read(fidix, buf, sizeof(buf)) == sizeof(buf)) {
477 memcpy(name, buf, NAMELEN);
478 name[NAMELEN] = '\0';
479
480 if (strcmp(name, origname) == 0) {
481 off = toint((unsigned char *) buf + NAMELEN);
482 toread = toint((unsigned char *) buf + NAMELEN + INTLEN);
483 break;
484 }
485 }
486
487 close(fidix);
488
489 if (off < 0) {
490 XLOG(( "tzload: invalid offset (%d)\n", off ));
491 return -1;
492 }
493
494 fid = open(DATAFILE, OPEN_MODE);
495
496 if (fid < 0) {
497 XLOG(( "tzload: could not open '%s'\n", DATAFILE ));
498 return -1;
499 }
500
501 if (lseek(fid, off, SEEK_SET) < 0) {
502 XLOG(( "tzload: could not seek to %d in '%s'\n", off, DATAFILE ));
503 return -1;
504 }
505 }
506 }
507 nread = read(fid, u.buf, toread);
508 if (close(fid) < 0 || nread <= 0) {
509 XLOG(( "tzload: could not read content of '%s'\n", DATAFILE ));
510 return -1;
511 }
512 for (stored = 4; stored <= 8; stored *= 2) {
513 int ttisstdcnt;
514 int ttisgmtcnt;
515
516 ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
517 ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
518 sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
519 sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
520 sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
521 sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
522 p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
523 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
524 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
525 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
526 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
527 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
528 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
529 return -1;
530 if (nread - (p - u.buf) <
531 sp->timecnt * stored + /* ats */
532 sp->timecnt + /* types */
533 sp->typecnt * 6 + /* ttinfos */
534 sp->charcnt + /* chars */
535 sp->leapcnt * (stored + 4) + /* lsinfos */
536 ttisstdcnt + /* ttisstds */
537 ttisgmtcnt) /* ttisgmts */
538 return -1;
539 for (i = 0; i < sp->timecnt; ++i) {
540 sp->ats[i] = (stored == 4) ?
541 detzcode(p) : detzcode64(p);
542 p += stored;
543 }
544 for (i = 0; i < sp->timecnt; ++i) {
545 sp->types[i] = (unsigned char) *p++;
546 if (sp->types[i] >= sp->typecnt)
547 return -1;
548 }
549 for (i = 0; i < sp->typecnt; ++i) {
550 register struct ttinfo * ttisp;
551
552 ttisp = &sp->ttis[i];
553 ttisp->tt_gmtoff = detzcode(p);
554 p += 4;
555 ttisp->tt_isdst = (unsigned char) *p++;
556 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
557 return -1;
558 ttisp->tt_abbrind = (unsigned char) *p++;
559 if (ttisp->tt_abbrind < 0 ||
560 ttisp->tt_abbrind > sp->charcnt)
561 return -1;
562 }
563 for (i = 0; i < sp->charcnt; ++i)
564 sp->chars[i] = *p++;
565 sp->chars[i] = '\0'; /* ensure '\0' at end */
566 for (i = 0; i < sp->leapcnt; ++i) {
567 register struct lsinfo * lsisp;
568
569 lsisp = &sp->lsis[i];
570 lsisp->ls_trans = (stored == 4) ?
571 detzcode(p) : detzcode64(p);
572 p += stored;
573 lsisp->ls_corr = detzcode(p);
574 p += 4;
575 }
576 for (i = 0; i < sp->typecnt; ++i) {
577 register struct ttinfo * ttisp;
578
579 ttisp = &sp->ttis[i];
580 if (ttisstdcnt == 0)
581 ttisp->tt_ttisstd = FALSE;
582 else {
583 ttisp->tt_ttisstd = *p++;
584 if (ttisp->tt_ttisstd != TRUE &&
585 ttisp->tt_ttisstd != FALSE)
586 return -1;
587 }
588 }
589 for (i = 0; i < sp->typecnt; ++i) {
590 register struct ttinfo * ttisp;
591
592 ttisp = &sp->ttis[i];
593 if (ttisgmtcnt == 0)
594 ttisp->tt_ttisgmt = FALSE;
595 else {
596 ttisp->tt_ttisgmt = *p++;
597 if (ttisp->tt_ttisgmt != TRUE &&
598 ttisp->tt_ttisgmt != FALSE)
599 return -1;
600 }
601 }
602 /*
603 ** Out-of-sort ats should mean we're running on a
604 ** signed time_t system but using a data file with
605 ** unsigned values (or vice versa).
606 */
607 for (i = 0; i < sp->timecnt - 2; ++i)
608 if (sp->ats[i] > sp->ats[i + 1]) {
609 ++i;
610 if (TYPE_SIGNED(time_t)) {
611 /*
612 ** Ignore the end (easy).
613 */
614 sp->timecnt = i;
615 } else {
616 /*
617 ** Ignore the beginning (harder).
618 */
619 register int j;
620
621 for (j = 0; j + i < sp->timecnt; ++j) {
622 sp->ats[j] = sp->ats[j + i];
623 sp->types[j] = sp->types[j + i];
624 }
625 sp->timecnt = j;
626 }
627 break;
628 }
629 /*
630 ** If this is an old file, we're done.
631 */
632 if (u.tzhead.tzh_version[0] == '\0')
633 break;
634 nread -= p - u.buf;
635 for (i = 0; i < nread; ++i)
636 u.buf[i] = p[i];
637 /*
638 ** If this is a narrow integer time_t system, we're done.
639 */
640 if (stored >= (int) sizeof(time_t) && TYPE_INTEGRAL(time_t))
641 break;
642 }
643 if (doextend && nread > 2 &&
644 u.buf[0] == '\n' && u.buf[nread - 1] == '\n' &&
645 sp->typecnt + 2 <= TZ_MAX_TYPES) {
646 struct state ts;
647 register int result;
648
649 u.buf[nread - 1] = '\0';
650 result = tzparse(&u.buf[1], &ts, FALSE);
651 if (result == 0 && ts.typecnt == 2 &&
652 sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
653 for (i = 0; i < 2; ++i)
654 ts.ttis[i].tt_abbrind +=
655 sp->charcnt;
656 for (i = 0; i < ts.charcnt; ++i)
657 sp->chars[sp->charcnt++] =
658 ts.chars[i];
659 i = 0;
660 while (i < ts.timecnt &&
661 ts.ats[i] <=
662 sp->ats[sp->timecnt - 1])
663 ++i;
664 while (i < ts.timecnt &&
665 sp->timecnt < TZ_MAX_TIMES) {
666 sp->ats[sp->timecnt] =
667 ts.ats[i];
668 sp->types[sp->timecnt] =
669 sp->typecnt +
670 ts.types[i];
671 ++sp->timecnt;
672 ++i;
673 }
674 sp->ttis[sp->typecnt++] = ts.ttis[0];
675 sp->ttis[sp->typecnt++] = ts.ttis[1];
676 }
677 }
678 i = 2 * YEARSPERREPEAT;
679 sp->goback = sp->goahead = sp->timecnt > i;
680 sp->goback &= sp->types[i] == sp->types[0] &&
681 differ_by_repeat(sp->ats[i], sp->ats[0]);
682 sp->goahead &=
683 sp->types[sp->timecnt - 1] == sp->types[sp->timecnt - 1 - i] &&
684 differ_by_repeat(sp->ats[sp->timecnt - 1],
685 sp->ats[sp->timecnt - 1 - i]);
686 XLOG(( "tzload: load ok !!\n" ));
687 return 0;
688 }
689
690 static const int mon_lengths[2][MONSPERYEAR] = {
691 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
692 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
693 };
694
695 static const int year_lengths[2] = {
696 DAYSPERNYEAR, DAYSPERLYEAR
697 };
698
699 /*
700 ** Given a pointer into a time zone string, scan until a character that is not
701 ** a valid character in a zone name is found. Return a pointer to that
702 ** character.
703 */
704
705 static const char *
getzname(strp)706 getzname(strp)
707 register const char * strp;
708 {
709 register char c;
710
711 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
712 c != '+')
713 ++strp;
714 return strp;
715 }
716
717 /*
718 ** Given a pointer into an extended time zone string, scan until the ending
719 ** delimiter of the zone name is located. Return a pointer to the delimiter.
720 **
721 ** As with getzname above, the legal character set is actually quite
722 ** restricted, with other characters producing undefined results.
723 ** We don't do any checking here; checking is done later in common-case code.
724 */
725
726 static const char *
getqzname(register const char * strp,const int delim)727 getqzname(register const char *strp, const int delim)
728 {
729 register int c;
730
731 while ((c = *strp) != '\0' && c != delim)
732 ++strp;
733 return strp;
734 }
735
736 /*
737 ** Given a pointer into a time zone string, extract a number from that string.
738 ** Check that the number is within a specified range; if it is not, return
739 ** NULL.
740 ** Otherwise, return a pointer to the first character not part of the number.
741 */
742
743 static const char *
getnum(strp,nump,min,max)744 getnum(strp, nump, min, max)
745 register const char * strp;
746 int * const nump;
747 const int min;
748 const int max;
749 {
750 register char c;
751 register int num;
752
753 if (strp == NULL || !is_digit(c = *strp))
754 return NULL;
755 num = 0;
756 do {
757 num = num * 10 + (c - '0');
758 if (num > max)
759 return NULL; /* illegal value */
760 c = *++strp;
761 } while (is_digit(c));
762 if (num < min)
763 return NULL; /* illegal value */
764 *nump = num;
765 return strp;
766 }
767
768 /*
769 ** Given a pointer into a time zone string, extract a number of seconds,
770 ** in hh[:mm[:ss]] form, from the string.
771 ** If any error occurs, return NULL.
772 ** Otherwise, return a pointer to the first character not part of the number
773 ** of seconds.
774 */
775
776 static const char *
getsecs(strp,secsp)777 getsecs(strp, secsp)
778 register const char * strp;
779 long * const secsp;
780 {
781 int num;
782
783 /*
784 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
785 ** "M10.4.6/26", which does not conform to Posix,
786 ** but which specifies the equivalent of
787 ** ``02:00 on the first Sunday on or after 23 Oct''.
788 */
789 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
790 if (strp == NULL)
791 return NULL;
792 *secsp = num * (long) SECSPERHOUR;
793 if (*strp == ':') {
794 ++strp;
795 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
796 if (strp == NULL)
797 return NULL;
798 *secsp += num * SECSPERMIN;
799 if (*strp == ':') {
800 ++strp;
801 /* `SECSPERMIN' allows for leap seconds. */
802 strp = getnum(strp, &num, 0, SECSPERMIN);
803 if (strp == NULL)
804 return NULL;
805 *secsp += num;
806 }
807 }
808 return strp;
809 }
810
811 /*
812 ** Given a pointer into a time zone string, extract an offset, in
813 ** [+-]hh[:mm[:ss]] form, from the string.
814 ** If any error occurs, return NULL.
815 ** Otherwise, return a pointer to the first character not part of the time.
816 */
817
818 static const char *
getoffset(strp,offsetp)819 getoffset(strp, offsetp)
820 register const char * strp;
821 long * const offsetp;
822 {
823 register int neg = 0;
824
825 if (*strp == '-') {
826 neg = 1;
827 ++strp;
828 } else if (*strp == '+')
829 ++strp;
830 strp = getsecs(strp, offsetp);
831 if (strp == NULL)
832 return NULL; /* illegal time */
833 if (neg)
834 *offsetp = -*offsetp;
835 return strp;
836 }
837
838 /*
839 ** Given a pointer into a time zone string, extract a rule in the form
840 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
841 ** If a valid rule is not found, return NULL.
842 ** Otherwise, return a pointer to the first character not part of the rule.
843 */
844
845 static const char *
getrule(strp,rulep)846 getrule(strp, rulep)
847 const char * strp;
848 register struct rule * const rulep;
849 {
850 if (*strp == 'J') {
851 /*
852 ** Julian day.
853 */
854 rulep->r_type = JULIAN_DAY;
855 ++strp;
856 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
857 } else if (*strp == 'M') {
858 /*
859 ** Month, week, day.
860 */
861 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
862 ++strp;
863 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
864 if (strp == NULL)
865 return NULL;
866 if (*strp++ != '.')
867 return NULL;
868 strp = getnum(strp, &rulep->r_week, 1, 5);
869 if (strp == NULL)
870 return NULL;
871 if (*strp++ != '.')
872 return NULL;
873 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
874 } else if (is_digit(*strp)) {
875 /*
876 ** Day of year.
877 */
878 rulep->r_type = DAY_OF_YEAR;
879 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
880 } else return NULL; /* invalid format */
881 if (strp == NULL)
882 return NULL;
883 if (*strp == '/') {
884 /*
885 ** Time specified.
886 */
887 ++strp;
888 strp = getsecs(strp, &rulep->r_time);
889 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
890 return strp;
891 }
892
893 /*
894 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
895 ** year, a rule, and the offset from UTC at the time that rule takes effect,
896 ** calculate the Epoch-relative time that rule takes effect.
897 */
898
899 static time_t
transtime(janfirst,year,rulep,offset)900 transtime(janfirst, year, rulep, offset)
901 const time_t janfirst;
902 const int year;
903 register const struct rule * const rulep;
904 const long offset;
905 {
906 register int leapyear;
907 register time_t value;
908 register int i;
909 int d, m1, yy0, yy1, yy2, dow;
910
911 INITIALIZE(value);
912 leapyear = isleap(year);
913 switch (rulep->r_type) {
914
915 case JULIAN_DAY:
916 /*
917 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
918 ** years.
919 ** In non-leap years, or if the day number is 59 or less, just
920 ** add SECSPERDAY times the day number-1 to the time of
921 ** January 1, midnight, to get the day.
922 */
923 value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
924 if (leapyear && rulep->r_day >= 60)
925 value += SECSPERDAY;
926 break;
927
928 case DAY_OF_YEAR:
929 /*
930 ** n - day of year.
931 ** Just add SECSPERDAY times the day number to the time of
932 ** January 1, midnight, to get the day.
933 */
934 value = janfirst + rulep->r_day * SECSPERDAY;
935 break;
936
937 case MONTH_NTH_DAY_OF_WEEK:
938 /*
939 ** Mm.n.d - nth "dth day" of month m.
940 */
941 value = janfirst;
942 for (i = 0; i < rulep->r_mon - 1; ++i)
943 value += mon_lengths[leapyear][i] * SECSPERDAY;
944
945 /*
946 ** Use Zeller's Congruence to get day-of-week of first day of
947 ** month.
948 */
949 m1 = (rulep->r_mon + 9) % 12 + 1;
950 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
951 yy1 = yy0 / 100;
952 yy2 = yy0 % 100;
953 dow = ((26 * m1 - 2) / 10 +
954 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
955 if (dow < 0)
956 dow += DAYSPERWEEK;
957
958 /*
959 ** "dow" is the day-of-week of the first day of the month. Get
960 ** the day-of-month (zero-origin) of the first "dow" day of the
961 ** month.
962 */
963 d = rulep->r_day - dow;
964 if (d < 0)
965 d += DAYSPERWEEK;
966 for (i = 1; i < rulep->r_week; ++i) {
967 if (d + DAYSPERWEEK >=
968 mon_lengths[leapyear][rulep->r_mon - 1])
969 break;
970 d += DAYSPERWEEK;
971 }
972
973 /*
974 ** "d" is the day-of-month (zero-origin) of the day we want.
975 */
976 value += d * SECSPERDAY;
977 break;
978 }
979
980 /*
981 ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
982 ** question. To get the Epoch-relative time of the specified local
983 ** time on that day, add the transition time and the current offset
984 ** from UTC.
985 */
986 return value + rulep->r_time + offset;
987 }
988
989 /*
990 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
991 ** appropriate.
992 */
993
994 static int
tzparse(name,sp,lastditch)995 tzparse(name, sp, lastditch)
996 const char * name;
997 register struct state * const sp;
998 const int lastditch;
999 {
1000 const char * stdname;
1001 const char * dstname;
1002 size_t stdlen;
1003 size_t dstlen;
1004 long stdoffset;
1005 long dstoffset;
1006 register time_t * atp;
1007 register unsigned char * typep;
1008 register char * cp;
1009 register int load_result;
1010
1011 INITIALIZE(dstname);
1012 stdname = name;
1013 if (lastditch) {
1014 stdlen = strlen(name); /* length of standard zone name */
1015 name += stdlen;
1016 if (stdlen >= sizeof sp->chars)
1017 stdlen = (sizeof sp->chars) - 1;
1018 stdoffset = 0;
1019 } else {
1020 if (*name == '<') {
1021 name++;
1022 stdname = name;
1023 name = getqzname(name, '>');
1024 if (*name != '>')
1025 return (-1);
1026 stdlen = name - stdname;
1027 name++;
1028 } else {
1029 name = getzname(name);
1030 stdlen = name - stdname;
1031 }
1032 if (*name == '\0')
1033 return -1;
1034 name = getoffset(name, &stdoffset);
1035 if (name == NULL)
1036 return -1;
1037 }
1038 load_result = tzload(TZDEFRULES, sp, FALSE);
1039 if (load_result != 0)
1040 sp->leapcnt = 0; /* so, we're off a little */
1041 sp->timecnt = 0;
1042 if (*name != '\0') {
1043 if (*name == '<') {
1044 dstname = ++name;
1045 name = getqzname(name, '>');
1046 if (*name != '>')
1047 return -1;
1048 dstlen = name - dstname;
1049 name++;
1050 } else {
1051 dstname = name;
1052 name = getzname(name);
1053 dstlen = name - dstname; /* length of DST zone name */
1054 }
1055 if (*name != '\0' && *name != ',' && *name != ';') {
1056 name = getoffset(name, &dstoffset);
1057 if (name == NULL)
1058 return -1;
1059 } else dstoffset = stdoffset - SECSPERHOUR;
1060 if (*name == '\0' && load_result != 0)
1061 name = TZDEFRULESTRING;
1062 if (*name == ',' || *name == ';') {
1063 struct rule start;
1064 struct rule end;
1065 register int year;
1066 register time_t janfirst;
1067 time_t starttime;
1068 time_t endtime;
1069
1070 ++name;
1071 if ((name = getrule(name, &start)) == NULL)
1072 return -1;
1073 if (*name++ != ',')
1074 return -1;
1075 if ((name = getrule(name, &end)) == NULL)
1076 return -1;
1077 if (*name != '\0')
1078 return -1;
1079 sp->typecnt = 2; /* standard time and DST */
1080 /*
1081 ** Two transitions per year, from EPOCH_YEAR forward.
1082 */
1083 sp->ttis[0].tt_gmtoff = -dstoffset;
1084 sp->ttis[0].tt_isdst = 1;
1085 sp->ttis[0].tt_abbrind = stdlen + 1;
1086 sp->ttis[1].tt_gmtoff = -stdoffset;
1087 sp->ttis[1].tt_isdst = 0;
1088 sp->ttis[1].tt_abbrind = 0;
1089 atp = sp->ats;
1090 typep = sp->types;
1091 janfirst = 0;
1092 for (year = EPOCH_YEAR;
1093 sp->timecnt + 2 <= TZ_MAX_TIMES;
1094 ++year) {
1095 time_t newfirst;
1096
1097 starttime = transtime(janfirst, year, &start,
1098 stdoffset);
1099 endtime = transtime(janfirst, year, &end,
1100 dstoffset);
1101 if (starttime > endtime) {
1102 *atp++ = endtime;
1103 *typep++ = 1; /* DST ends */
1104 *atp++ = starttime;
1105 *typep++ = 0; /* DST begins */
1106 } else {
1107 *atp++ = starttime;
1108 *typep++ = 0; /* DST begins */
1109 *atp++ = endtime;
1110 *typep++ = 1; /* DST ends */
1111 }
1112 sp->timecnt += 2;
1113 newfirst = janfirst;
1114 newfirst += year_lengths[isleap(year)] *
1115 SECSPERDAY;
1116 if (newfirst <= janfirst)
1117 break;
1118 janfirst = newfirst;
1119 }
1120 } else {
1121 register long theirstdoffset;
1122 register long theirdstoffset;
1123 register long theiroffset;
1124 register int isdst;
1125 register int i;
1126 register int j;
1127
1128 if (*name != '\0')
1129 return -1;
1130 /*
1131 ** Initial values of theirstdoffset and theirdstoffset.
1132 */
1133 theirstdoffset = 0;
1134 for (i = 0; i < sp->timecnt; ++i) {
1135 j = sp->types[i];
1136 if (!sp->ttis[j].tt_isdst) {
1137 theirstdoffset =
1138 -sp->ttis[j].tt_gmtoff;
1139 break;
1140 }
1141 }
1142 theirdstoffset = 0;
1143 for (i = 0; i < sp->timecnt; ++i) {
1144 j = sp->types[i];
1145 if (sp->ttis[j].tt_isdst) {
1146 theirdstoffset =
1147 -sp->ttis[j].tt_gmtoff;
1148 break;
1149 }
1150 }
1151 /*
1152 ** Initially we're assumed to be in standard time.
1153 */
1154 isdst = FALSE;
1155 theiroffset = theirstdoffset;
1156 /*
1157 ** Now juggle transition times and types
1158 ** tracking offsets as you do.
1159 */
1160 for (i = 0; i < sp->timecnt; ++i) {
1161 j = sp->types[i];
1162 sp->types[i] = sp->ttis[j].tt_isdst;
1163 if (sp->ttis[j].tt_ttisgmt) {
1164 /* No adjustment to transition time */
1165 } else {
1166 /*
1167 ** If summer time is in effect, and the
1168 ** transition time was not specified as
1169 ** standard time, add the summer time
1170 ** offset to the transition time;
1171 ** otherwise, add the standard time
1172 ** offset to the transition time.
1173 */
1174 /*
1175 ** Transitions from DST to DDST
1176 ** will effectively disappear since
1177 ** POSIX provides for only one DST
1178 ** offset.
1179 */
1180 if (isdst && !sp->ttis[j].tt_ttisstd) {
1181 sp->ats[i] += dstoffset -
1182 theirdstoffset;
1183 } else {
1184 sp->ats[i] += stdoffset -
1185 theirstdoffset;
1186 }
1187 }
1188 theiroffset = -sp->ttis[j].tt_gmtoff;
1189 if (sp->ttis[j].tt_isdst)
1190 theirdstoffset = theiroffset;
1191 else theirstdoffset = theiroffset;
1192 }
1193 /*
1194 ** Finally, fill in ttis.
1195 ** ttisstd and ttisgmt need not be handled.
1196 */
1197 sp->ttis[0].tt_gmtoff = -stdoffset;
1198 sp->ttis[0].tt_isdst = FALSE;
1199 sp->ttis[0].tt_abbrind = 0;
1200 sp->ttis[1].tt_gmtoff = -dstoffset;
1201 sp->ttis[1].tt_isdst = TRUE;
1202 sp->ttis[1].tt_abbrind = stdlen + 1;
1203 sp->typecnt = 2;
1204 }
1205 } else {
1206 dstlen = 0;
1207 sp->typecnt = 1; /* only standard time */
1208 sp->timecnt = 0;
1209 sp->ttis[0].tt_gmtoff = -stdoffset;
1210 sp->ttis[0].tt_isdst = 0;
1211 sp->ttis[0].tt_abbrind = 0;
1212 }
1213 sp->charcnt = stdlen + 1;
1214 if (dstlen != 0)
1215 sp->charcnt += dstlen + 1;
1216 if ((size_t) sp->charcnt > sizeof sp->chars)
1217 return -1;
1218 cp = sp->chars;
1219 (void) strncpy(cp, stdname, stdlen);
1220 cp += stdlen;
1221 *cp++ = '\0';
1222 if (dstlen != 0) {
1223 (void) strncpy(cp, dstname, dstlen);
1224 *(cp + dstlen) = '\0';
1225 }
1226 return 0;
1227 }
1228
1229 static void
gmtload(sp)1230 gmtload(sp)
1231 struct state * const sp;
1232 {
1233 if (tzload(gmt, sp, TRUE) != 0)
1234 (void) tzparse(gmt, sp, TRUE);
1235 }
1236
1237 static void
tzsetwall(void)1238 tzsetwall P((void))
1239 {
1240 if (lcl_is_set < 0)
1241 return;
1242 lcl_is_set = -1;
1243
1244 #ifdef ALL_STATE
1245 if (lclptr == NULL) {
1246 lclptr = (struct state *) malloc(sizeof *lclptr);
1247 if (lclptr == NULL) {
1248 settzname(); /* all we can do */
1249 return;
1250 }
1251 }
1252 #endif /* defined ALL_STATE */
1253 if (tzload((char *) NULL, lclptr, TRUE) != 0)
1254 gmtload(lclptr);
1255 settzname();
1256 }
1257
1258 static void
tzset_locked(void)1259 tzset_locked P((void))
1260 {
1261 register const char * name = NULL;
1262 static char buf[PROP_VALUE_MAX];
1263
1264 name = getenv("TZ");
1265
1266 // try the "persist.sys.timezone" system property first
1267 if (name == NULL && __system_property_get("persist.sys.timezone", buf) > 0)
1268 name = buf;
1269
1270 if (name == NULL) {
1271 tzsetwall();
1272 return;
1273 }
1274
1275 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1276 return;
1277 lcl_is_set = strlen(name) < sizeof lcl_TZname;
1278 if (lcl_is_set)
1279 (void) strcpy(lcl_TZname, name);
1280
1281 #ifdef ALL_STATE
1282 if (lclptr == NULL) {
1283 lclptr = (struct state *) malloc(sizeof *lclptr);
1284 if (lclptr == NULL) {
1285 settzname(); /* all we can do */
1286 return;
1287 }
1288 }
1289 #endif /* defined ALL_STATE */
1290 if (*name == '\0') {
1291 /*
1292 ** User wants it fast rather than right.
1293 */
1294 lclptr->leapcnt = 0; /* so, we're off a little */
1295 lclptr->timecnt = 0;
1296 lclptr->typecnt = 0;
1297 lclptr->ttis[0].tt_isdst = 0;
1298 lclptr->ttis[0].tt_gmtoff = 0;
1299 lclptr->ttis[0].tt_abbrind = 0;
1300 (void) strcpy(lclptr->chars, gmt);
1301 } else if (tzload(name, lclptr, TRUE) != 0)
1302 if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1303 (void) gmtload(lclptr);
1304 settzname();
1305 }
1306
1307 void
tzset(void)1308 tzset P((void))
1309 {
1310 _tzLock();
1311 tzset_locked();
1312 _tzUnlock();
1313 }
1314
1315 /*
1316 ** The easy way to behave "as if no library function calls" localtime
1317 ** is to not call it--so we drop its guts into "localsub", which can be
1318 ** freely called. (And no, the PANS doesn't require the above behavior--
1319 ** but it *is* desirable.)
1320 **
1321 ** The unused offset argument is for the benefit of mktime variants.
1322 */
1323
1324 /*ARGSUSED*/
1325 static struct tm *
localsub(timep,offset,tmp)1326 localsub(timep, offset, tmp)
1327 const time_t * const timep;
1328 const long offset;
1329 struct tm * const tmp;
1330 {
1331 register struct state * sp;
1332 register const struct ttinfo * ttisp;
1333 register int i;
1334 register struct tm * result;
1335 const time_t t = *timep;
1336
1337 sp = lclptr;
1338 #ifdef ALL_STATE
1339 if (sp == NULL)
1340 return gmtsub(timep, offset, tmp);
1341 #endif /* defined ALL_STATE */
1342 if ((sp->goback && t < sp->ats[0]) ||
1343 (sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1344 time_t newt = t;
1345 register time_t seconds;
1346 register time_t tcycles;
1347 register int_fast64_t icycles;
1348
1349 if (t < sp->ats[0])
1350 seconds = sp->ats[0] - t;
1351 else seconds = t - sp->ats[sp->timecnt - 1];
1352 --seconds;
1353 tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
1354 ++tcycles;
1355 icycles = tcycles;
1356 if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
1357 return NULL;
1358 seconds = icycles;
1359 seconds *= YEARSPERREPEAT;
1360 seconds *= AVGSECSPERYEAR;
1361 if (t < sp->ats[0])
1362 newt += seconds;
1363 else newt -= seconds;
1364 if (newt < sp->ats[0] ||
1365 newt > sp->ats[sp->timecnt - 1])
1366 return NULL; /* "cannot happen" */
1367 result = localsub(&newt, offset, tmp);
1368 if (result == tmp) {
1369 register time_t newy;
1370
1371 newy = tmp->tm_year;
1372 if (t < sp->ats[0])
1373 newy -= icycles * YEARSPERREPEAT;
1374 else newy += icycles * YEARSPERREPEAT;
1375 tmp->tm_year = newy;
1376 if (tmp->tm_year != newy)
1377 return NULL;
1378 }
1379 return result;
1380 }
1381 if (sp->timecnt == 0 || t < sp->ats[0]) {
1382 i = 0;
1383 while (sp->ttis[i].tt_isdst)
1384 if (++i >= sp->typecnt) {
1385 i = 0;
1386 break;
1387 }
1388 } else {
1389 register int lo = 1;
1390 register int hi = sp->timecnt;
1391
1392 while (lo < hi) {
1393 register int mid = (lo + hi) >> 1;
1394
1395 if (t < sp->ats[mid])
1396 hi = mid;
1397 else lo = mid + 1;
1398 }
1399 i = (int) sp->types[lo - 1];
1400 }
1401 ttisp = &sp->ttis[i];
1402 /*
1403 ** To get (wrong) behavior that's compatible with System V Release 2.0
1404 ** you'd replace the statement below with
1405 ** t += ttisp->tt_gmtoff;
1406 ** timesub(&t, 0L, sp, tmp);
1407 */
1408 result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1409 tmp->tm_isdst = ttisp->tt_isdst;
1410 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1411 #ifdef TM_ZONE
1412 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1413 #endif /* defined TM_ZONE */
1414 return result;
1415 }
1416
1417 struct tm *
localtime(timep)1418 localtime(timep)
1419 const time_t * const timep;
1420 {
1421 return localtime_r(timep, &tmGlobal);
1422 }
1423
1424 /*
1425 ** Re-entrant version of localtime.
1426 */
1427
1428 struct tm *
localtime_r(timep,tmp)1429 localtime_r(timep, tmp)
1430 const time_t * const timep;
1431 struct tm * tmp;
1432 {
1433 struct tm* result;
1434
1435 _tzLock();
1436 tzset_locked();
1437 result = localsub(timep, 0L, tmp);
1438 _tzUnlock();
1439
1440 return result;
1441 }
1442
1443 /*
1444 ** gmtsub is to gmtime as localsub is to localtime.
1445 */
1446
1447 static struct tm *
gmtsub(timep,offset,tmp)1448 gmtsub(timep, offset, tmp)
1449 const time_t * const timep;
1450 const long offset;
1451 struct tm * const tmp;
1452 {
1453 register struct tm * result;
1454
1455 if (!gmt_is_set) {
1456 gmt_is_set = TRUE;
1457 #ifdef ALL_STATE
1458 gmtptr = (struct state *) malloc(sizeof *gmtptr);
1459 if (gmtptr != NULL)
1460 #endif /* defined ALL_STATE */
1461 gmtload(gmtptr);
1462 }
1463 result = timesub(timep, offset, gmtptr, tmp);
1464 #ifdef TM_ZONE
1465 /*
1466 ** Could get fancy here and deliver something such as
1467 ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1468 ** but this is no time for a treasure hunt.
1469 */
1470 if (offset != 0)
1471 tmp->TM_ZONE = wildabbr;
1472 else {
1473 #ifdef ALL_STATE
1474 if (gmtptr == NULL)
1475 tmp->TM_ZONE = gmt;
1476 else tmp->TM_ZONE = gmtptr->chars;
1477 #endif /* defined ALL_STATE */
1478 #ifndef ALL_STATE
1479 tmp->TM_ZONE = gmtptr->chars;
1480 #endif /* State Farm */
1481 }
1482 #endif /* defined TM_ZONE */
1483 return result;
1484 }
1485
1486 struct tm *
gmtime(timep)1487 gmtime(timep)
1488 const time_t * const timep;
1489 {
1490 return gmtime_r(timep, &tmGlobal);
1491 }
1492
1493 /*
1494 * Re-entrant version of gmtime.
1495 */
1496
1497 struct tm *
gmtime_r(timep,tmp)1498 gmtime_r(timep, tmp)
1499 const time_t * const timep;
1500 struct tm * tmp;
1501 {
1502 struct tm* result;
1503
1504 _tzLock();
1505 result = gmtsub(timep, 0L, tmp);
1506 _tzUnlock();
1507
1508 return result;
1509 }
1510
1511 #ifdef STD_INSPIRED
1512
1513 struct tm *
offtime(timep,offset)1514 offtime(timep, offset)
1515 const time_t * const timep;
1516 const long offset;
1517 {
1518 return gmtsub(timep, offset, &tmGlobal);
1519 }
1520
1521 #endif /* defined STD_INSPIRED */
1522
1523 /*
1524 ** Return the number of leap years through the end of the given year
1525 ** where, to make the math easy, the answer for year zero is defined as zero.
1526 */
1527
1528 static int
leaps_thru_end_of(y)1529 leaps_thru_end_of(y)
1530 register const int y;
1531 {
1532 return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1533 -(leaps_thru_end_of(-(y + 1)) + 1);
1534 }
1535
1536 static struct tm *
timesub(timep,offset,sp,tmp)1537 timesub(timep, offset, sp, tmp)
1538 const time_t * const timep;
1539 const long offset;
1540 register const struct state * const sp;
1541 register struct tm * const tmp;
1542 {
1543 register const struct lsinfo * lp;
1544 register time_t tdays;
1545 register int idays; /* unsigned would be so 2003 */
1546 register long rem;
1547 int y;
1548 register const int * ip;
1549 register long corr;
1550 register int hit;
1551 register int i;
1552
1553 corr = 0;
1554 hit = 0;
1555 #ifdef ALL_STATE
1556 i = (sp == NULL) ? 0 : sp->leapcnt;
1557 #endif /* defined ALL_STATE */
1558 #ifndef ALL_STATE
1559 i = sp->leapcnt;
1560 #endif /* State Farm */
1561 while (--i >= 0) {
1562 lp = &sp->lsis[i];
1563 if (*timep >= lp->ls_trans) {
1564 if (*timep == lp->ls_trans) {
1565 hit = ((i == 0 && lp->ls_corr > 0) ||
1566 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1567 if (hit)
1568 while (i > 0 &&
1569 sp->lsis[i].ls_trans ==
1570 sp->lsis[i - 1].ls_trans + 1 &&
1571 sp->lsis[i].ls_corr ==
1572 sp->lsis[i - 1].ls_corr + 1) {
1573 ++hit;
1574 --i;
1575 }
1576 }
1577 corr = lp->ls_corr;
1578 break;
1579 }
1580 }
1581 y = EPOCH_YEAR;
1582 tdays = *timep / SECSPERDAY;
1583 rem = *timep - tdays * SECSPERDAY;
1584 while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1585 int newy;
1586 register time_t tdelta;
1587 register int idelta;
1588 register int leapdays;
1589
1590 tdelta = tdays / DAYSPERLYEAR;
1591 idelta = tdelta;
1592 if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
1593 return NULL;
1594 if (idelta == 0)
1595 idelta = (tdays < 0) ? -1 : 1;
1596 newy = y;
1597 if (increment_overflow(&newy, idelta))
1598 return NULL;
1599 leapdays = leaps_thru_end_of(newy - 1) -
1600 leaps_thru_end_of(y - 1);
1601 tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1602 tdays -= leapdays;
1603 y = newy;
1604 }
1605 {
1606 register long seconds;
1607
1608 seconds = tdays * SECSPERDAY + 0.5;
1609 tdays = seconds / SECSPERDAY;
1610 rem += seconds - tdays * SECSPERDAY;
1611 }
1612 /*
1613 ** Given the range, we can now fearlessly cast...
1614 */
1615 idays = tdays;
1616 rem += offset - corr;
1617 while (rem < 0) {
1618 rem += SECSPERDAY;
1619 --idays;
1620 }
1621 while (rem >= SECSPERDAY) {
1622 rem -= SECSPERDAY;
1623 ++idays;
1624 }
1625 while (idays < 0) {
1626 if (increment_overflow(&y, -1))
1627 return NULL;
1628 idays += year_lengths[isleap(y)];
1629 }
1630 while (idays >= year_lengths[isleap(y)]) {
1631 idays -= year_lengths[isleap(y)];
1632 if (increment_overflow(&y, 1))
1633 return NULL;
1634 }
1635 tmp->tm_year = y;
1636 if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1637 return NULL;
1638 tmp->tm_yday = idays;
1639 /*
1640 ** The "extra" mods below avoid overflow problems.
1641 */
1642 tmp->tm_wday = EPOCH_WDAY +
1643 ((y - EPOCH_YEAR) % DAYSPERWEEK) *
1644 (DAYSPERNYEAR % DAYSPERWEEK) +
1645 leaps_thru_end_of(y - 1) -
1646 leaps_thru_end_of(EPOCH_YEAR - 1) +
1647 idays;
1648 tmp->tm_wday %= DAYSPERWEEK;
1649 if (tmp->tm_wday < 0)
1650 tmp->tm_wday += DAYSPERWEEK;
1651 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1652 rem %= SECSPERHOUR;
1653 tmp->tm_min = (int) (rem / SECSPERMIN);
1654 /*
1655 ** A positive leap second requires a special
1656 ** representation. This uses "... ??:59:60" et seq.
1657 */
1658 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1659 ip = mon_lengths[isleap(y)];
1660 for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1661 idays -= ip[tmp->tm_mon];
1662 tmp->tm_mday = (int) (idays + 1);
1663 tmp->tm_isdst = 0;
1664 #ifdef TM_GMTOFF
1665 tmp->TM_GMTOFF = offset;
1666 #endif /* defined TM_GMTOFF */
1667 return tmp;
1668 }
1669
1670 char *
ctime(timep)1671 ctime(timep)
1672 const time_t * const timep;
1673 {
1674 /*
1675 ** Section 4.12.3.2 of X3.159-1989 requires that
1676 ** The ctime function converts the calendar time pointed to by timer
1677 ** to local time in the form of a string. It is equivalent to
1678 ** asctime(localtime(timer))
1679 */
1680 return asctime(localtime(timep));
1681 }
1682
1683 char *
ctime_r(timep,buf)1684 ctime_r(timep, buf)
1685 const time_t * const timep;
1686 char * buf;
1687 {
1688 struct tm mytm;
1689
1690 return asctime_r(localtime_r(timep, &mytm), buf);
1691 }
1692
1693 /*
1694 ** Adapted from code provided by Robert Elz, who writes:
1695 ** The "best" way to do mktime I think is based on an idea of Bob
1696 ** Kridle's (so its said...) from a long time ago.
1697 ** It does a binary search of the time_t space. Since time_t's are
1698 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1699 ** would still be very reasonable).
1700 */
1701
1702 #ifndef WRONG
1703 #define WRONG (-1)
1704 #endif /* !defined WRONG */
1705
1706 /*
1707 ** Simplified normalize logic courtesy Paul Eggert.
1708 */
1709
1710 static int
increment_overflow(number,delta)1711 increment_overflow(number, delta)
1712 int * number;
1713 int delta;
1714 {
1715 unsigned number0 = (unsigned)*number;
1716 unsigned number1 = (unsigned)(number0 + delta);
1717
1718 *number = (int)number1;
1719
1720 if (delta >= 0) {
1721 return ((int)number1 < (int)number0);
1722 } else {
1723 return ((int)number1 > (int)number0);
1724 }
1725 }
1726
1727 static int
long_increment_overflow(number,delta)1728 long_increment_overflow(number, delta)
1729 long * number;
1730 int delta;
1731 {
1732 unsigned long number0 = (unsigned long)*number;
1733 unsigned long number1 = (unsigned long)(number0 + delta);
1734
1735 *number = (long)number1;
1736
1737 if (delta >= 0) {
1738 return ((long)number1 < (long)number0);
1739 } else {
1740 return ((long)number1 > (long)number0);
1741 }
1742 }
1743
1744 static int
normalize_overflow(tensptr,unitsptr,base)1745 normalize_overflow(tensptr, unitsptr, base)
1746 int * const tensptr;
1747 int * const unitsptr;
1748 const int base;
1749 {
1750 register int tensdelta;
1751
1752 tensdelta = (*unitsptr >= 0) ?
1753 (*unitsptr / base) :
1754 (-1 - (-1 - *unitsptr) / base);
1755 *unitsptr -= tensdelta * base;
1756 return increment_overflow(tensptr, tensdelta);
1757 }
1758
1759 static int
long_normalize_overflow(tensptr,unitsptr,base)1760 long_normalize_overflow(tensptr, unitsptr, base)
1761 long * const tensptr;
1762 int * const unitsptr;
1763 const int base;
1764 {
1765 register int tensdelta;
1766
1767 tensdelta = (*unitsptr >= 0) ?
1768 (*unitsptr / base) :
1769 (-1 - (-1 - *unitsptr) / base);
1770 *unitsptr -= tensdelta * base;
1771 return long_increment_overflow(tensptr, tensdelta);
1772 }
1773
1774 static int
tmcomp(atmp,btmp)1775 tmcomp(atmp, btmp)
1776 register const struct tm * const atmp;
1777 register const struct tm * const btmp;
1778 {
1779 register int result;
1780
1781 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1782 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1783 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1784 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1785 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1786 result = atmp->tm_sec - btmp->tm_sec;
1787 return result;
1788 }
1789
1790 static time_t
time2sub(tmp,funcp,offset,okayp,do_norm_secs)1791 time2sub(tmp, funcp, offset, okayp, do_norm_secs)
1792 struct tm * const tmp;
1793 struct tm * (* const funcp) P((const time_t*, long, struct tm*));
1794 const long offset;
1795 int * const okayp;
1796 const int do_norm_secs;
1797 {
1798 register const struct state * sp;
1799 register int dir;
1800 register int i, j;
1801 register int saved_seconds;
1802 register long li;
1803 register time_t lo;
1804 register time_t hi;
1805 long y;
1806 time_t newt;
1807 time_t t;
1808 struct tm yourtm, mytm;
1809
1810 *okayp = FALSE;
1811 yourtm = *tmp;
1812 if (do_norm_secs) {
1813 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1814 SECSPERMIN))
1815 return WRONG;
1816 }
1817 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1818 return WRONG;
1819 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1820 return WRONG;
1821 y = yourtm.tm_year;
1822 if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
1823 return WRONG;
1824 /*
1825 ** Turn y into an actual year number for now.
1826 ** It is converted back to an offset from TM_YEAR_BASE later.
1827 */
1828 if (long_increment_overflow(&y, TM_YEAR_BASE))
1829 return WRONG;
1830 while (yourtm.tm_mday <= 0) {
1831 if (long_increment_overflow(&y, -1))
1832 return WRONG;
1833 li = y + (1 < yourtm.tm_mon);
1834 yourtm.tm_mday += year_lengths[isleap(li)];
1835 }
1836 while (yourtm.tm_mday > DAYSPERLYEAR) {
1837 li = y + (1 < yourtm.tm_mon);
1838 yourtm.tm_mday -= year_lengths[isleap(li)];
1839 if (long_increment_overflow(&y, 1))
1840 return WRONG;
1841 }
1842 for ( ; ; ) {
1843 i = mon_lengths[isleap(y)][yourtm.tm_mon];
1844 if (yourtm.tm_mday <= i)
1845 break;
1846 yourtm.tm_mday -= i;
1847 if (++yourtm.tm_mon >= MONSPERYEAR) {
1848 yourtm.tm_mon = 0;
1849 if (long_increment_overflow(&y, 1))
1850 return WRONG;
1851 }
1852 }
1853 if (long_increment_overflow(&y, -TM_YEAR_BASE))
1854 return WRONG;
1855 yourtm.tm_year = y;
1856 if (yourtm.tm_year != y)
1857 return WRONG;
1858 if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1859 saved_seconds = 0;
1860 else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1861 /*
1862 ** We can't set tm_sec to 0, because that might push the
1863 ** time below the minimum representable time.
1864 ** Set tm_sec to 59 instead.
1865 ** This assumes that the minimum representable time is
1866 ** not in the same minute that a leap second was deleted from,
1867 ** which is a safer assumption than using 58 would be.
1868 */
1869 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1870 return WRONG;
1871 saved_seconds = yourtm.tm_sec;
1872 yourtm.tm_sec = SECSPERMIN - 1;
1873 } else {
1874 saved_seconds = yourtm.tm_sec;
1875 yourtm.tm_sec = 0;
1876 }
1877 /*
1878 ** Do a binary search (this works whatever time_t's type is).
1879 */
1880 if (!TYPE_SIGNED(time_t)) {
1881 lo = 0;
1882 hi = lo - 1;
1883 } else if (!TYPE_INTEGRAL(time_t)) {
1884 if (sizeof(time_t) > sizeof(float))
1885 hi = (time_t) DBL_MAX;
1886 else hi = (time_t) FLT_MAX;
1887 lo = -hi;
1888 } else {
1889 lo = 1;
1890 for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1891 lo *= 2;
1892 hi = -(lo + 1);
1893 }
1894 for ( ; ; ) {
1895 t = lo / 2 + hi / 2;
1896 if (t < lo)
1897 t = lo;
1898 else if (t > hi)
1899 t = hi;
1900 if ((*funcp)(&t, offset, &mytm) == NULL) {
1901 /*
1902 ** Assume that t is too extreme to be represented in
1903 ** a struct tm; arrange things so that it is less
1904 ** extreme on the next pass.
1905 */
1906 dir = (t > 0) ? 1 : -1;
1907 } else dir = tmcomp(&mytm, &yourtm);
1908 if (dir != 0) {
1909 if (t == lo) {
1910 if (t == TIME_T_MAX)
1911 return WRONG;
1912 ++t;
1913 ++lo;
1914 } else if (t == hi) {
1915 if (t == TIME_T_MIN)
1916 return WRONG;
1917 --t;
1918 --hi;
1919 }
1920 if (lo > hi)
1921 return WRONG;
1922 if (dir > 0)
1923 hi = t;
1924 else lo = t;
1925 continue;
1926 }
1927 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1928 break;
1929 /*
1930 ** Right time, wrong type.
1931 ** Hunt for right time, right type.
1932 ** It's okay to guess wrong since the guess
1933 ** gets checked.
1934 */
1935 /*
1936 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1937 */
1938 sp = (const struct state *)
1939 (((void *) funcp == (void *) localsub) ?
1940 lclptr : gmtptr);
1941 #ifdef ALL_STATE
1942 if (sp == NULL)
1943 return WRONG;
1944 #endif /* defined ALL_STATE */
1945 for (i = sp->typecnt - 1; i >= 0; --i) {
1946 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1947 continue;
1948 for (j = sp->typecnt - 1; j >= 0; --j) {
1949 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1950 continue;
1951 newt = t + sp->ttis[j].tt_gmtoff -
1952 sp->ttis[i].tt_gmtoff;
1953 if ((*funcp)(&newt, offset, &mytm) == NULL)
1954 continue;
1955 if (tmcomp(&mytm, &yourtm) != 0)
1956 continue;
1957 if (mytm.tm_isdst != yourtm.tm_isdst)
1958 continue;
1959 /*
1960 ** We have a match.
1961 */
1962 t = newt;
1963 goto label;
1964 }
1965 }
1966 return WRONG;
1967 }
1968 label:
1969 newt = t + saved_seconds;
1970 if ((newt < t) != (saved_seconds < 0))
1971 return WRONG;
1972 t = newt;
1973 if ((*funcp)(&t, offset, tmp))
1974 *okayp = TRUE;
1975 return t;
1976 }
1977
1978 static time_t
time2(tmp,funcp,offset,okayp)1979 time2(tmp, funcp, offset, okayp)
1980 struct tm * const tmp;
1981 struct tm * (* const funcp) P((const time_t*, long, struct tm*));
1982 const long offset;
1983 int * const okayp;
1984 {
1985 time_t t;
1986
1987 /*
1988 ** First try without normalization of seconds
1989 ** (in case tm_sec contains a value associated with a leap second).
1990 ** If that fails, try with normalization of seconds.
1991 */
1992 t = time2sub(tmp, funcp, offset, okayp, FALSE);
1993 return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
1994 }
1995
1996 static time_t
time1(tmp,funcp,offset)1997 time1(tmp, funcp, offset)
1998 struct tm * const tmp;
1999 struct tm * (* const funcp) P((const time_t *, long, struct tm *));
2000 const long offset;
2001 {
2002 register time_t t;
2003 register const struct state * sp;
2004 register int samei, otheri;
2005 register int sameind, otherind;
2006 register int i;
2007 register int nseen;
2008 int seen[TZ_MAX_TYPES];
2009 int types[TZ_MAX_TYPES];
2010 int okay;
2011
2012 if (tmp->tm_isdst > 1)
2013 tmp->tm_isdst = 1;
2014 t = time2(tmp, funcp, offset, &okay);
2015 #ifdef PCTS
2016 /*
2017 ** PCTS code courtesy Grant Sullivan.
2018 */
2019 if (okay)
2020 return t;
2021 if (tmp->tm_isdst < 0)
2022 tmp->tm_isdst = 0; /* reset to std and try again */
2023 #endif /* defined PCTS */
2024 #ifndef PCTS
2025 if (okay || tmp->tm_isdst < 0)
2026 return t;
2027 #endif /* !defined PCTS */
2028 /*
2029 ** We're supposed to assume that somebody took a time of one type
2030 ** and did some math on it that yielded a "struct tm" that's bad.
2031 ** We try to divine the type they started from and adjust to the
2032 ** type they need.
2033 */
2034 /*
2035 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
2036 */
2037 sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
2038 lclptr : gmtptr);
2039 #ifdef ALL_STATE
2040 if (sp == NULL)
2041 return WRONG;
2042 #endif /* defined ALL_STATE */
2043 for (i = 0; i < sp->typecnt; ++i)
2044 seen[i] = FALSE;
2045 nseen = 0;
2046 for (i = sp->timecnt - 1; i >= 0; --i)
2047 if (!seen[sp->types[i]]) {
2048 seen[sp->types[i]] = TRUE;
2049 types[nseen++] = sp->types[i];
2050 }
2051 for (sameind = 0; sameind < nseen; ++sameind) {
2052 samei = types[sameind];
2053 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
2054 continue;
2055 for (otherind = 0; otherind < nseen; ++otherind) {
2056 otheri = types[otherind];
2057 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
2058 continue;
2059 tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
2060 sp->ttis[samei].tt_gmtoff;
2061 tmp->tm_isdst = !tmp->tm_isdst;
2062 t = time2(tmp, funcp, offset, &okay);
2063 if (okay)
2064 return t;
2065 tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
2066 sp->ttis[samei].tt_gmtoff;
2067 tmp->tm_isdst = !tmp->tm_isdst;
2068 }
2069 }
2070 return WRONG;
2071 }
2072
2073 time_t
mktime(tmp)2074 mktime(tmp)
2075 struct tm * const tmp;
2076 {
2077 time_t result;
2078 _tzLock();
2079 tzset_locked();
2080 result = time1(tmp, localsub, 0L);
2081 _tzUnlock();
2082 return result;
2083 }
2084
2085 #ifdef STD_INSPIRED
2086
2087 time_t
timelocal(tmp)2088 timelocal(tmp)
2089 struct tm * const tmp;
2090 {
2091 tmp->tm_isdst = -1; /* in case it wasn't initialized */
2092 return mktime(tmp);
2093 }
2094
2095 time_t
timegm(tmp)2096 timegm(tmp)
2097 struct tm * const tmp;
2098 {
2099 time_t result;
2100
2101 tmp->tm_isdst = 0;
2102 _tzLock();
2103 result = time1(tmp, gmtsub, 0L);
2104 _tzUnlock();
2105
2106 return result;
2107 }
2108
2109 time_t
timeoff(tmp,offset)2110 timeoff(tmp, offset)
2111 struct tm * const tmp;
2112 const long offset;
2113 {
2114 time_t result;
2115
2116 tmp->tm_isdst = 0;
2117 _tzLock();
2118 result = time1(tmp, gmtsub, offset);
2119 _tzUnlock();
2120
2121 return result;
2122 }
2123
2124 #endif /* defined STD_INSPIRED */
2125
2126 #ifdef CMUCS
2127
2128 /*
2129 ** The following is supplied for compatibility with
2130 ** previous versions of the CMUCS runtime library.
2131 */
2132
2133 long
gtime(tmp)2134 gtime(tmp)
2135 struct tm * const tmp;
2136 {
2137 const time_t t = mktime(tmp);
2138
2139 if (t == WRONG)
2140 return -1;
2141 return t;
2142 }
2143
2144 #endif /* defined CMUCS */
2145
2146 /*
2147 ** XXX--is the below the right way to conditionalize??
2148 */
2149
2150 #ifdef STD_INSPIRED
2151
2152 /*
2153 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2154 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2155 ** is not the case if we are accounting for leap seconds.
2156 ** So, we provide the following conversion routines for use
2157 ** when exchanging timestamps with POSIX conforming systems.
2158 */
2159
2160 static long
leapcorr(timep)2161 leapcorr(timep)
2162 time_t * timep;
2163 {
2164 register struct state * sp;
2165 register struct lsinfo * lp;
2166 register int i;
2167
2168 sp = lclptr;
2169 i = sp->leapcnt;
2170 while (--i >= 0) {
2171 lp = &sp->lsis[i];
2172 if (*timep >= lp->ls_trans)
2173 return lp->ls_corr;
2174 }
2175 return 0;
2176 }
2177
2178 time_t
time2posix(t)2179 time2posix(t)
2180 time_t t;
2181 {
2182 tzset();
2183 return t - leapcorr(&t);
2184 }
2185
2186 time_t
posix2time(t)2187 posix2time(t)
2188 time_t t;
2189 {
2190 time_t x;
2191 time_t y;
2192
2193 tzset();
2194 /*
2195 ** For a positive leap second hit, the result
2196 ** is not unique. For a negative leap second
2197 ** hit, the corresponding time doesn't exist,
2198 ** so we return an adjacent second.
2199 */
2200 x = t + leapcorr(&t);
2201 y = x - leapcorr(&x);
2202 if (y < t) {
2203 do {
2204 x++;
2205 y = x - leapcorr(&x);
2206 } while (y < t);
2207 if (t != y)
2208 return x - 1;
2209 } else if (y > t) {
2210 do {
2211 --x;
2212 y = x - leapcorr(&x);
2213 } while (y > t);
2214 if (t != y)
2215 return x + 1;
2216 }
2217 return x;
2218 }
2219
2220 #endif /* defined STD_INSPIRED */
2221