1 /*
2 * jdhuff.c
3 *
4 * Copyright (C) 1991-1997, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
7 *
8 * This file contains Huffman entropy decoding routines.
9 *
10 * Much of the complexity here has to do with supporting input suspension.
11 * If the data source module demands suspension, we want to be able to back
12 * up to the start of the current MCU. To do this, we copy state variables
13 * into local working storage, and update them back to the permanent
14 * storage only upon successful completion of an MCU.
15 */
16
17 #define JPEG_INTERNALS
18 #include "jinclude.h"
19 #include "jpeglib.h"
20 #include "jdhuff.h" /* Declarations shared with jdphuff.c */
21
22 LOCAL(boolean) process_restart (j_decompress_ptr cinfo);
23
24
25 /*
26 * Expanded entropy decoder object for Huffman decoding.
27 *
28 * The savable_state subrecord contains fields that change within an MCU,
29 * but must not be updated permanently until we complete the MCU.
30 */
31
32 typedef struct {
33 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
34 } savable_state;
35
36 /* This macro is to work around compilers with missing or broken
37 * structure assignment. You'll need to fix this code if you have
38 * such a compiler and you change MAX_COMPS_IN_SCAN.
39 */
40
41 #ifndef NO_STRUCT_ASSIGN
42 #define ASSIGN_STATE(dest,src) ((dest) = (src))
43 #else
44 #if MAX_COMPS_IN_SCAN == 4
45 #define ASSIGN_STATE(dest,src) \
46 ((dest).last_dc_val[0] = (src).last_dc_val[0], \
47 (dest).last_dc_val[1] = (src).last_dc_val[1], \
48 (dest).last_dc_val[2] = (src).last_dc_val[2], \
49 (dest).last_dc_val[3] = (src).last_dc_val[3])
50 #endif
51 #endif
52
53
54 typedef struct {
55 struct jpeg_entropy_decoder pub; /* public fields */
56
57 /* These fields are loaded into local variables at start of each MCU.
58 * In case of suspension, we exit WITHOUT updating them.
59 */
60 bitread_perm_state bitstate; /* Bit buffer at start of MCU */
61 savable_state saved; /* Other state at start of MCU */
62
63 /* These fields are NOT loaded into local working state. */
64 unsigned int restarts_to_go; /* MCUs left in this restart interval */
65
66 /* Pointers to derived tables (these workspaces have image lifespan) */
67 d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
68 d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
69
70 /* Precalculated info set up by start_pass for use in decode_mcu: */
71
72 /* Pointers to derived tables to be used for each block within an MCU */
73 d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
74 d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
75 /* Whether we care about the DC and AC coefficient values for each block */
76 boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
77 boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
78 } huff_entropy_decoder;
79
80 typedef huff_entropy_decoder * huff_entropy_ptr;
81
82 /*
83 * Initialize for a Huffman-compressed scan.
84 */
85
86 METHODDEF(void)
start_pass_huff_decoder(j_decompress_ptr cinfo)87 start_pass_huff_decoder (j_decompress_ptr cinfo)
88 {
89 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
90 int ci, blkn, dctbl, actbl;
91 jpeg_component_info * compptr;
92
93 /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
94 * This ought to be an error condition, but we make it a warning because
95 * there are some baseline files out there with all zeroes in these bytes.
96 */
97 if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
98 cinfo->Ah != 0 || cinfo->Al != 0)
99 WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
100
101 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
102 compptr = cinfo->cur_comp_info[ci];
103 dctbl = compptr->dc_tbl_no;
104 actbl = compptr->ac_tbl_no;
105 /* Compute derived values for Huffman tables */
106 /* We may do this more than once for a table, but it's not expensive */
107 jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
108 & entropy->dc_derived_tbls[dctbl]);
109 jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
110 & entropy->ac_derived_tbls[actbl]);
111 /* Initialize DC predictions to 0 */
112 entropy->saved.last_dc_val[ci] = 0;
113 }
114
115 /* Precalculate decoding info for each block in an MCU of this scan */
116 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
117 ci = cinfo->MCU_membership[blkn];
118 compptr = cinfo->cur_comp_info[ci];
119 /* Precalculate which table to use for each block */
120 entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
121 entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
122 /* Decide whether we really care about the coefficient values */
123 if (compptr->component_needed) {
124 entropy->dc_needed[blkn] = TRUE;
125 /* we don't need the ACs if producing a 1/8th-size image */
126 entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1);
127 } else {
128 entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
129 }
130 }
131
132 /* Initialize bitread state variables */
133 entropy->bitstate.bits_left = 0;
134 entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
135 entropy->pub.insufficient_data = FALSE;
136
137 /* Initialize restart counter */
138 entropy->restarts_to_go = cinfo->restart_interval;
139 }
140
141
142 /*
143 * Compute the derived values for a Huffman table.
144 * This routine also performs some validation checks on the table.
145 *
146 * Note this is also used by jdphuff.c.
147 */
148
149 GLOBAL(void)
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo,boolean isDC,int tblno,d_derived_tbl ** pdtbl)150 jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
151 d_derived_tbl ** pdtbl)
152 {
153 JHUFF_TBL *htbl;
154 d_derived_tbl *dtbl;
155 int p, i, l, si, numsymbols;
156 int lookbits, ctr;
157 char huffsize[257];
158 unsigned int huffcode[257];
159 unsigned int code;
160
161 /* Note that huffsize[] and huffcode[] are filled in code-length order,
162 * paralleling the order of the symbols themselves in htbl->huffval[].
163 */
164
165 /* Find the input Huffman table */
166 if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
167 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
168 htbl =
169 isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
170 if (htbl == NULL)
171 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
172
173 /* Allocate a workspace if we haven't already done so. */
174 if (*pdtbl == NULL)
175 *pdtbl = (d_derived_tbl *)
176 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
177 SIZEOF(d_derived_tbl));
178 dtbl = *pdtbl;
179 dtbl->pub = htbl; /* fill in back link */
180
181 /* Figure C.1: make table of Huffman code length for each symbol */
182
183 p = 0;
184 for (l = 1; l <= 16; l++) {
185 i = (int) htbl->bits[l];
186 if (i < 0 || p + i > 256) /* protect against table overrun */
187 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
188 while (i--)
189 huffsize[p++] = (char) l;
190 }
191 huffsize[p] = 0;
192 numsymbols = p;
193
194 /* Figure C.2: generate the codes themselves */
195 /* We also validate that the counts represent a legal Huffman code tree. */
196
197 code = 0;
198 si = huffsize[0];
199 p = 0;
200 while (huffsize[p]) {
201 while (((int) huffsize[p]) == si) {
202 huffcode[p++] = code;
203 code++;
204 }
205 /* code is now 1 more than the last code used for codelength si; but
206 * it must still fit in si bits, since no code is allowed to be all ones.
207 */
208 if (((INT32) code) >= (((INT32) 1) << si))
209 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
210 code <<= 1;
211 si++;
212 }
213
214 /* Figure F.15: generate decoding tables for bit-sequential decoding */
215
216 p = 0;
217 for (l = 1; l <= 16; l++) {
218 if (htbl->bits[l]) {
219 /* valoffset[l] = huffval[] index of 1st symbol of code length l,
220 * minus the minimum code of length l
221 */
222 dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
223 p += htbl->bits[l];
224 dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
225 } else {
226 dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
227 }
228 }
229 dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
230
231 /* Compute lookahead tables to speed up decoding.
232 * First we set all the table entries to 0, indicating "too long";
233 * then we iterate through the Huffman codes that are short enough and
234 * fill in all the entries that correspond to bit sequences starting
235 * with that code.
236 */
237
238 MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
239
240 p = 0;
241 for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
242 for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
243 /* l = current code's length, p = its index in huffcode[] & huffval[]. */
244 /* Generate left-justified code followed by all possible bit sequences */
245 lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
246 for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
247 dtbl->look_nbits[lookbits] = l;
248 dtbl->look_sym[lookbits] = htbl->huffval[p];
249 lookbits++;
250 }
251 }
252 }
253
254 /* Validate symbols as being reasonable.
255 * For AC tables, we make no check, but accept all byte values 0..255.
256 * For DC tables, we require the symbols to be in range 0..15.
257 * (Tighter bounds could be applied depending on the data depth and mode,
258 * but this is sufficient to ensure safe decoding.)
259 */
260 if (isDC) {
261 for (i = 0; i < numsymbols; i++) {
262 int sym = htbl->huffval[i];
263 if (sym < 0 || sym > 15)
264 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
265 }
266 }
267 }
268
269
270 /*
271 * Out-of-line code for bit fetching (shared with jdphuff.c).
272 * See jdhuff.h for info about usage.
273 * Note: current values of get_buffer and bits_left are passed as parameters,
274 * but are returned in the corresponding fields of the state struct.
275 *
276 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
277 * of get_buffer to be used. (On machines with wider words, an even larger
278 * buffer could be used.) However, on some machines 32-bit shifts are
279 * quite slow and take time proportional to the number of places shifted.
280 * (This is true with most PC compilers, for instance.) In this case it may
281 * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the
282 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
283 */
284
285 #ifdef SLOW_SHIFT_32
286 #define MIN_GET_BITS 15 /* minimum allowable value */
287 #else
288 #define MIN_GET_BITS (BIT_BUF_SIZE-7)
289 #endif
290
291
292 GLOBAL(boolean)
jpeg_fill_bit_buffer(bitread_working_state * state,register bit_buf_type get_buffer,register int bits_left,int nbits)293 jpeg_fill_bit_buffer (bitread_working_state * state,
294 register bit_buf_type get_buffer, register int bits_left,
295 int nbits)
296 /* Load up the bit buffer to a depth of at least nbits */
297 {
298 /* Copy heavily used state fields into locals (hopefully registers) */
299 register const JOCTET * next_input_byte = state->next_input_byte;
300 register size_t bytes_in_buffer = state->bytes_in_buffer;
301 j_decompress_ptr cinfo = state->cinfo;
302
303 /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
304 /* (It is assumed that no request will be for more than that many bits.) */
305 /* We fail to do so only if we hit a marker or are forced to suspend. */
306
307 if (cinfo->unread_marker == 0) { /* cannot advance past a marker */
308 while (bits_left < MIN_GET_BITS) {
309 register int c;
310
311 /* Attempt to read a byte */
312 if (bytes_in_buffer == 0) {
313 if (! (*cinfo->src->fill_input_buffer) (cinfo))
314 return FALSE;
315 next_input_byte = cinfo->src->next_input_byte;
316 bytes_in_buffer = cinfo->src->bytes_in_buffer;
317 }
318 bytes_in_buffer--;
319 c = GETJOCTET(*next_input_byte++);
320
321 /* If it's 0xFF, check and discard stuffed zero byte */
322 if (c == 0xFF) {
323 /* Loop here to discard any padding FF's on terminating marker,
324 * so that we can save a valid unread_marker value. NOTE: we will
325 * accept multiple FF's followed by a 0 as meaning a single FF data
326 * byte. This data pattern is not valid according to the standard.
327 */
328 do {
329 if (bytes_in_buffer == 0) {
330 if (! (*cinfo->src->fill_input_buffer) (cinfo))
331 return FALSE;
332 next_input_byte = cinfo->src->next_input_byte;
333 bytes_in_buffer = cinfo->src->bytes_in_buffer;
334 }
335 bytes_in_buffer--;
336 c = GETJOCTET(*next_input_byte++);
337 } while (c == 0xFF);
338
339 if (c == 0) {
340 /* Found FF/00, which represents an FF data byte */
341 c = 0xFF;
342 } else {
343 /* Oops, it's actually a marker indicating end of compressed data.
344 * Save the marker code for later use.
345 * Fine point: it might appear that we should save the marker into
346 * bitread working state, not straight into permanent state. But
347 * once we have hit a marker, we cannot need to suspend within the
348 * current MCU, because we will read no more bytes from the data
349 * source. So it is OK to update permanent state right away.
350 */
351 cinfo->unread_marker = c;
352 /* See if we need to insert some fake zero bits. */
353 goto no_more_bytes;
354 }
355 }
356
357 /* OK, load c into get_buffer */
358 get_buffer = (get_buffer << 8) | c;
359 bits_left += 8;
360 } /* end while */
361 } else {
362 no_more_bytes:
363 /* We get here if we've read the marker that terminates the compressed
364 * data segment. There should be enough bits in the buffer register
365 * to satisfy the request; if so, no problem.
366 */
367 if (nbits > bits_left) {
368 /* Uh-oh. Report corrupted data to user and stuff zeroes into
369 * the data stream, so that we can produce some kind of image.
370 * We use a nonvolatile flag to ensure that only one warning message
371 * appears per data segment.
372 */
373 if (! cinfo->entropy->insufficient_data) {
374 WARNMS(cinfo, JWRN_HIT_MARKER);
375 cinfo->entropy->insufficient_data = TRUE;
376 }
377 /* Fill the buffer with zero bits */
378 get_buffer <<= MIN_GET_BITS - bits_left;
379 bits_left = MIN_GET_BITS;
380 }
381 }
382
383 /* Unload the local registers */
384 state->next_input_byte = next_input_byte;
385 state->bytes_in_buffer = bytes_in_buffer;
386 state->get_buffer = get_buffer;
387 state->bits_left = bits_left;
388
389 return TRUE;
390 }
391
392
393 /*
394 * Out-of-line code for Huffman code decoding.
395 * See jdhuff.h for info about usage.
396 */
397
398 GLOBAL(int)
jpeg_huff_decode(bitread_working_state * state,register bit_buf_type get_buffer,register int bits_left,d_derived_tbl * htbl,int min_bits)399 jpeg_huff_decode (bitread_working_state * state,
400 register bit_buf_type get_buffer, register int bits_left,
401 d_derived_tbl * htbl, int min_bits)
402 {
403 register int l = min_bits;
404 register INT32 code;
405
406 /* HUFF_DECODE has determined that the code is at least min_bits */
407 /* bits long, so fetch that many bits in one swoop. */
408
409 CHECK_BIT_BUFFER(*state, l, return -1);
410 code = GET_BITS(l);
411
412 /* Collect the rest of the Huffman code one bit at a time. */
413 /* This is per Figure F.16 in the JPEG spec. */
414
415 while (code > htbl->maxcode[l]) {
416 code <<= 1;
417 CHECK_BIT_BUFFER(*state, 1, return -1);
418 code |= GET_BITS(1);
419 l++;
420 }
421
422 /* Unload the local registers */
423 state->get_buffer = get_buffer;
424 state->bits_left = bits_left;
425
426 /* With garbage input we may reach the sentinel value l = 17. */
427
428 if (l > 16) {
429 WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
430 return 0; /* fake a zero as the safest result */
431 }
432
433 return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
434 }
435
436
437 /*
438 * Figure F.12: extend sign bit.
439 * On some machines, a shift and add will be faster than a table lookup.
440 */
441
442 #ifdef AVOID_TABLES
443
444 #define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
445
446 #else
447
448 #define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
449
450 static const int extend_test[16] = /* entry n is 2**(n-1) */
451 { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
452 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
453
454 static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
455 { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
456 ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
457 ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
458 ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
459
460 #endif /* AVOID_TABLES */
461
462
463 /*
464 * Check for a restart marker & resynchronize decoder.
465 * Returns FALSE if must suspend.
466 */
467
468 LOCAL(boolean)
process_restart(j_decompress_ptr cinfo)469 process_restart (j_decompress_ptr cinfo)
470 {
471 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
472 int ci;
473
474 /* Throw away any unused bits remaining in bit buffer; */
475 /* include any full bytes in next_marker's count of discarded bytes */
476 cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
477 entropy->bitstate.bits_left = 0;
478
479 /* Advance past the RSTn marker */
480 if (! (*cinfo->marker->read_restart_marker) (cinfo))
481 return FALSE;
482
483 /* Re-initialize DC predictions to 0 */
484 for (ci = 0; ci < cinfo->comps_in_scan; ci++)
485 entropy->saved.last_dc_val[ci] = 0;
486
487 /* Reset restart counter */
488 entropy->restarts_to_go = cinfo->restart_interval;
489
490 /* Reset out-of-data flag, unless read_restart_marker left us smack up
491 * against a marker. In that case we will end up treating the next data
492 * segment as empty, and we can avoid producing bogus output pixels by
493 * leaving the flag set.
494 */
495 if (cinfo->unread_marker == 0)
496 entropy->pub.insufficient_data = FALSE;
497
498 return TRUE;
499 }
500
501 /*
502 * Save the current Huffman deocde position and the DC coefficients
503 * for each component into bitstream_offset and dc_info[], respectively.
504 */
505 METHODDEF(void)
get_huffman_decoder_configuration(j_decompress_ptr cinfo,huffman_offset_data * offset)506 get_huffman_decoder_configuration(j_decompress_ptr cinfo,
507 huffman_offset_data *offset)
508 {
509 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
510 short int *dc_info = offset->prev_dc;
511 int i;
512 jpeg_get_huffman_decoder_configuration(cinfo, offset);
513 for (i = 0; i < cinfo->comps_in_scan; i++) {
514 dc_info[i] = entropy->saved.last_dc_val[i];
515 }
516 }
517
518 /*
519 * Save the current Huffman decoder position and the bit buffer
520 * into bitstream_offset and get_buffer, respectively.
521 */
522 GLOBAL(void)
jpeg_get_huffman_decoder_configuration(j_decompress_ptr cinfo,huffman_offset_data * offset)523 jpeg_get_huffman_decoder_configuration(j_decompress_ptr cinfo,
524 huffman_offset_data *offset)
525 {
526 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
527
528 if (cinfo->restart_interval) {
529 // We are at the end of a data segment
530 if (entropy->restarts_to_go == 0)
531 if (! process_restart(cinfo))
532 return;
533 }
534
535 // Save restarts_to_go and next_restart_num
536 offset->restarts_to_go = (unsigned short) entropy->restarts_to_go;
537 offset->next_restart_num = cinfo->marker->next_restart_num;
538
539 offset->bitstream_offset =
540 (jget_input_stream_position(cinfo) << LOG_TWO_BIT_BUF_SIZE)
541 + entropy->bitstate.bits_left;
542
543 offset->get_buffer = entropy->bitstate.get_buffer;
544 }
545
546 /*
547 * Configure the Huffman decoder to decode the image
548 * starting from the bitstream position recorded in offset.
549 */
550 METHODDEF(void)
configure_huffman_decoder(j_decompress_ptr cinfo,huffman_offset_data offset)551 configure_huffman_decoder(j_decompress_ptr cinfo, huffman_offset_data offset)
552 {
553 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
554 short int *dc_info = offset.prev_dc;
555 int i;
556 jpeg_configure_huffman_decoder(cinfo, offset);
557 for (i = 0; i < cinfo->comps_in_scan; i++) {
558 entropy->saved.last_dc_val[i] = dc_info[i];
559 }
560 }
561
562 /*
563 * Configure the Huffman decoder reader position and bit buffer.
564 */
565 GLOBAL(void)
jpeg_configure_huffman_decoder(j_decompress_ptr cinfo,huffman_offset_data offset)566 jpeg_configure_huffman_decoder(j_decompress_ptr cinfo,
567 huffman_offset_data offset)
568 {
569 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
570
571 // Restore restarts_to_go and next_restart_num
572 cinfo->unread_marker = 0;
573 entropy->restarts_to_go = offset.restarts_to_go;
574 cinfo->marker->next_restart_num = offset.next_restart_num;
575
576 unsigned int bitstream_offset = offset.bitstream_offset;
577 int blkn, i;
578
579 unsigned int byte_offset = bitstream_offset >> LOG_TWO_BIT_BUF_SIZE;
580 unsigned int bit_in_bit_buffer =
581 bitstream_offset & ((1 << LOG_TWO_BIT_BUF_SIZE) - 1);
582
583 jset_input_stream_position_bit(cinfo, byte_offset,
584 bit_in_bit_buffer, offset.get_buffer);
585 }
586
587 /*
588 * Decode and return one MCU's worth of Huffman-compressed coefficients.
589 * The coefficients are reordered from zigzag order into natural array order,
590 * but are not dequantized.
591 *
592 * The i'th block of the MCU is stored into the block pointed to by
593 * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
594 * (Wholesale zeroing is usually a little faster than retail...)
595 *
596 * Returns FALSE if data source requested suspension. In that case no
597 * changes have been made to permanent state. (Exception: some output
598 * coefficients may already have been assigned. This is harmless for
599 * this module, since we'll just re-assign them on the next call.)
600 */
601
602 METHODDEF(boolean)
decode_mcu(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)603 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
604 {
605 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
606 int blkn;
607 BITREAD_STATE_VARS;
608 savable_state state;
609
610 /* Process restart marker if needed; may have to suspend */
611 if (cinfo->restart_interval) {
612 if (entropy->restarts_to_go == 0)
613 if (! process_restart(cinfo))
614 return FALSE;
615 }
616
617 /* If we've run out of data, just leave the MCU set to zeroes.
618 * This way, we return uniform gray for the remainder of the segment.
619 */
620 if (! entropy->pub.insufficient_data) {
621 /* Load up working state */
622 BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
623 ASSIGN_STATE(state, entropy->saved);
624
625 /* Outer loop handles each block in the MCU */
626
627 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
628 JBLOCKROW block = MCU_data[blkn];
629 d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
630 d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
631 register int s, k, r;
632
633 /* Decode a single block's worth of coefficients */
634
635 /* Section F.2.2.1: decode the DC coefficient difference */
636 HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
637 if (s) {
638 CHECK_BIT_BUFFER(br_state, s, return FALSE);
639 r = GET_BITS(s);
640 s = HUFF_EXTEND(r, s);
641 }
642
643 if (entropy->dc_needed[blkn]) {
644 /* Convert DC difference to actual value, update last_dc_val */
645 int ci = cinfo->MCU_membership[blkn];
646 s += state.last_dc_val[ci];
647 state.last_dc_val[ci] = s;
648 /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
649 (*block)[0] = (JCOEF) s;
650 }
651
652 if (entropy->ac_needed[blkn]) {
653
654 /* Section F.2.2.2: decode the AC coefficients */
655 /* Since zeroes are skipped, output area must be cleared beforehand */
656 for (k = 1; k < DCTSIZE2; k++) {
657 HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
658
659 r = s >> 4;
660 s &= 15;
661
662 if (s) {
663 k += r;
664 CHECK_BIT_BUFFER(br_state, s, return FALSE);
665 r = GET_BITS(s);
666 s = HUFF_EXTEND(r, s);
667 /* Output coefficient in natural (dezigzagged) order.
668 * Note: the extra entries in jpeg_natural_order[] will save us
669 * if k >= DCTSIZE2, which could happen if the data is corrupted.
670 */
671 (*block)[jpeg_natural_order[k]] = (JCOEF) s;
672 } else {
673 if (r != 15)
674 break;
675 k += 15;
676 }
677 }
678
679 } else {
680
681 /* Section F.2.2.2: decode the AC coefficients */
682 /* In this path we just discard the values */
683 for (k = 1; k < DCTSIZE2; k++) {
684 HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
685
686 r = s >> 4;
687 s &= 15;
688
689 if (s) {
690 k += r;
691 CHECK_BIT_BUFFER(br_state, s, return FALSE);
692 DROP_BITS(s);
693 } else {
694 if (r != 15)
695 break;
696 k += 15;
697 }
698 }
699
700 }
701 }
702
703 /* Completed MCU, so update state */
704 BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
705 ASSIGN_STATE(entropy->saved, state);
706 }
707
708 /* Account for restart interval (no-op if not using restarts) */
709 entropy->restarts_to_go--;
710
711 return TRUE;
712 }
713
714 /*
715 * Decode one MCU's worth of Huffman-compressed coefficients.
716 * The propose of this method is to calculate the
717 * data length of one MCU in Huffman-coded format.
718 * Therefore, all coefficients are discarded.
719 */
720
721 METHODDEF(boolean)
decode_mcu_discard_coef(j_decompress_ptr cinfo)722 decode_mcu_discard_coef (j_decompress_ptr cinfo)
723 {
724 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
725 int blkn;
726 BITREAD_STATE_VARS;
727 savable_state state;
728
729 /* Process restart marker if needed; may have to suspend */
730 if (cinfo->restart_interval) {
731 if (entropy->restarts_to_go == 0)
732 if (! process_restart(cinfo))
733 return FALSE;
734 }
735
736 if (! entropy->pub.insufficient_data) {
737
738 /* Load up working state */
739 BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
740 ASSIGN_STATE(state, entropy->saved);
741
742 /* Outer loop handles each block in the MCU */
743
744 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
745 d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
746 d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
747 register int s, k, r;
748
749 /* Decode a single block's worth of coefficients */
750
751 /* Section F.2.2.1: decode the DC coefficient difference */
752 HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
753 if (s) {
754 CHECK_BIT_BUFFER(br_state, s, return FALSE);
755 r = GET_BITS(s);
756 s = HUFF_EXTEND(r, s);
757 }
758
759 /* discard all coefficients */
760 if (entropy->dc_needed[blkn]) {
761 /* Convert DC difference to actual value, update last_dc_val */
762 int ci = cinfo->MCU_membership[blkn];
763 s += state.last_dc_val[ci];
764 state.last_dc_val[ci] = s;
765 }
766 for (k = 1; k < DCTSIZE2; k++) {
767 HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
768
769 r = s >> 4;
770 s &= 15;
771
772 if (s) {
773 k += r;
774 CHECK_BIT_BUFFER(br_state, s, return FALSE);
775 DROP_BITS(s);
776 } else {
777 if (r != 15)
778 break;
779 k += 15;
780 }
781 }
782 }
783
784 /* Completed MCU, so update state */
785 BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
786 ASSIGN_STATE(entropy->saved, state);
787 }
788
789 /* Account for restart interval (no-op if not using restarts) */
790 entropy->restarts_to_go--;
791
792 return TRUE;
793 }
794
795
796 /*
797 * Module initialization routine for Huffman entropy decoding.
798 */
799
800 GLOBAL(void)
jinit_huff_decoder(j_decompress_ptr cinfo)801 jinit_huff_decoder (j_decompress_ptr cinfo)
802 {
803 huff_entropy_ptr entropy;
804 int i;
805
806 entropy = (huff_entropy_ptr)
807 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
808 SIZEOF(huff_entropy_decoder));
809 cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
810 entropy->pub.start_pass = start_pass_huff_decoder;
811 entropy->pub.decode_mcu = decode_mcu;
812 entropy->pub.decode_mcu_discard_coef = decode_mcu_discard_coef;
813 entropy->pub.configure_huffman_decoder = configure_huffman_decoder;
814 entropy->pub.get_huffman_decoder_configuration =
815 get_huffman_decoder_configuration;
816 entropy->pub.index = NULL;
817
818 /* Mark tables unallocated */
819 for (i = 0; i < NUM_HUFF_TBLS; i++) {
820 entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
821 }
822 }
823
824 /*
825 * Call after jpeg_read_header
826 */
827 GLOBAL(void)
jpeg_create_huffman_index(j_decompress_ptr cinfo,huffman_index * index)828 jpeg_create_huffman_index(j_decompress_ptr cinfo, huffman_index *index)
829 {
830 int i, s;
831 index->scan_count = 1;
832 index->total_iMCU_rows = cinfo->total_iMCU_rows;
833 index->scan = (huffman_scan_header*)malloc(index->scan_count
834 * sizeof(huffman_scan_header));
835 index->scan[0].offset = (huffman_offset_data**)malloc(cinfo->total_iMCU_rows
836 * sizeof(huffman_offset_data*));
837 index->scan[0].prev_MCU_offset.bitstream_offset = 0;
838 index->MCU_sample_size = DEFAULT_MCU_SAMPLE_SIZE;
839
840 index->mem_used = sizeof(huffman_scan_header)
841 + cinfo->total_iMCU_rows * sizeof(huffman_offset_data*);
842 }
843
844 GLOBAL(void)
jpeg_destroy_huffman_index(huffman_index * index)845 jpeg_destroy_huffman_index(huffman_index *index)
846 {
847 int i, j;
848 for (i = 0; i < index->scan_count; i++) {
849 for(j = 0; j < index->total_iMCU_rows; j++) {
850 free(index->scan[i].offset[j]);
851 }
852 free(index->scan[i].offset);
853 }
854 free(index->scan);
855 }
856
857 /*
858 * Set the reader byte position to offset
859 */
860 GLOBAL(void)
jset_input_stream_position(j_decompress_ptr cinfo,int offset)861 jset_input_stream_position(j_decompress_ptr cinfo, int offset)
862 {
863 if (cinfo->src->seek_input_data) {
864 cinfo->src->seek_input_data(cinfo, offset);
865 } else {
866 cinfo->src->bytes_in_buffer = cinfo->src->current_offset - offset;
867 cinfo->src->next_input_byte = cinfo->src->start_input_byte + offset;
868 }
869 }
870
871 /*
872 * Set the reader byte position to offset and bit position to bit_left
873 * with bit buffer set to buf.
874 */
875 GLOBAL(void)
jset_input_stream_position_bit(j_decompress_ptr cinfo,int byte_offset,int bit_left,INT32 buf)876 jset_input_stream_position_bit(j_decompress_ptr cinfo,
877 int byte_offset, int bit_left, INT32 buf)
878 {
879 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
880
881 entropy->bitstate.bits_left = bit_left;
882 entropy->bitstate.get_buffer = buf;
883
884 jset_input_stream_position(cinfo, byte_offset);
885 }
886
887 /*
888 * Get the current reader byte position.
889 */
890 GLOBAL(int)
jget_input_stream_position(j_decompress_ptr cinfo)891 jget_input_stream_position(j_decompress_ptr cinfo)
892 {
893 return cinfo->src->current_offset - cinfo->src->bytes_in_buffer;
894 }
895