1 /*
2 * jdphuff.c
3 *
4 * Copyright (C) 1995-1997, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
7 *
8 * This file contains Huffman entropy decoding routines for progressive JPEG.
9 *
10 * Much of the complexity here has to do with supporting input suspension.
11 * If the data source module demands suspension, we want to be able to back
12 * up to the start of the current MCU. To do this, we copy state variables
13 * into local working storage, and update them back to the permanent
14 * storage only upon successful completion of an MCU.
15 */
16
17 #define JPEG_INTERNALS
18 #include "jinclude.h"
19 #include "jpeglib.h"
20 #include "jdhuff.h" /* Declarations shared with jdhuff.c */
21
22
23 #ifdef D_PROGRESSIVE_SUPPORTED
24
25 /*
26 * Expanded entropy decoder object for progressive Huffman decoding.
27 *
28 * The savable_state subrecord contains fields that change within an MCU,
29 * but must not be updated permanently until we complete the MCU.
30 */
31
32 typedef struct {
33 unsigned int EOBRUN; /* remaining EOBs in EOBRUN */
34 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
35 } savable_state;
36
37 /* This macro is to work around compilers with missing or broken
38 * structure assignment. You'll need to fix this code if you have
39 * such a compiler and you change MAX_COMPS_IN_SCAN.
40 */
41
42 #ifndef NO_STRUCT_ASSIGN
43 #define ASSIGN_STATE(dest,src) ((dest) = (src))
44 #else
45 #if MAX_COMPS_IN_SCAN == 4
46 #define ASSIGN_STATE(dest,src) \
47 ((dest).EOBRUN = (src).EOBRUN, \
48 (dest).last_dc_val[0] = (src).last_dc_val[0], \
49 (dest).last_dc_val[1] = (src).last_dc_val[1], \
50 (dest).last_dc_val[2] = (src).last_dc_val[2], \
51 (dest).last_dc_val[3] = (src).last_dc_val[3])
52 #endif
53 #endif
54
55
56 typedef struct {
57 struct jpeg_entropy_decoder pub; /* public fields */
58
59 /* These fields are loaded into local variables at start of each MCU.
60 * In case of suspension, we exit WITHOUT updating them.
61 */
62 bitread_perm_state bitstate; /* Bit buffer at start of MCU */
63 savable_state saved; /* Other state at start of MCU */
64
65 /* These fields are NOT loaded into local working state. */
66 unsigned int restarts_to_go; /* MCUs left in this restart interval */
67
68 /* Pointers to derived tables (these workspaces have image lifespan) */
69 d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
70
71 d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */
72 } phuff_entropy_decoder;
73
74 typedef phuff_entropy_decoder * phuff_entropy_ptr;
75
76 /* Forward declarations */
77 METHODDEF(boolean) decode_mcu_DC_first JPP((j_decompress_ptr cinfo,
78 JBLOCKROW *MCU_data));
79 METHODDEF(boolean) decode_mcu_AC_first JPP((j_decompress_ptr cinfo,
80 JBLOCKROW *MCU_data));
81 METHODDEF(boolean) decode_mcu_DC_refine JPP((j_decompress_ptr cinfo,
82 JBLOCKROW *MCU_data));
83 METHODDEF(boolean) decode_mcu_AC_refine JPP((j_decompress_ptr cinfo,
84 JBLOCKROW *MCU_data));
85
86 /*
87 * Initialize for a Huffman-compressed scan.
88 */
89
90 METHODDEF(void)
start_pass_phuff_decoder(j_decompress_ptr cinfo)91 start_pass_phuff_decoder (j_decompress_ptr cinfo)
92 {
93 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
94 boolean is_DC_band, bad;
95 int ci, coefi, tbl;
96 int *coef_bit_ptr;
97 jpeg_component_info * compptr;
98
99 is_DC_band = (cinfo->Ss == 0);
100
101 /* Validate scan parameters */
102 bad = FALSE;
103 if (is_DC_band) {
104 if (cinfo->Se != 0)
105 bad = TRUE;
106 } else {
107 /* need not check Ss/Se < 0 since they came from unsigned bytes */
108 if (cinfo->Ss > cinfo->Se || cinfo->Se >= DCTSIZE2)
109 bad = TRUE;
110 /* AC scans may have only one component */
111 if (cinfo->comps_in_scan != 1)
112 bad = TRUE;
113 }
114 if (cinfo->Ah != 0) {
115 /* Successive approximation refinement scan: must have Al = Ah-1. */
116 if (cinfo->Al != cinfo->Ah-1)
117 bad = TRUE;
118 }
119 if (cinfo->Al > 13) /* need not check for < 0 */
120 bad = TRUE;
121 /* Arguably the maximum Al value should be less than 13 for 8-bit precision,
122 * but the spec doesn't say so, and we try to be liberal about what we
123 * accept. Note: large Al values could result in out-of-range DC
124 * coefficients during early scans, leading to bizarre displays due to
125 * overflows in the IDCT math. But we won't crash.
126 */
127 if (bad)
128 ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
129 cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
130 /* Update progression status, and verify that scan order is legal.
131 * Note that inter-scan inconsistencies are treated as warnings
132 * not fatal errors ... not clear if this is right way to behave.
133 */
134 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
135 int cindex = cinfo->cur_comp_info[ci]->component_index;
136 coef_bit_ptr = & cinfo->coef_bits[cindex][0];
137 if (!is_DC_band && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
138 WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
139 for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
140 int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
141 if (cinfo->Ah != expected)
142 WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
143 coef_bit_ptr[coefi] = cinfo->Al;
144 }
145 }
146
147 /* Select MCU decoding routine */
148 if (cinfo->Ah == 0) {
149 if (is_DC_band)
150 entropy->pub.decode_mcu = decode_mcu_DC_first;
151 else
152 entropy->pub.decode_mcu = decode_mcu_AC_first;
153 } else {
154 if (is_DC_band)
155 entropy->pub.decode_mcu = decode_mcu_DC_refine;
156 else
157 entropy->pub.decode_mcu = decode_mcu_AC_refine;
158 }
159
160 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
161 compptr = cinfo->cur_comp_info[ci];
162 /* Make sure requested tables are present, and compute derived tables.
163 * We may build same derived table more than once, but it's not expensive.
164 */
165 if (is_DC_band) {
166 if (cinfo->Ah == 0) { /* DC refinement needs no table */
167 tbl = compptr->dc_tbl_no;
168 jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
169 & entropy->derived_tbls[tbl]);
170 }
171 } else {
172 tbl = compptr->ac_tbl_no;
173 jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
174 & entropy->derived_tbls[tbl]);
175 /* remember the single active table */
176 entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
177 }
178 /* Initialize DC predictions to 0 */
179 entropy->saved.last_dc_val[ci] = 0;
180 }
181
182 /* Initialize bitread state variables */
183 entropy->bitstate.bits_left = 0;
184 entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
185 entropy->pub.insufficient_data = FALSE;
186
187 /* Initialize private state variables */
188 entropy->saved.EOBRUN = 0;
189
190 /* Initialize restart counter */
191 entropy->restarts_to_go = cinfo->restart_interval;
192 }
193
194
195 /*
196 * Figure F.12: extend sign bit.
197 * On some machines, a shift and add will be faster than a table lookup.
198 */
199
200 #ifdef AVOID_TABLES
201
202 #define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
203
204 #else
205
206 #define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
207
208 static const int extend_test[16] = /* entry n is 2**(n-1) */
209 { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
210 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
211
212 static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
213 { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
214 ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
215 ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
216 ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
217
218 #endif /* AVOID_TABLES */
219
220
221 /*
222 * Check for a restart marker & resynchronize decoder.
223 * Returns FALSE if must suspend.
224 */
225
226 LOCAL(boolean)
process_restart(j_decompress_ptr cinfo)227 process_restart (j_decompress_ptr cinfo)
228 {
229 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
230 int ci;
231
232 /* Throw away any unused bits remaining in bit buffer; */
233 /* include any full bytes in next_marker's count of discarded bytes */
234 cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
235 entropy->bitstate.bits_left = 0;
236
237 /* Advance past the RSTn marker */
238 if (! (*cinfo->marker->read_restart_marker) (cinfo))
239 return FALSE;
240
241 /* Re-initialize DC predictions to 0 */
242 for (ci = 0; ci < cinfo->comps_in_scan; ci++)
243 entropy->saved.last_dc_val[ci] = 0;
244 /* Re-init EOB run count, too */
245 entropy->saved.EOBRUN = 0;
246
247 /* Reset restart counter */
248 entropy->restarts_to_go = cinfo->restart_interval;
249
250 /* Reset out-of-data flag, unless read_restart_marker left us smack up
251 * against a marker. In that case we will end up treating the next data
252 * segment as empty, and we can avoid producing bogus output pixels by
253 * leaving the flag set.
254 */
255 if (cinfo->unread_marker == 0)
256 entropy->pub.insufficient_data = FALSE;
257
258 return TRUE;
259 }
260
261
262 /*
263 * Huffman MCU decoding.
264 * Each of these routines decodes and returns one MCU's worth of
265 * Huffman-compressed coefficients.
266 * The coefficients are reordered from zigzag order into natural array order,
267 * but are not dequantized.
268 *
269 * The i'th block of the MCU is stored into the block pointed to by
270 * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
271 *
272 * We return FALSE if data source requested suspension. In that case no
273 * changes have been made to permanent state. (Exception: some output
274 * coefficients may already have been assigned. This is harmless for
275 * spectral selection, since we'll just re-assign them on the next call.
276 * Successive approximation AC refinement has to be more careful, however.)
277 */
278
279 /*
280 * MCU decoding for DC initial scan (either spectral selection,
281 * or first pass of successive approximation).
282 */
283
284 METHODDEF(boolean)
decode_mcu_DC_first(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)285 decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
286 {
287 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
288 int Al = cinfo->Al;
289 register int s, r;
290 int blkn, ci;
291 JBLOCKROW block;
292 BITREAD_STATE_VARS;
293 savable_state state;
294 d_derived_tbl * tbl;
295 jpeg_component_info * compptr;
296
297 /* Process restart marker if needed; may have to suspend */
298 if (cinfo->restart_interval) {
299 if (entropy->restarts_to_go == 0)
300 if (! process_restart(cinfo))
301 return FALSE;
302 }
303
304 /* If we've run out of data, just leave the MCU set to zeroes.
305 * This way, we return uniform gray for the remainder of the segment.
306 */
307 if (! entropy->pub.insufficient_data) {
308
309 /* Load up working state */
310 BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
311 ASSIGN_STATE(state, entropy->saved);
312
313 /* Outer loop handles each block in the MCU */
314
315 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
316 block = MCU_data[blkn];
317 ci = cinfo->MCU_membership[blkn];
318 compptr = cinfo->cur_comp_info[ci];
319 tbl = entropy->derived_tbls[compptr->dc_tbl_no];
320
321 /* Decode a single block's worth of coefficients */
322
323 /* Section F.2.2.1: decode the DC coefficient difference */
324 HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
325 if (s) {
326 CHECK_BIT_BUFFER(br_state, s, return FALSE);
327 r = GET_BITS(s);
328 s = HUFF_EXTEND(r, s);
329 }
330
331 /* Convert DC difference to actual value, update last_dc_val */
332 s += state.last_dc_val[ci];
333 state.last_dc_val[ci] = s;
334 /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
335 (*block)[0] = (JCOEF) (s << Al);
336 }
337
338 /* Completed MCU, so update state */
339 BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
340 ASSIGN_STATE(entropy->saved, state);
341 }
342
343 /* Account for restart interval (no-op if not using restarts) */
344 entropy->restarts_to_go--;
345
346 return TRUE;
347 }
348
349
350 /*
351 * MCU decoding for AC initial scan (either spectral selection,
352 * or first pass of successive approximation).
353 */
354
355 METHODDEF(boolean)
decode_mcu_AC_first(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)356 decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
357 {
358 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
359 int Se = cinfo->Se;
360 int Al = cinfo->Al;
361 register int s, k, r;
362 unsigned int EOBRUN;
363 JBLOCKROW block;
364 BITREAD_STATE_VARS;
365 d_derived_tbl * tbl;
366
367 /* Process restart marker if needed; may have to suspend */
368 if (cinfo->restart_interval) {
369 if (entropy->restarts_to_go == 0)
370 if (! process_restart(cinfo))
371 return FALSE;
372 }
373
374 /* If we've run out of data, just leave the MCU set to zeroes.
375 * This way, we return uniform gray for the remainder of the segment.
376 */
377 if (! entropy->pub.insufficient_data) {
378
379 /* Load up working state.
380 * We can avoid loading/saving bitread state if in an EOB run.
381 */
382 EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
383
384 /* There is always only one block per MCU */
385
386 if (EOBRUN > 0) /* if it's a band of zeroes... */
387 EOBRUN--; /* ...process it now (we do nothing) */
388 else {
389 BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
390 block = MCU_data[0];
391 tbl = entropy->ac_derived_tbl;
392
393 for (k = cinfo->Ss; k <= Se; k++) {
394 HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
395 r = s >> 4;
396 s &= 15;
397 if (s) {
398 k += r;
399 CHECK_BIT_BUFFER(br_state, s, return FALSE);
400 r = GET_BITS(s);
401 s = HUFF_EXTEND(r, s);
402 /* Scale and output coefficient in natural (dezigzagged) order */
403 (*block)[jpeg_natural_order[k]] = (JCOEF) (s << Al);
404 } else {
405 if (r == 15) { /* ZRL */
406 k += 15; /* skip 15 zeroes in band */
407 } else { /* EOBr, run length is 2^r + appended bits */
408 EOBRUN = 1 << r;
409 if (r) { /* EOBr, r > 0 */
410 CHECK_BIT_BUFFER(br_state, r, return FALSE);
411 r = GET_BITS(r);
412 EOBRUN += r;
413 }
414 EOBRUN--; /* this band is processed at this moment */
415 break; /* force end-of-band */
416 }
417 }
418 }
419
420 BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
421 }
422
423 /* Completed MCU, so update state */
424 entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
425 }
426
427 /* Account for restart interval (no-op if not using restarts) */
428 entropy->restarts_to_go--;
429
430 return TRUE;
431 }
432
433
434 /*
435 * MCU decoding for DC successive approximation refinement scan.
436 * Note: we assume such scans can be multi-component, although the spec
437 * is not very clear on the point.
438 */
439
440 METHODDEF(boolean)
decode_mcu_DC_refine(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)441 decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
442 {
443 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
444 int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
445 int blkn;
446 JBLOCKROW block;
447 BITREAD_STATE_VARS;
448
449 /* Process restart marker if needed; may have to suspend */
450 if (cinfo->restart_interval) {
451 if (entropy->restarts_to_go == 0)
452 if (! process_restart(cinfo))
453 return FALSE;
454 }
455
456 /* Not worth the cycles to check insufficient_data here,
457 * since we will not change the data anyway if we read zeroes.
458 */
459
460 /* Load up working state */
461 BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
462
463 /* Outer loop handles each block in the MCU */
464
465 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
466 block = MCU_data[blkn];
467
468 /* Encoded data is simply the next bit of the two's-complement DC value */
469 CHECK_BIT_BUFFER(br_state, 1, return FALSE);
470 if (GET_BITS(1))
471 (*block)[0] |= p1;
472 /* Note: since we use |=, repeating the assignment later is safe */
473 }
474
475 /* Completed MCU, so update state */
476 BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
477
478 /* Account for restart interval (no-op if not using restarts) */
479 entropy->restarts_to_go--;
480
481 return TRUE;
482 }
483
484
485 /*
486 * MCU decoding for AC successive approximation refinement scan.
487 */
488
489 METHODDEF(boolean)
decode_mcu_AC_refine(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)490 decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
491 {
492 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
493 int Se = cinfo->Se;
494 int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
495 int m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */
496 register int s, k, r;
497 unsigned int EOBRUN;
498 JBLOCKROW block;
499 JCOEFPTR thiscoef;
500 BITREAD_STATE_VARS;
501 d_derived_tbl * tbl;
502 int num_newnz;
503 int newnz_pos[DCTSIZE2];
504
505 /* Process restart marker if needed; may have to suspend */
506 if (cinfo->restart_interval) {
507 if (entropy->restarts_to_go == 0)
508 if (! process_restart(cinfo))
509 return FALSE;
510 }
511
512 /* If we've run out of data, don't modify the MCU.
513 */
514 if (! entropy->pub.insufficient_data) {
515
516 /* Load up working state */
517 BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
518 EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
519
520 /* There is always only one block per MCU */
521 block = MCU_data[0];
522 tbl = entropy->ac_derived_tbl;
523
524 /* If we are forced to suspend, we must undo the assignments to any newly
525 * nonzero coefficients in the block, because otherwise we'd get confused
526 * next time about which coefficients were already nonzero.
527 * But we need not undo addition of bits to already-nonzero coefficients;
528 * instead, we can test the current bit to see if we already did it.
529 */
530 num_newnz = 0;
531
532 /* initialize coefficient loop counter to start of band */
533 k = cinfo->Ss;
534
535 if (EOBRUN == 0) {
536 for (; k <= Se; k++) {
537 HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
538 r = s >> 4;
539 s &= 15;
540 if (s) {
541 if (s != 1) /* size of new coef should always be 1 */
542 WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
543 CHECK_BIT_BUFFER(br_state, 1, goto undoit);
544 if (GET_BITS(1))
545 s = p1; /* newly nonzero coef is positive */
546 else
547 s = m1; /* newly nonzero coef is negative */
548 } else {
549 if (r != 15) {
550 EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */
551 if (r) {
552 CHECK_BIT_BUFFER(br_state, r, goto undoit);
553 r = GET_BITS(r);
554 EOBRUN += r;
555 }
556 break; /* rest of block is handled by EOB logic */
557 }
558 /* note s = 0 for processing ZRL */
559 }
560 /* Advance over already-nonzero coefs and r still-zero coefs,
561 * appending correction bits to the nonzeroes. A correction bit is 1
562 * if the absolute value of the coefficient must be increased.
563 */
564 do {
565 thiscoef = *block + jpeg_natural_order[k];
566 if (*thiscoef != 0) {
567 CHECK_BIT_BUFFER(br_state, 1, goto undoit);
568 if (GET_BITS(1)) {
569 if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
570 if (*thiscoef >= 0)
571 *thiscoef += p1;
572 else
573 *thiscoef += m1;
574 }
575 }
576 } else {
577 if (--r < 0)
578 break; /* reached target zero coefficient */
579 }
580 k++;
581 } while (k <= Se);
582 if (s) {
583 int pos = jpeg_natural_order[k];
584 /* Output newly nonzero coefficient */
585 (*block)[pos] = (JCOEF) s;
586 /* Remember its position in case we have to suspend */
587 newnz_pos[num_newnz++] = pos;
588 }
589 }
590 }
591
592 if (EOBRUN > 0) {
593 /* Scan any remaining coefficient positions after the end-of-band
594 * (the last newly nonzero coefficient, if any). Append a correction
595 * bit to each already-nonzero coefficient. A correction bit is 1
596 * if the absolute value of the coefficient must be increased.
597 */
598 for (; k <= Se; k++) {
599 thiscoef = *block + jpeg_natural_order[k];
600 if (*thiscoef != 0) {
601 CHECK_BIT_BUFFER(br_state, 1, goto undoit);
602 if (GET_BITS(1)) {
603 if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
604 if (*thiscoef >= 0)
605 *thiscoef += p1;
606 else
607 *thiscoef += m1;
608 }
609 }
610 }
611 }
612 /* Count one block completed in EOB run */
613 EOBRUN--;
614 }
615
616 /* Completed MCU, so update state */
617 BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
618 entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
619 }
620
621 /* Account for restart interval (no-op if not using restarts) */
622 entropy->restarts_to_go--;
623
624 return TRUE;
625
626 undoit:
627 /* Re-zero any output coefficients that we made newly nonzero */
628 while (num_newnz > 0)
629 (*block)[newnz_pos[--num_newnz]] = 0;
630
631 return FALSE;
632 }
633
634 /*
635 * Save the current Huffman deocde position and the DC coefficients
636 * for each component into bitstream_offset and dc_info[], respectively.
637 */
638 METHODDEF(void)
get_huffman_decoder_configuration(j_decompress_ptr cinfo,huffman_offset_data * offset)639 get_huffman_decoder_configuration(j_decompress_ptr cinfo,
640 huffman_offset_data *offset)
641 {
642 int i;
643 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
644 jpeg_get_huffman_decoder_configuration_progressive(cinfo, offset);
645 offset->EOBRUN = entropy->saved.EOBRUN;
646 for (i = 0; i < cinfo->comps_in_scan; i++)
647 offset->prev_dc[i] = entropy->saved.last_dc_val[i];
648 }
649
650
651 /*
652 * Save the current Huffman decoder position and the bit buffer
653 * into bitstream_offset and get_buffer, respectively.
654 */
655 GLOBAL(void)
jpeg_get_huffman_decoder_configuration_progressive(j_decompress_ptr cinfo,huffman_offset_data * offset)656 jpeg_get_huffman_decoder_configuration_progressive(j_decompress_ptr cinfo,
657 huffman_offset_data *offset)
658 {
659 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
660
661 if (cinfo->restart_interval) {
662 // We are at the end of a data segment
663 if (entropy->restarts_to_go == 0)
664 if (! process_restart(cinfo))
665 return;
666 }
667
668 // Save restarts_to_go and next_restart_num.
669 offset->restarts_to_go = (unsigned short) entropy->restarts_to_go;
670 offset->next_restart_num = cinfo->marker->next_restart_num;
671
672 offset->bitstream_offset =
673 (jget_input_stream_position(cinfo) << LOG_TWO_BIT_BUF_SIZE)
674 + entropy->bitstate.bits_left;
675
676 offset->get_buffer = entropy->bitstate.get_buffer;
677 }
678
679
680 /*
681 * Configure the Huffman decoder to decode the image
682 * starting from (iMCU_row_offset, iMCU_col_offset).
683 */
684 METHODDEF(void)
configure_huffman_decoder(j_decompress_ptr cinfo,huffman_offset_data offset)685 configure_huffman_decoder(j_decompress_ptr cinfo, huffman_offset_data offset)
686 {
687 int i;
688 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
689 jpeg_configure_huffman_decoder_progressive(cinfo, offset);
690 entropy->saved.EOBRUN = offset.EOBRUN;
691 for (i = 0; i < cinfo->comps_in_scan; i++)
692 entropy->saved.last_dc_val[i] = offset.prev_dc[i];
693 }
694
695 /*
696 * Configure the Huffman decoder reader position and bit buffer.
697 */
698 GLOBAL(void)
jpeg_configure_huffman_decoder_progressive(j_decompress_ptr cinfo,huffman_offset_data offset)699 jpeg_configure_huffman_decoder_progressive(j_decompress_ptr cinfo,
700 huffman_offset_data offset)
701 {
702 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
703
704 // Restore restarts_to_go and next_restart_num
705 cinfo->unread_marker = 0;
706 entropy->restarts_to_go = offset.restarts_to_go;
707 cinfo->marker->next_restart_num = offset.next_restart_num;
708
709 unsigned int bitstream_offset = offset.bitstream_offset;
710 int blkn, i;
711
712 unsigned int byte_offset = bitstream_offset >> LOG_TWO_BIT_BUF_SIZE;
713 unsigned int bit_in_bit_buffer =
714 bitstream_offset & ((1 << LOG_TWO_BIT_BUF_SIZE) - 1);
715
716 jset_input_stream_position_bit(cinfo, byte_offset,
717 bit_in_bit_buffer, offset.get_buffer);
718 }
719
720 GLOBAL(void)
jpeg_configure_huffman_index_scan(j_decompress_ptr cinfo,huffman_index * index,int scan_no,int offset)721 jpeg_configure_huffman_index_scan(j_decompress_ptr cinfo,
722 huffman_index *index, int scan_no, int offset)
723 {
724 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
725 if (scan_no >= index->scan_count) {
726 index->scan = realloc(index->scan,
727 (scan_no + 1) * sizeof(huffman_scan_header));
728 index->mem_used += (scan_no - index->scan_count + 1)
729 * (sizeof(huffman_scan_header) + cinfo->total_iMCU_rows
730 * sizeof(huffman_offset_data*));
731 index->scan_count = scan_no + 1;
732 }
733 index->scan[scan_no].offset = (huffman_offset_data**)malloc(
734 cinfo->total_iMCU_rows * sizeof(huffman_offset_data*));
735 index->scan[scan_no].bitstream_offset = offset;
736 }
737
738 /*
739 * Module initialization routine for progressive Huffman entropy decoding.
740 */
741 GLOBAL(void)
jinit_phuff_decoder(j_decompress_ptr cinfo)742 jinit_phuff_decoder (j_decompress_ptr cinfo)
743 {
744 phuff_entropy_ptr entropy;
745 int *coef_bit_ptr;
746 int ci, i;
747
748 entropy = (phuff_entropy_ptr)
749 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
750 SIZEOF(phuff_entropy_decoder));
751 cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
752 entropy->pub.start_pass = start_pass_phuff_decoder;
753 entropy->pub.configure_huffman_decoder = configure_huffman_decoder;
754 entropy->pub.get_huffman_decoder_configuration =
755 get_huffman_decoder_configuration;
756
757 /* Mark derived tables unallocated */
758 for (i = 0; i < NUM_HUFF_TBLS; i++) {
759 entropy->derived_tbls[i] = NULL;
760 }
761
762 /* Create progression status table */
763 cinfo->coef_bits = (int (*)[DCTSIZE2])
764 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
765 cinfo->num_components*DCTSIZE2*SIZEOF(int));
766 coef_bit_ptr = & cinfo->coef_bits[0][0];
767 for (ci = 0; ci < cinfo->num_components; ci++)
768 for (i = 0; i < DCTSIZE2; i++)
769 *coef_bit_ptr++ = -1;
770 }
771
772 #endif /* D_PROGRESSIVE_SUPPORTED */
773