• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 /*
18  * Dalvik bytecode verifier.
19  */
20 #ifndef _DALVIK_CODEVERIFY
21 #define _DALVIK_CODEVERIFY
22 
23 #include "analysis/VerifySubs.h"
24 
25 
26 /*
27  * Enumeration for register type values.  The "hi" piece of a 64-bit value
28  * MUST immediately follow the "lo" piece in the enumeration, so we can check
29  * that hi==lo+1.
30  *
31  * Assignment of constants:
32  *   [-MAXINT,-32768)   : integer
33  *   [-32768,-128)      : short
34  *   [-128,0)           : byte
35  *   0                  : zero
36  *   1                  : one
37  *   [2,128)            : posbyte
38  *   [128,32768)        : posshort
39  *   [32768,65536)      : char
40  *   [65536,MAXINT]     : integer
41  *
42  * Allowed "implicit" widening conversions:
43  *   zero -> boolean, posbyte, byte, posshort, short, char, integer, ref (null)
44  *   one -> boolean, posbyte, byte, posshort, short, char, integer
45  *   boolean -> posbyte, byte, posshort, short, char, integer
46  *   posbyte -> posshort, short, integer, char
47  *   byte -> short, integer
48  *   posshort -> integer, char
49  *   short -> integer
50  *   char -> integer
51  *
52  * In addition, all of the above can convert to "float".
53  *
54  * We're more careful with integer values than the spec requires.  The
55  * motivation is to restrict byte/char/short to the correct range of values.
56  * For example, if a method takes a byte argument, we don't want to allow
57  * the code to load the constant "1024" and pass it in.
58  */
59 enum {
60     kRegTypeUnknown = 0,    /* initial state; use value=0 so calloc works */
61     kRegTypeUninit = 1,     /* MUST be odd to distinguish from pointer */
62     kRegTypeConflict,       /* merge clash makes this reg's type unknowable */
63 
64     /*
65      * Category-1nr types.  The order of these is chiseled into a couple
66      * of tables, so don't add, remove, or reorder if you can avoid it.
67      */
68 #define kRegType1nrSTART    kRegTypeFloat
69     kRegTypeFloat,
70     kRegTypeZero,           /* 32-bit 0, could be Boolean, Int, Float, or Ref */
71     kRegTypeOne,            /* 32-bit 1, could be Boolean, Int, Float */
72     kRegTypeBoolean,        /* must be 0 or 1 */
73     kRegTypePosByte,        /* byte, known positive (can become char) */
74     kRegTypeByte,
75     kRegTypePosShort,       /* short, known positive (can become char) */
76     kRegTypeShort,
77     kRegTypeChar,
78     kRegTypeInteger,
79 #define kRegType1nrEND      kRegTypeInteger
80 
81     kRegTypeLongLo,         /* lower-numbered register; endian-independent */
82     kRegTypeLongHi,
83     kRegTypeDoubleLo,
84     kRegTypeDoubleHi,
85 
86     /*
87      * Enumeration max; this is used with "full" (32-bit) RegType values.
88      *
89      * Anything larger than this is a ClassObject or uninit ref.  Mask off
90      * all but the low 8 bits; if you're left with kRegTypeUninit, pull
91      * the uninit index out of the high 24.  Because kRegTypeUninit has an
92      * odd value, there is no risk of a particular ClassObject pointer bit
93      * pattern being confused for it (assuming our class object allocator
94      * uses word alignment).
95      */
96     kRegTypeMAX
97 };
98 #define kRegTypeUninitMask  0xff
99 #define kRegTypeUninitShift 8
100 
101 /*
102  * RegType holds information about the type of data held in a register.
103  * For most types it's a simple enum.  For reference types it holds a
104  * pointer to the ClassObject, and for uninitialized references it holds
105  * an index into the UninitInstanceMap.
106  */
107 typedef u4 RegType;
108 
109 /*
110  * Table that maps uninitialized instances to classes, based on the
111  * address of the new-instance instruction.
112  */
113 typedef struct UninitInstanceMap {
114     int numEntries;
115     struct {
116         int             addr;   /* code offset, or -1 for method arg ("this") */
117         ClassObject*    clazz;  /* class created at this address */
118     } map[1];
119 } UninitInstanceMap;
120 #define kUninitThisArgAddr  (-1)
121 #define kUninitThisArgSlot  0
122 
123 /*
124  * Various bits of data generated by the verifier, wrapped up in a package
125  * for ease of use by the register map generator.
126  */
127 typedef struct VerifierData {
128     /*
129      * The method we're working on.
130      */
131     const Method*   method;
132 
133     /*
134      * Number of code units of instructions in the method.  A cache of the
135      * value calculated by dvmGetMethodInsnsSize().
136      */
137     u4              insnsSize;
138 
139     /*
140      * Number of registers we track for each instruction.  This is equal
141      * to the method's declared "registersSize".  (Does not include the
142      * pending return value.)
143      */
144     u4              insnRegCount;
145 
146     /*
147      * Instruction widths and flags, one entry per code unit.
148      */
149     InsnFlags*      insnFlags;
150 
151     /*
152      * Uninitialized instance map, used for tracking the movement of
153      * objects that have been allocated but not initialized.
154      */
155     UninitInstanceMap* uninitMap;
156 
157     /*
158      * Array of SRegType arrays, one entry per code unit.  We only need
159      * entries for code units that hold the start of an "interesting"
160      * instruction.  For register map generation, we're only interested
161      * in GC points.
162      */
163     RegType**       addrRegs;
164 } VerifierData;
165 
166 
167 /* table with static merge logic for primitive types */
168 extern const char gDvmMergeTab[kRegTypeMAX][kRegTypeMAX];
169 
170 
171 /*
172  * Returns "true" if the flags indicate that this address holds the start
173  * of an instruction.
174  */
dvmInsnIsOpcode(const InsnFlags * insnFlags,int addr)175 INLINE bool dvmInsnIsOpcode(const InsnFlags* insnFlags, int addr) {
176     return (insnFlags[addr] & kInsnFlagWidthMask) != 0;
177 }
178 
179 /*
180  * Extract the unsigned 16-bit instruction width from "flags".
181  */
dvmInsnGetWidth(const InsnFlags * insnFlags,int addr)182 INLINE int dvmInsnGetWidth(const InsnFlags* insnFlags, int addr) {
183     return insnFlags[addr] & kInsnFlagWidthMask;
184 }
185 
186 /*
187  * Changed?
188  */
dvmInsnIsChanged(const InsnFlags * insnFlags,int addr)189 INLINE bool dvmInsnIsChanged(const InsnFlags* insnFlags, int addr) {
190     return (insnFlags[addr] & kInsnFlagChanged) != 0;
191 }
dvmInsnSetChanged(InsnFlags * insnFlags,int addr,bool changed)192 INLINE void dvmInsnSetChanged(InsnFlags* insnFlags, int addr, bool changed)
193 {
194     if (changed)
195         insnFlags[addr] |= kInsnFlagChanged;
196     else
197         insnFlags[addr] &= ~kInsnFlagChanged;
198 }
199 
200 /*
201  * Visited?
202  */
dvmInsnIsVisited(const InsnFlags * insnFlags,int addr)203 INLINE bool dvmInsnIsVisited(const InsnFlags* insnFlags, int addr) {
204     return (insnFlags[addr] & kInsnFlagVisited) != 0;
205 }
dvmInsnSetVisited(InsnFlags * insnFlags,int addr,bool changed)206 INLINE void dvmInsnSetVisited(InsnFlags* insnFlags, int addr, bool changed)
207 {
208     if (changed)
209         insnFlags[addr] |= kInsnFlagVisited;
210     else
211         insnFlags[addr] &= ~kInsnFlagVisited;
212 }
213 
214 /*
215  * Visited or changed?
216  */
dvmInsnIsVisitedOrChanged(const InsnFlags * insnFlags,int addr)217 INLINE bool dvmInsnIsVisitedOrChanged(const InsnFlags* insnFlags, int addr) {
218     return (insnFlags[addr] & (kInsnFlagVisited|kInsnFlagChanged)) != 0;
219 }
220 
221 /*
222  * In a "try" block?
223  */
dvmInsnIsInTry(const InsnFlags * insnFlags,int addr)224 INLINE bool dvmInsnIsInTry(const InsnFlags* insnFlags, int addr) {
225     return (insnFlags[addr] & kInsnFlagInTry) != 0;
226 }
dvmInsnSetInTry(InsnFlags * insnFlags,int addr,bool inTry)227 INLINE void dvmInsnSetInTry(InsnFlags* insnFlags, int addr, bool inTry)
228 {
229     assert(inTry);
230     //if (inTry)
231         insnFlags[addr] |= kInsnFlagInTry;
232     //else
233     //    insnFlags[addr] &= ~kInsnFlagInTry;
234 }
235 
236 /*
237  * Instruction is a branch target or exception handler?
238  */
dvmInsnIsBranchTarget(const InsnFlags * insnFlags,int addr)239 INLINE bool dvmInsnIsBranchTarget(const InsnFlags* insnFlags, int addr) {
240     return (insnFlags[addr] & kInsnFlagBranchTarget) != 0;
241 }
dvmInsnSetBranchTarget(InsnFlags * insnFlags,int addr,bool isBranch)242 INLINE void dvmInsnSetBranchTarget(InsnFlags* insnFlags, int addr,
243     bool isBranch)
244 {
245     assert(isBranch);
246     //if (isBranch)
247         insnFlags[addr] |= kInsnFlagBranchTarget;
248     //else
249     //    insnFlags[addr] &= ~kInsnFlagBranchTarget;
250 }
251 
252 /*
253  * Instruction is a GC point?
254  */
dvmInsnIsGcPoint(const InsnFlags * insnFlags,int addr)255 INLINE bool dvmInsnIsGcPoint(const InsnFlags* insnFlags, int addr) {
256     return (insnFlags[addr] & kInsnFlagGcPoint) != 0;
257 }
dvmInsnSetGcPoint(InsnFlags * insnFlags,int addr,bool isGcPoint)258 INLINE void dvmInsnSetGcPoint(InsnFlags* insnFlags, int addr,
259     bool isGcPoint)
260 {
261     assert(isGcPoint);
262     //if (isGcPoint)
263         insnFlags[addr] |= kInsnFlagGcPoint;
264     //else
265     //    insnFlags[addr] &= ~kInsnFlagGcPoint;
266 }
267 
268 
269 /*
270  * Create a new UninitInstanceMap.
271  */
272 UninitInstanceMap* dvmCreateUninitInstanceMap(const Method* meth,
273     const InsnFlags* insnFlags, int newInstanceCount);
274 
275 /*
276  * Release the storage associated with an UninitInstanceMap.
277  */
278 void dvmFreeUninitInstanceMap(UninitInstanceMap* uninitMap);
279 
280 /*
281  * Associate a class with an address.  Returns the map slot index, or -1
282  * if the address isn't listed in the map (shouldn't happen) or if a
283  * different class is already associated with the address (shouldn't
284  * happen either).
285  */
286 //int dvmSetUninitInstance(UninitInstanceMap* uninitMap, int addr,
287 //    ClassObject* clazz);
288 
289 /*
290  * Return the class associated with an uninitialized reference.  Pass in
291  * the map index.
292  */
293 //ClassObject* dvmGetUninitInstance(const UninitInstanceMap* uninitMap, int idx);
294 
295 /*
296  * Clear the class associated with an uninitialized reference.  Pass in
297  * the map index.
298  */
299 //void dvmClearUninitInstance(UninitInstanceMap* uninitMap, int idx);
300 
301 
302 /*
303  * Verify bytecode in "meth".  "insnFlags" should be populated with
304  * instruction widths and "in try" flags.
305  */
306 bool dvmVerifyCodeFlow(VerifierData* vdata);
307 
308 #endif /*_DALVIK_CODEVERIFY*/
309