1 /* misc - miscellaneous flex routines */
2
3 /*-
4 * Copyright (c) 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Vern Paxson.
9 *
10 * The United States Government has rights in this work pursuant
11 * to contract no. DE-AC03-76SF00098 between the United States
12 * Department of Energy and the University of California.
13 *
14 * Redistribution and use in source and binary forms with or without
15 * modification are permitted provided that: (1) source distributions retain
16 * this entire copyright notice and comment, and (2) distributions including
17 * binaries display the following acknowledgement: ``This product includes
18 * software developed by the University of California, Berkeley and its
19 * contributors'' in the documentation or other materials provided with the
20 * distribution and in all advertising materials mentioning features or use
21 * of this software. Neither the name of the University nor the names of
22 * its contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
25 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
26 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
27 */
28
29 /* $Header: /home/daffy/u0/vern/flex/RCS/misc.c,v 2.47 95/04/28 11:39:39 vern Exp $ */
30
31 #include "flexdef.h"
32
33
action_define(defname,value)34 void action_define( defname, value )
35 char *defname;
36 int value;
37 {
38 char buf[MAXLINE];
39
40 if ( (int) strlen( defname ) > MAXLINE / 2 )
41 {
42 format_pinpoint_message( _( "name \"%s\" ridiculously long" ),
43 defname );
44 return;
45 }
46
47 sprintf( buf, "#define %s %d\n", defname, value );
48 add_action( buf );
49 }
50
51
add_action(new_text)52 void add_action( new_text )
53 char *new_text;
54 {
55 int len = strlen( new_text );
56
57 while ( len + action_index >= action_size - 10 /* slop */ )
58 {
59 int new_size = action_size * 2;
60
61 if ( new_size <= 0 )
62 /* Increase just a little, to try to avoid overflow
63 * on 16-bit machines.
64 */
65 action_size += action_size / 8;
66 else
67 action_size = new_size;
68
69 action_array =
70 reallocate_character_array( action_array, action_size );
71 }
72
73 strcpy( &action_array[action_index], new_text );
74
75 action_index += len;
76 }
77
78
79 /* allocate_array - allocate memory for an integer array of the given size */
80
allocate_array(size,element_size)81 void *allocate_array( size, element_size )
82 int size;
83 size_t element_size;
84 {
85 register void *mem;
86 size_t num_bytes = element_size * size;
87
88 mem = flex_alloc( num_bytes );
89 if ( ! mem )
90 flexfatal(
91 _( "memory allocation failed in allocate_array()" ) );
92
93 return mem;
94 }
95
96
97 /* all_lower - true if a string is all lower-case */
98
all_lower(str)99 int all_lower( str )
100 register char *str;
101 {
102 while ( *str )
103 {
104 if ( ! isascii( (Char) *str ) || ! islower( *str ) )
105 return 0;
106 ++str;
107 }
108
109 return 1;
110 }
111
112
113 /* all_upper - true if a string is all upper-case */
114
all_upper(str)115 int all_upper( str )
116 register char *str;
117 {
118 while ( *str )
119 {
120 if ( ! isascii( (Char) *str ) || ! isupper( *str ) )
121 return 0;
122 ++str;
123 }
124
125 return 1;
126 }
127
128
129 /* bubble - bubble sort an integer array in increasing order
130 *
131 * synopsis
132 * int v[n], n;
133 * void bubble( v, n );
134 *
135 * description
136 * sorts the first n elements of array v and replaces them in
137 * increasing order.
138 *
139 * passed
140 * v - the array to be sorted
141 * n - the number of elements of 'v' to be sorted
142 */
143
bubble(v,n)144 void bubble( v, n )
145 int v[], n;
146 {
147 register int i, j, k;
148
149 for ( i = n; i > 1; --i )
150 for ( j = 1; j < i; ++j )
151 if ( v[j] > v[j + 1] ) /* compare */
152 {
153 k = v[j]; /* exchange */
154 v[j] = v[j + 1];
155 v[j + 1] = k;
156 }
157 }
158
159
160 /* check_char - checks a character to make sure it's within the range
161 * we're expecting. If not, generates fatal error message
162 * and exits.
163 */
164
check_char(c)165 void check_char( c )
166 int c;
167 {
168 if ( c >= CSIZE )
169 lerrsf( _( "bad character '%s' detected in check_char()" ),
170 readable_form( c ) );
171
172 if ( c >= csize )
173 lerrsf(
174 _( "scanner requires -8 flag to use the character %s" ),
175 readable_form( c ) );
176 }
177
178
179
180 /* clower - replace upper-case letter to lower-case */
181
clower(c)182 Char clower( c )
183 register int c;
184 {
185 return (Char) ((isascii( c ) && isupper( c )) ? tolower( c ) : c);
186 }
187
188
189 /* copy_string - returns a dynamically allocated copy of a string */
190
copy_string(str)191 char *copy_string( str )
192 register const char *str;
193 {
194 register const char *c1;
195 register char *c2;
196 char *copy;
197 unsigned int size;
198
199 /* find length */
200 for ( c1 = str; *c1; ++c1 )
201 ;
202
203 size = (c1 - str + 1) * sizeof( char );
204 copy = (char *) flex_alloc( size );
205
206 if ( copy == NULL )
207 flexfatal( _( "dynamic memory failure in copy_string()" ) );
208
209 for ( c2 = copy; (*c2++ = *str++) != 0; )
210 ;
211
212 return copy;
213 }
214
215
216 /* copy_unsigned_string -
217 * returns a dynamically allocated copy of a (potentially) unsigned string
218 */
219
copy_unsigned_string(str)220 Char *copy_unsigned_string( str )
221 register Char *str;
222 {
223 register Char *c;
224 Char *copy;
225
226 /* find length */
227 for ( c = str; *c; ++c )
228 ;
229
230 copy = allocate_Character_array( c - str + 1 );
231
232 for ( c = copy; (*c++ = *str++) != 0; )
233 ;
234
235 return copy;
236 }
237
238
239 /* cshell - shell sort a character array in increasing order
240 *
241 * synopsis
242 *
243 * Char v[n];
244 * int n, special_case_0;
245 * cshell( v, n, special_case_0 );
246 *
247 * description
248 * Does a shell sort of the first n elements of array v.
249 * If special_case_0 is true, then any element equal to 0
250 * is instead assumed to have infinite weight.
251 *
252 * passed
253 * v - array to be sorted
254 * n - number of elements of v to be sorted
255 */
256
cshell(v,n,special_case_0)257 void cshell( v, n, special_case_0 )
258 Char v[];
259 int n, special_case_0;
260 {
261 int gap, i, j, jg;
262 Char k;
263
264 for ( gap = n / 2; gap > 0; gap = gap / 2 )
265 for ( i = gap; i < n; ++i )
266 for ( j = i - gap; j >= 0; j = j - gap )
267 {
268 jg = j + gap;
269
270 if ( special_case_0 )
271 {
272 if ( v[jg] == 0 )
273 break;
274
275 else if ( v[j] != 0 && v[j] <= v[jg] )
276 break;
277 }
278
279 else if ( v[j] <= v[jg] )
280 break;
281
282 k = v[j];
283 v[j] = v[jg];
284 v[jg] = k;
285 }
286 }
287
288
289 /* dataend - finish up a block of data declarations */
290
dataend()291 void dataend()
292 {
293 if ( datapos > 0 )
294 dataflush();
295
296 /* add terminator for initialization; { for vi */
297 outn( " } ;\n" );
298
299 dataline = 0;
300 datapos = 0;
301 }
302
303
304 /* dataflush - flush generated data statements */
305
dataflush()306 void dataflush()
307 {
308 outc( '\n' );
309
310 if ( ++dataline >= NUMDATALINES )
311 {
312 /* Put out a blank line so that the table is grouped into
313 * large blocks that enable the user to find elements easily.
314 */
315 outc( '\n' );
316 dataline = 0;
317 }
318
319 /* Reset the number of characters written on the current line. */
320 datapos = 0;
321 }
322
323
324 /* flexerror - report an error message and terminate */
325
flexerror(msg)326 void flexerror( msg )
327 const char msg[];
328 {
329 fprintf( stderr, "%s: %s\n", program_name, msg );
330 flexend( 1 );
331 }
332
333
334 /* flexfatal - report a fatal error message and terminate */
335
flexfatal(msg)336 void flexfatal( msg )
337 const char msg[];
338 {
339 fprintf( stderr, _( "%s: fatal internal error, %s\n" ),
340 program_name, msg );
341 exit( 1 );
342 }
343
344
345 /* htoi - convert a hexadecimal digit string to an integer value */
346
htoi(str)347 int htoi( str )
348 Char str[];
349 {
350 unsigned int result;
351
352 (void) sscanf( (char *) str, "%x", &result );
353
354 return result;
355 }
356
357
358 /* lerrif - report an error message formatted with one integer argument */
359
lerrif(msg,arg)360 void lerrif( msg, arg )
361 const char msg[];
362 int arg;
363 {
364 char errmsg[MAXLINE];
365 (void) sprintf( errmsg, msg, arg );
366 flexerror( errmsg );
367 }
368
369
370 /* lerrsf - report an error message formatted with one string argument */
371
lerrsf(msg,arg)372 void lerrsf( msg, arg )
373 const char msg[], arg[];
374 {
375 char errmsg[MAXLINE];
376
377 (void) sprintf( errmsg, msg, arg );
378 flexerror( errmsg );
379 }
380
381
382 /* line_directive_out - spit out a "#line" statement */
383
line_directive_out(output_file,do_infile)384 void line_directive_out( output_file, do_infile )
385 FILE *output_file;
386 int do_infile;
387 {
388 char directive[MAXLINE], filename[MAXLINE];
389 char *s1, *s2, *s3;
390 static char line_fmt[] = "#line %d \"%s\"\n";
391
392 if ( ! gen_line_dirs )
393 return;
394
395 if ( (do_infile && ! infilename) || (! do_infile && ! outfilename) )
396 /* don't know the filename to use, skip */
397 return;
398
399 s1 = do_infile ? infilename : outfilename;
400 s2 = filename;
401 s3 = &filename[sizeof( filename ) - 2];
402
403 while ( s2 < s3 && *s1 )
404 {
405 if ( *s1 == '\\' )
406 /* Escape the '\' */
407 *s2++ = '\\';
408
409 *s2++ = *s1++;
410 }
411
412 *s2 = '\0';
413
414 if ( do_infile )
415 sprintf( directive, line_fmt, linenum, filename );
416 else
417 {
418 if ( output_file == stdout )
419 /* Account for the line directive itself. */
420 ++out_linenum;
421
422 sprintf( directive, line_fmt, out_linenum, filename );
423 }
424
425 /* If output_file is nil then we should put the directive in
426 * the accumulated actions.
427 */
428 if ( output_file )
429 {
430 fputs( directive, output_file );
431 }
432 else
433 add_action( directive );
434 }
435
436
437 /* mark_defs1 - mark the current position in the action array as
438 * representing where the user's section 1 definitions end
439 * and the prolog begins
440 */
mark_defs1()441 void mark_defs1()
442 {
443 defs1_offset = 0;
444 action_array[action_index++] = '\0';
445 action_offset = prolog_offset = action_index;
446 action_array[action_index] = '\0';
447 }
448
449
450 /* mark_prolog - mark the current position in the action array as
451 * representing the end of the action prolog
452 */
mark_prolog()453 void mark_prolog()
454 {
455 action_array[action_index++] = '\0';
456 action_offset = action_index;
457 action_array[action_index] = '\0';
458 }
459
460
461 /* mk2data - generate a data statement for a two-dimensional array
462 *
463 * Generates a data statement initializing the current 2-D array to "value".
464 */
mk2data(value)465 void mk2data( value )
466 int value;
467 {
468 if ( datapos >= NUMDATAITEMS )
469 {
470 outc( ',' );
471 dataflush();
472 }
473
474 if ( datapos == 0 )
475 /* Indent. */
476 out( " " );
477
478 else
479 outc( ',' );
480
481 ++datapos;
482
483 out_dec( "%5d", value );
484 }
485
486
487 /* mkdata - generate a data statement
488 *
489 * Generates a data statement initializing the current array element to
490 * "value".
491 */
mkdata(value)492 void mkdata( value )
493 int value;
494 {
495 if ( datapos >= NUMDATAITEMS )
496 {
497 outc( ',' );
498 dataflush();
499 }
500
501 if ( datapos == 0 )
502 /* Indent. */
503 out( " " );
504 else
505 outc( ',' );
506
507 ++datapos;
508
509 out_dec( "%5d", value );
510 }
511
512
513 /* myctoi - return the integer represented by a string of digits */
514
myctoi(array)515 int myctoi( array )
516 char array[];
517 {
518 int val = 0;
519
520 (void) sscanf( array, "%d", &val );
521
522 return val;
523 }
524
525
526 /* myesc - return character corresponding to escape sequence */
527
myesc(array)528 Char myesc( array )
529 Char array[];
530 {
531 Char c, esc_char;
532
533 switch ( array[1] )
534 {
535 case 'b': return '\b';
536 case 'f': return '\f';
537 case 'n': return '\n';
538 case 'r': return '\r';
539 case 't': return '\t';
540
541 #if __STDC__
542 case 'a': return '\a';
543 case 'v': return '\v';
544 #else
545 case 'a': return '\007';
546 case 'v': return '\013';
547 #endif
548
549 case '0':
550 case '1':
551 case '2':
552 case '3':
553 case '4':
554 case '5':
555 case '6':
556 case '7':
557 { /* \<octal> */
558 int sptr = 1;
559
560 while ( isascii( array[sptr] ) &&
561 isdigit( array[sptr] ) )
562 /* Don't increment inside loop control
563 * because if isdigit() is a macro it might
564 * expand into multiple increments ...
565 */
566 ++sptr;
567
568 c = array[sptr];
569 array[sptr] = '\0';
570
571 esc_char = otoi( array + 1 );
572
573 array[sptr] = c;
574
575 return esc_char;
576 }
577
578 case 'x':
579 { /* \x<hex> */
580 int sptr = 2;
581
582 while ( isascii( array[sptr] ) &&
583 isxdigit( (char) array[sptr] ) )
584 /* Don't increment inside loop control
585 * because if isdigit() is a macro it might
586 * expand into multiple increments ...
587 */
588 ++sptr;
589
590 c = array[sptr];
591 array[sptr] = '\0';
592
593 esc_char = htoi( array + 2 );
594
595 array[sptr] = c;
596
597 return esc_char;
598 }
599
600 default:
601 return array[1];
602 }
603 }
604
605
606 /* otoi - convert an octal digit string to an integer value */
607
otoi(str)608 int otoi( str )
609 Char str[];
610 {
611 unsigned int result;
612
613 (void) sscanf( (char *) str, "%o", &result );
614 return result;
615 }
616
617
618 /* out - various flavors of outputing a (possibly formatted) string for the
619 * generated scanner, keeping track of the line count.
620 */
621
out(str)622 void out( str )
623 const char str[];
624 {
625 fputs( str, stdout );
626 out_line_count( str );
627 }
628
out_dec(fmt,n)629 void out_dec( fmt, n )
630 const char fmt[];
631 int n;
632 {
633 printf( fmt, n );
634 out_line_count( fmt );
635 }
636
out_dec2(fmt,n1,n2)637 void out_dec2( fmt, n1, n2 )
638 const char fmt[];
639 int n1, n2;
640 {
641 printf( fmt, n1, n2 );
642 out_line_count( fmt );
643 }
644
out_hex(fmt,x)645 void out_hex( fmt, x )
646 const char fmt[];
647 unsigned int x;
648 {
649 printf( fmt, x );
650 out_line_count( fmt );
651 }
652
out_line_count(str)653 void out_line_count( str )
654 const char str[];
655 {
656 register int i;
657
658 for ( i = 0; str[i]; ++i )
659 if ( str[i] == '\n' )
660 ++out_linenum;
661 }
662
out_str(fmt,str)663 void out_str( fmt, str )
664 const char fmt[], str[];
665 {
666 printf( fmt, str );
667 out_line_count( fmt );
668 out_line_count( str );
669 }
670
out_str3(fmt,s1,s2,s3)671 void out_str3( fmt, s1, s2, s3 )
672 const char fmt[], s1[], s2[], s3[];
673 {
674 printf( fmt, s1, s2, s3 );
675 out_line_count( fmt );
676 out_line_count( s1 );
677 out_line_count( s2 );
678 out_line_count( s3 );
679 }
680
out_str_dec(fmt,str,n)681 void out_str_dec( fmt, str, n )
682 const char fmt[], str[];
683 int n;
684 {
685 printf( fmt, str, n );
686 out_line_count( fmt );
687 out_line_count( str );
688 }
689
outc(c)690 void outc( c )
691 int c;
692 {
693 putc( c, stdout );
694
695 if ( c == '\n' )
696 ++out_linenum;
697 }
698
outn(str)699 void outn( str )
700 const char str[];
701 {
702 puts( str );
703 out_line_count( str );
704 ++out_linenum;
705 }
706
707
708 /* readable_form - return the the human-readable form of a character
709 *
710 * The returned string is in static storage.
711 */
712
readable_form(c)713 char *readable_form( c )
714 register int c;
715 {
716 static char rform[10];
717
718 if ( (c >= 0 && c < 32) || c >= 127 )
719 {
720 switch ( c )
721 {
722 case '\b': return "\\b";
723 case '\f': return "\\f";
724 case '\n': return "\\n";
725 case '\r': return "\\r";
726 case '\t': return "\\t";
727
728 #if __STDC__
729 case '\a': return "\\a";
730 case '\v': return "\\v";
731 #endif
732
733 default:
734 (void) sprintf( rform, "\\%.3o",
735 (unsigned int) c );
736 return rform;
737 }
738 }
739
740 else if ( c == ' ' )
741 return "' '";
742
743 else
744 {
745 rform[0] = c;
746 rform[1] = '\0';
747
748 return rform;
749 }
750 }
751
752
753 /* reallocate_array - increase the size of a dynamic array */
754
reallocate_array(array,size,element_size)755 void *reallocate_array( array, size, element_size )
756 void *array;
757 int size;
758 size_t element_size;
759 {
760 register void *new_array;
761 size_t num_bytes = element_size * size;
762
763 new_array = flex_realloc( array, num_bytes );
764 if ( ! new_array )
765 flexfatal( _( "attempt to increase array size failed" ) );
766
767 return new_array;
768 }
769
770
771 /* skelout - write out one section of the skeleton file
772 *
773 * Description
774 * Copies skelfile or skel array to stdout until a line beginning with
775 * "%%" or EOF is found.
776 */
skelout()777 void skelout()
778 {
779 char buf_storage[MAXLINE];
780 char *buf = buf_storage;
781 int do_copy = 1;
782
783 /* Loop pulling lines either from the skelfile, if we're using
784 * one, or from the skel[] array.
785 */
786 while ( skelfile ?
787 (fgets( buf, MAXLINE, skelfile ) != NULL) :
788 ((buf = (char *) skel[skel_ind++]) != 0) )
789 { /* copy from skel array */
790 if ( buf[0] == '%' )
791 { /* control line */
792 switch ( buf[1] )
793 {
794 case '%':
795 return;
796
797 case '+':
798 do_copy = C_plus_plus;
799 break;
800
801 case '-':
802 do_copy = ! C_plus_plus;
803 break;
804
805 case '*':
806 do_copy = 1;
807 break;
808
809 default:
810 flexfatal(
811 _( "bad line in skeleton file" ) );
812 }
813 }
814
815 else if ( do_copy )
816 {
817 if ( skelfile )
818 /* Skeleton file reads include final
819 * newline, skel[] array does not.
820 */
821 out( buf );
822 else
823 outn( buf );
824 }
825 }
826 }
827
828
829 /* transition_struct_out - output a yy_trans_info structure
830 *
831 * outputs the yy_trans_info structure with the two elements, element_v and
832 * element_n. Formats the output with spaces and carriage returns.
833 */
834
transition_struct_out(element_v,element_n)835 void transition_struct_out( element_v, element_n )
836 int element_v, element_n;
837 {
838 out_dec2( " {%4d,%4d },", element_v, element_n );
839
840 datapos += TRANS_STRUCT_PRINT_LENGTH;
841
842 if ( datapos >= 79 - TRANS_STRUCT_PRINT_LENGTH )
843 {
844 outc( '\n' );
845
846 if ( ++dataline % 10 == 0 )
847 outc( '\n' );
848
849 datapos = 0;
850 }
851 }
852
853
854 /* The following is only needed when building flex's parser using certain
855 * broken versions of bison.
856 */
yy_flex_xmalloc(size)857 void *yy_flex_xmalloc( size )
858 int size;
859 {
860 void *result = flex_alloc( (size_t) size );
861
862 if ( ! result )
863 flexfatal(
864 _( "memory allocation failed in yy_flex_xmalloc()" ) );
865
866 return result;
867 }
868
869
870 /* zero_out - set a region of memory to 0
871 *
872 * Sets region_ptr[0] through region_ptr[size_in_bytes - 1] to zero.
873 */
874
zero_out(region_ptr,size_in_bytes)875 void zero_out( region_ptr, size_in_bytes )
876 char *region_ptr;
877 size_t size_in_bytes;
878 {
879 register char *rp, *rp_end;
880
881 rp = region_ptr;
882 rp_end = region_ptr + size_in_bytes;
883
884 while ( rp < rp_end )
885 *rp++ = 0;
886 }
887