1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2006-2009 the V8 project authors. All rights reserved.
34
35 #include "v8.h"
36
37 #include "arguments.h"
38 #include "execution.h"
39 #include "ic-inl.h"
40 #include "factory.h"
41 #include "runtime.h"
42 #include "serialize.h"
43 #include "stub-cache.h"
44 #include "regexp-stack.h"
45 #include "ast.h"
46 #include "regexp-macro-assembler.h"
47 #include "platform.h"
48 // Include native regexp-macro-assembler.
49 #ifdef V8_NATIVE_REGEXP
50 #if V8_TARGET_ARCH_IA32
51 #include "ia32/regexp-macro-assembler-ia32.h"
52 #elif V8_TARGET_ARCH_X64
53 #include "x64/regexp-macro-assembler-x64.h"
54 #elif V8_TARGET_ARCH_ARM
55 #include "arm/regexp-macro-assembler-arm.h"
56 #else // Unknown architecture.
57 #error "Unknown architecture."
58 #endif // Target architecture.
59 #endif // V8_NATIVE_REGEXP
60
61 namespace v8 {
62 namespace internal {
63
64
65 // -----------------------------------------------------------------------------
66 // Implementation of Label
67
pos() const68 int Label::pos() const {
69 if (pos_ < 0) return -pos_ - 1;
70 if (pos_ > 0) return pos_ - 1;
71 UNREACHABLE();
72 return 0;
73 }
74
75
76 // -----------------------------------------------------------------------------
77 // Implementation of RelocInfoWriter and RelocIterator
78 //
79 // Encoding
80 //
81 // The most common modes are given single-byte encodings. Also, it is
82 // easy to identify the type of reloc info and skip unwanted modes in
83 // an iteration.
84 //
85 // The encoding relies on the fact that there are less than 14
86 // different relocation modes.
87 //
88 // embedded_object: [6 bits pc delta] 00
89 //
90 // code_taget: [6 bits pc delta] 01
91 //
92 // position: [6 bits pc delta] 10,
93 // [7 bits signed data delta] 0
94 //
95 // statement_position: [6 bits pc delta] 10,
96 // [7 bits signed data delta] 1
97 //
98 // any nondata mode: 00 [4 bits rmode] 11, // rmode: 0..13 only
99 // 00 [6 bits pc delta]
100 //
101 // pc-jump: 00 1111 11,
102 // 00 [6 bits pc delta]
103 //
104 // pc-jump: 01 1111 11,
105 // (variable length) 7 - 26 bit pc delta, written in chunks of 7
106 // bits, the lowest 7 bits written first.
107 //
108 // data-jump + pos: 00 1110 11,
109 // signed intptr_t, lowest byte written first
110 //
111 // data-jump + st.pos: 01 1110 11,
112 // signed intptr_t, lowest byte written first
113 //
114 // data-jump + comm.: 10 1110 11,
115 // signed intptr_t, lowest byte written first
116 //
117 const int kMaxRelocModes = 14;
118
119 const int kTagBits = 2;
120 const int kTagMask = (1 << kTagBits) - 1;
121 const int kExtraTagBits = 4;
122 const int kPositionTypeTagBits = 1;
123 const int kSmallDataBits = kBitsPerByte - kPositionTypeTagBits;
124
125 const int kEmbeddedObjectTag = 0;
126 const int kCodeTargetTag = 1;
127 const int kPositionTag = 2;
128 const int kDefaultTag = 3;
129
130 const int kPCJumpTag = (1 << kExtraTagBits) - 1;
131
132 const int kSmallPCDeltaBits = kBitsPerByte - kTagBits;
133 const int kSmallPCDeltaMask = (1 << kSmallPCDeltaBits) - 1;
134
135 const int kVariableLengthPCJumpTopTag = 1;
136 const int kChunkBits = 7;
137 const int kChunkMask = (1 << kChunkBits) - 1;
138 const int kLastChunkTagBits = 1;
139 const int kLastChunkTagMask = 1;
140 const int kLastChunkTag = 1;
141
142
143 const int kDataJumpTag = kPCJumpTag - 1;
144
145 const int kNonstatementPositionTag = 0;
146 const int kStatementPositionTag = 1;
147 const int kCommentTag = 2;
148
149
WriteVariableLengthPCJump(uint32_t pc_delta)150 uint32_t RelocInfoWriter::WriteVariableLengthPCJump(uint32_t pc_delta) {
151 // Return if the pc_delta can fit in kSmallPCDeltaBits bits.
152 // Otherwise write a variable length PC jump for the bits that do
153 // not fit in the kSmallPCDeltaBits bits.
154 if (is_uintn(pc_delta, kSmallPCDeltaBits)) return pc_delta;
155 WriteExtraTag(kPCJumpTag, kVariableLengthPCJumpTopTag);
156 uint32_t pc_jump = pc_delta >> kSmallPCDeltaBits;
157 ASSERT(pc_jump > 0);
158 // Write kChunkBits size chunks of the pc_jump.
159 for (; pc_jump > 0; pc_jump = pc_jump >> kChunkBits) {
160 byte b = pc_jump & kChunkMask;
161 *--pos_ = b << kLastChunkTagBits;
162 }
163 // Tag the last chunk so it can be identified.
164 *pos_ = *pos_ | kLastChunkTag;
165 // Return the remaining kSmallPCDeltaBits of the pc_delta.
166 return pc_delta & kSmallPCDeltaMask;
167 }
168
169
WriteTaggedPC(uint32_t pc_delta,int tag)170 void RelocInfoWriter::WriteTaggedPC(uint32_t pc_delta, int tag) {
171 // Write a byte of tagged pc-delta, possibly preceded by var. length pc-jump.
172 pc_delta = WriteVariableLengthPCJump(pc_delta);
173 *--pos_ = pc_delta << kTagBits | tag;
174 }
175
176
WriteTaggedData(intptr_t data_delta,int tag)177 void RelocInfoWriter::WriteTaggedData(intptr_t data_delta, int tag) {
178 *--pos_ = static_cast<byte>(data_delta << kPositionTypeTagBits | tag);
179 }
180
181
WriteExtraTag(int extra_tag,int top_tag)182 void RelocInfoWriter::WriteExtraTag(int extra_tag, int top_tag) {
183 *--pos_ = static_cast<int>(top_tag << (kTagBits + kExtraTagBits) |
184 extra_tag << kTagBits |
185 kDefaultTag);
186 }
187
188
WriteExtraTaggedPC(uint32_t pc_delta,int extra_tag)189 void RelocInfoWriter::WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag) {
190 // Write two-byte tagged pc-delta, possibly preceded by var. length pc-jump.
191 pc_delta = WriteVariableLengthPCJump(pc_delta);
192 WriteExtraTag(extra_tag, 0);
193 *--pos_ = pc_delta;
194 }
195
196
WriteExtraTaggedData(intptr_t data_delta,int top_tag)197 void RelocInfoWriter::WriteExtraTaggedData(intptr_t data_delta, int top_tag) {
198 WriteExtraTag(kDataJumpTag, top_tag);
199 for (int i = 0; i < kIntptrSize; i++) {
200 *--pos_ = static_cast<byte>(data_delta);
201 // Signed right shift is arithmetic shift. Tested in test-utils.cc.
202 data_delta = data_delta >> kBitsPerByte;
203 }
204 }
205
206
Write(const RelocInfo * rinfo)207 void RelocInfoWriter::Write(const RelocInfo* rinfo) {
208 #ifdef DEBUG
209 byte* begin_pos = pos_;
210 #endif
211 Counters::reloc_info_count.Increment();
212 ASSERT(rinfo->pc() - last_pc_ >= 0);
213 ASSERT(RelocInfo::NUMBER_OF_MODES < kMaxRelocModes);
214 // Use unsigned delta-encoding for pc.
215 uint32_t pc_delta = static_cast<uint32_t>(rinfo->pc() - last_pc_);
216 RelocInfo::Mode rmode = rinfo->rmode();
217
218 // The two most common modes are given small tags, and usually fit in a byte.
219 if (rmode == RelocInfo::EMBEDDED_OBJECT) {
220 WriteTaggedPC(pc_delta, kEmbeddedObjectTag);
221 } else if (rmode == RelocInfo::CODE_TARGET) {
222 WriteTaggedPC(pc_delta, kCodeTargetTag);
223 } else if (RelocInfo::IsPosition(rmode)) {
224 // Use signed delta-encoding for data.
225 intptr_t data_delta = rinfo->data() - last_data_;
226 int pos_type_tag = rmode == RelocInfo::POSITION ? kNonstatementPositionTag
227 : kStatementPositionTag;
228 // Check if data is small enough to fit in a tagged byte.
229 // We cannot use is_intn because data_delta is not an int32_t.
230 if (data_delta >= -(1 << (kSmallDataBits-1)) &&
231 data_delta < 1 << (kSmallDataBits-1)) {
232 WriteTaggedPC(pc_delta, kPositionTag);
233 WriteTaggedData(data_delta, pos_type_tag);
234 last_data_ = rinfo->data();
235 } else {
236 // Otherwise, use costly encoding.
237 WriteExtraTaggedPC(pc_delta, kPCJumpTag);
238 WriteExtraTaggedData(data_delta, pos_type_tag);
239 last_data_ = rinfo->data();
240 }
241 } else if (RelocInfo::IsComment(rmode)) {
242 // Comments are normally not generated, so we use the costly encoding.
243 WriteExtraTaggedPC(pc_delta, kPCJumpTag);
244 WriteExtraTaggedData(rinfo->data() - last_data_, kCommentTag);
245 last_data_ = rinfo->data();
246 } else {
247 // For all other modes we simply use the mode as the extra tag.
248 // None of these modes need a data component.
249 ASSERT(rmode < kPCJumpTag && rmode < kDataJumpTag);
250 WriteExtraTaggedPC(pc_delta, rmode);
251 }
252 last_pc_ = rinfo->pc();
253 #ifdef DEBUG
254 ASSERT(begin_pos - pos_ <= kMaxSize);
255 #endif
256 }
257
258
AdvanceGetTag()259 inline int RelocIterator::AdvanceGetTag() {
260 return *--pos_ & kTagMask;
261 }
262
263
GetExtraTag()264 inline int RelocIterator::GetExtraTag() {
265 return (*pos_ >> kTagBits) & ((1 << kExtraTagBits) - 1);
266 }
267
268
GetTopTag()269 inline int RelocIterator::GetTopTag() {
270 return *pos_ >> (kTagBits + kExtraTagBits);
271 }
272
273
ReadTaggedPC()274 inline void RelocIterator::ReadTaggedPC() {
275 rinfo_.pc_ += *pos_ >> kTagBits;
276 }
277
278
AdvanceReadPC()279 inline void RelocIterator::AdvanceReadPC() {
280 rinfo_.pc_ += *--pos_;
281 }
282
283
AdvanceReadData()284 void RelocIterator::AdvanceReadData() {
285 intptr_t x = 0;
286 for (int i = 0; i < kIntptrSize; i++) {
287 x |= static_cast<intptr_t>(*--pos_) << i * kBitsPerByte;
288 }
289 rinfo_.data_ += x;
290 }
291
292
AdvanceReadVariableLengthPCJump()293 void RelocIterator::AdvanceReadVariableLengthPCJump() {
294 // Read the 32-kSmallPCDeltaBits most significant bits of the
295 // pc jump in kChunkBits bit chunks and shift them into place.
296 // Stop when the last chunk is encountered.
297 uint32_t pc_jump = 0;
298 for (int i = 0; i < kIntSize; i++) {
299 byte pc_jump_part = *--pos_;
300 pc_jump |= (pc_jump_part >> kLastChunkTagBits) << i * kChunkBits;
301 if ((pc_jump_part & kLastChunkTagMask) == 1) break;
302 }
303 // The least significant kSmallPCDeltaBits bits will be added
304 // later.
305 rinfo_.pc_ += pc_jump << kSmallPCDeltaBits;
306 }
307
308
GetPositionTypeTag()309 inline int RelocIterator::GetPositionTypeTag() {
310 return *pos_ & ((1 << kPositionTypeTagBits) - 1);
311 }
312
313
ReadTaggedData()314 inline void RelocIterator::ReadTaggedData() {
315 int8_t signed_b = *pos_;
316 // Signed right shift is arithmetic shift. Tested in test-utils.cc.
317 rinfo_.data_ += signed_b >> kPositionTypeTagBits;
318 }
319
320
DebugInfoModeFromTag(int tag)321 inline RelocInfo::Mode RelocIterator::DebugInfoModeFromTag(int tag) {
322 if (tag == kStatementPositionTag) {
323 return RelocInfo::STATEMENT_POSITION;
324 } else if (tag == kNonstatementPositionTag) {
325 return RelocInfo::POSITION;
326 } else {
327 ASSERT(tag == kCommentTag);
328 return RelocInfo::COMMENT;
329 }
330 }
331
332
next()333 void RelocIterator::next() {
334 ASSERT(!done());
335 // Basically, do the opposite of RelocInfoWriter::Write.
336 // Reading of data is as far as possible avoided for unwanted modes,
337 // but we must always update the pc.
338 //
339 // We exit this loop by returning when we find a mode we want.
340 while (pos_ > end_) {
341 int tag = AdvanceGetTag();
342 if (tag == kEmbeddedObjectTag) {
343 ReadTaggedPC();
344 if (SetMode(RelocInfo::EMBEDDED_OBJECT)) return;
345 } else if (tag == kCodeTargetTag) {
346 ReadTaggedPC();
347 if (SetMode(RelocInfo::CODE_TARGET)) return;
348 } else if (tag == kPositionTag) {
349 ReadTaggedPC();
350 Advance();
351 // Check if we want source positions.
352 if (mode_mask_ & RelocInfo::kPositionMask) {
353 // Check if we want this type of source position.
354 if (SetMode(DebugInfoModeFromTag(GetPositionTypeTag()))) {
355 // Finally read the data before returning.
356 ReadTaggedData();
357 return;
358 }
359 }
360 } else {
361 ASSERT(tag == kDefaultTag);
362 int extra_tag = GetExtraTag();
363 if (extra_tag == kPCJumpTag) {
364 int top_tag = GetTopTag();
365 if (top_tag == kVariableLengthPCJumpTopTag) {
366 AdvanceReadVariableLengthPCJump();
367 } else {
368 AdvanceReadPC();
369 }
370 } else if (extra_tag == kDataJumpTag) {
371 // Check if we want debug modes (the only ones with data).
372 if (mode_mask_ & RelocInfo::kDebugMask) {
373 int top_tag = GetTopTag();
374 AdvanceReadData();
375 if (SetMode(DebugInfoModeFromTag(top_tag))) return;
376 } else {
377 // Otherwise, just skip over the data.
378 Advance(kIntptrSize);
379 }
380 } else {
381 AdvanceReadPC();
382 if (SetMode(static_cast<RelocInfo::Mode>(extra_tag))) return;
383 }
384 }
385 }
386 done_ = true;
387 }
388
389
RelocIterator(Code * code,int mode_mask)390 RelocIterator::RelocIterator(Code* code, int mode_mask) {
391 rinfo_.pc_ = code->instruction_start();
392 rinfo_.data_ = 0;
393 // relocation info is read backwards
394 pos_ = code->relocation_start() + code->relocation_size();
395 end_ = code->relocation_start();
396 done_ = false;
397 mode_mask_ = mode_mask;
398 if (mode_mask_ == 0) pos_ = end_;
399 next();
400 }
401
402
RelocIterator(const CodeDesc & desc,int mode_mask)403 RelocIterator::RelocIterator(const CodeDesc& desc, int mode_mask) {
404 rinfo_.pc_ = desc.buffer;
405 rinfo_.data_ = 0;
406 // relocation info is read backwards
407 pos_ = desc.buffer + desc.buffer_size;
408 end_ = pos_ - desc.reloc_size;
409 done_ = false;
410 mode_mask_ = mode_mask;
411 if (mode_mask_ == 0) pos_ = end_;
412 next();
413 }
414
415
416 // -----------------------------------------------------------------------------
417 // Implementation of RelocInfo
418
419
420 #ifdef ENABLE_DISASSEMBLER
RelocModeName(RelocInfo::Mode rmode)421 const char* RelocInfo::RelocModeName(RelocInfo::Mode rmode) {
422 switch (rmode) {
423 case RelocInfo::NONE:
424 return "no reloc";
425 case RelocInfo::EMBEDDED_OBJECT:
426 return "embedded object";
427 case RelocInfo::EMBEDDED_STRING:
428 return "embedded string";
429 case RelocInfo::CONSTRUCT_CALL:
430 return "code target (js construct call)";
431 case RelocInfo::CODE_TARGET_CONTEXT:
432 return "code target (context)";
433 case RelocInfo::DEBUG_BREAK:
434 #ifndef ENABLE_DEBUGGER_SUPPORT
435 UNREACHABLE();
436 #endif
437 return "debug break";
438 case RelocInfo::CODE_TARGET:
439 return "code target";
440 case RelocInfo::RUNTIME_ENTRY:
441 return "runtime entry";
442 case RelocInfo::JS_RETURN:
443 return "js return";
444 case RelocInfo::COMMENT:
445 return "comment";
446 case RelocInfo::POSITION:
447 return "position";
448 case RelocInfo::STATEMENT_POSITION:
449 return "statement position";
450 case RelocInfo::EXTERNAL_REFERENCE:
451 return "external reference";
452 case RelocInfo::INTERNAL_REFERENCE:
453 return "internal reference";
454 case RelocInfo::NUMBER_OF_MODES:
455 UNREACHABLE();
456 return "number_of_modes";
457 }
458 return "unknown relocation type";
459 }
460
461
Print()462 void RelocInfo::Print() {
463 PrintF("%p %s", pc_, RelocModeName(rmode_));
464 if (IsComment(rmode_)) {
465 PrintF(" (%s)", data_);
466 } else if (rmode_ == EMBEDDED_OBJECT) {
467 PrintF(" (");
468 target_object()->ShortPrint();
469 PrintF(")");
470 } else if (rmode_ == EXTERNAL_REFERENCE) {
471 ExternalReferenceEncoder ref_encoder;
472 PrintF(" (%s) (%p)",
473 ref_encoder.NameOfAddress(*target_reference_address()),
474 *target_reference_address());
475 } else if (IsCodeTarget(rmode_)) {
476 Code* code = Code::GetCodeFromTargetAddress(target_address());
477 PrintF(" (%s) (%p)", Code::Kind2String(code->kind()), target_address());
478 } else if (IsPosition(rmode_)) {
479 PrintF(" (%d)", data());
480 }
481
482 PrintF("\n");
483 }
484 #endif // ENABLE_DISASSEMBLER
485
486
487 #ifdef DEBUG
Verify()488 void RelocInfo::Verify() {
489 switch (rmode_) {
490 case EMBEDDED_OBJECT:
491 Object::VerifyPointer(target_object());
492 break;
493 case DEBUG_BREAK:
494 #ifndef ENABLE_DEBUGGER_SUPPORT
495 UNREACHABLE();
496 break;
497 #endif
498 case CONSTRUCT_CALL:
499 case CODE_TARGET_CONTEXT:
500 case CODE_TARGET: {
501 // convert inline target address to code object
502 Address addr = target_address();
503 ASSERT(addr != NULL);
504 // Check that we can find the right code object.
505 Code* code = Code::GetCodeFromTargetAddress(addr);
506 Object* found = Heap::FindCodeObject(addr);
507 ASSERT(found->IsCode());
508 ASSERT(code->address() == HeapObject::cast(found)->address());
509 break;
510 }
511 case RelocInfo::EMBEDDED_STRING:
512 case RUNTIME_ENTRY:
513 case JS_RETURN:
514 case COMMENT:
515 case POSITION:
516 case STATEMENT_POSITION:
517 case EXTERNAL_REFERENCE:
518 case INTERNAL_REFERENCE:
519 case NONE:
520 break;
521 case NUMBER_OF_MODES:
522 UNREACHABLE();
523 break;
524 }
525 }
526 #endif // DEBUG
527
528
529 // -----------------------------------------------------------------------------
530 // Implementation of ExternalReference
531
ExternalReference(Builtins::CFunctionId id)532 ExternalReference::ExternalReference(Builtins::CFunctionId id)
533 : address_(Redirect(Builtins::c_function_address(id))) {}
534
535
ExternalReference(ApiFunction * fun)536 ExternalReference::ExternalReference(ApiFunction* fun)
537 : address_(Redirect(fun->address())) {}
538
539
ExternalReference(Builtins::Name name)540 ExternalReference::ExternalReference(Builtins::Name name)
541 : address_(Builtins::builtin_address(name)) {}
542
543
ExternalReference(Runtime::FunctionId id)544 ExternalReference::ExternalReference(Runtime::FunctionId id)
545 : address_(Redirect(Runtime::FunctionForId(id)->entry)) {}
546
547
ExternalReference(Runtime::Function * f)548 ExternalReference::ExternalReference(Runtime::Function* f)
549 : address_(Redirect(f->entry)) {}
550
551
ExternalReference(const IC_Utility & ic_utility)552 ExternalReference::ExternalReference(const IC_Utility& ic_utility)
553 : address_(Redirect(ic_utility.address())) {}
554
555 #ifdef ENABLE_DEBUGGER_SUPPORT
ExternalReference(const Debug_Address & debug_address)556 ExternalReference::ExternalReference(const Debug_Address& debug_address)
557 : address_(debug_address.address()) {}
558 #endif
559
ExternalReference(StatsCounter * counter)560 ExternalReference::ExternalReference(StatsCounter* counter)
561 : address_(reinterpret_cast<Address>(counter->GetInternalPointer())) {}
562
563
ExternalReference(Top::AddressId id)564 ExternalReference::ExternalReference(Top::AddressId id)
565 : address_(Top::get_address_from_id(id)) {}
566
567
ExternalReference(const SCTableReference & table_ref)568 ExternalReference::ExternalReference(const SCTableReference& table_ref)
569 : address_(table_ref.address()) {}
570
571
perform_gc_function()572 ExternalReference ExternalReference::perform_gc_function() {
573 return ExternalReference(Redirect(FUNCTION_ADDR(Runtime::PerformGC)));
574 }
575
576
random_positive_smi_function()577 ExternalReference ExternalReference::random_positive_smi_function() {
578 return ExternalReference(Redirect(FUNCTION_ADDR(V8::RandomPositiveSmi)));
579 }
580
581
transcendental_cache_array_address()582 ExternalReference ExternalReference::transcendental_cache_array_address() {
583 return ExternalReference(TranscendentalCache::cache_array_address());
584 }
585
586
keyed_lookup_cache_keys()587 ExternalReference ExternalReference::keyed_lookup_cache_keys() {
588 return ExternalReference(KeyedLookupCache::keys_address());
589 }
590
591
keyed_lookup_cache_field_offsets()592 ExternalReference ExternalReference::keyed_lookup_cache_field_offsets() {
593 return ExternalReference(KeyedLookupCache::field_offsets_address());
594 }
595
596
the_hole_value_location()597 ExternalReference ExternalReference::the_hole_value_location() {
598 return ExternalReference(Factory::the_hole_value().location());
599 }
600
601
roots_address()602 ExternalReference ExternalReference::roots_address() {
603 return ExternalReference(Heap::roots_address());
604 }
605
606
address_of_stack_limit()607 ExternalReference ExternalReference::address_of_stack_limit() {
608 return ExternalReference(StackGuard::address_of_jslimit());
609 }
610
611
address_of_real_stack_limit()612 ExternalReference ExternalReference::address_of_real_stack_limit() {
613 return ExternalReference(StackGuard::address_of_real_jslimit());
614 }
615
616
address_of_regexp_stack_limit()617 ExternalReference ExternalReference::address_of_regexp_stack_limit() {
618 return ExternalReference(RegExpStack::limit_address());
619 }
620
621
new_space_start()622 ExternalReference ExternalReference::new_space_start() {
623 return ExternalReference(Heap::NewSpaceStart());
624 }
625
626
new_space_mask()627 ExternalReference ExternalReference::new_space_mask() {
628 return ExternalReference(reinterpret_cast<Address>(Heap::NewSpaceMask()));
629 }
630
631
new_space_allocation_top_address()632 ExternalReference ExternalReference::new_space_allocation_top_address() {
633 return ExternalReference(Heap::NewSpaceAllocationTopAddress());
634 }
635
636
heap_always_allocate_scope_depth()637 ExternalReference ExternalReference::heap_always_allocate_scope_depth() {
638 return ExternalReference(Heap::always_allocate_scope_depth_address());
639 }
640
641
new_space_allocation_limit_address()642 ExternalReference ExternalReference::new_space_allocation_limit_address() {
643 return ExternalReference(Heap::NewSpaceAllocationLimitAddress());
644 }
645
646
handle_scope_extensions_address()647 ExternalReference ExternalReference::handle_scope_extensions_address() {
648 return ExternalReference(HandleScope::current_extensions_address());
649 }
650
651
handle_scope_next_address()652 ExternalReference ExternalReference::handle_scope_next_address() {
653 return ExternalReference(HandleScope::current_next_address());
654 }
655
656
handle_scope_limit_address()657 ExternalReference ExternalReference::handle_scope_limit_address() {
658 return ExternalReference(HandleScope::current_limit_address());
659 }
660
661
scheduled_exception_address()662 ExternalReference ExternalReference::scheduled_exception_address() {
663 return ExternalReference(Top::scheduled_exception_address());
664 }
665
666
667 #ifdef V8_NATIVE_REGEXP
668
re_check_stack_guard_state()669 ExternalReference ExternalReference::re_check_stack_guard_state() {
670 Address function;
671 #ifdef V8_TARGET_ARCH_X64
672 function = FUNCTION_ADDR(RegExpMacroAssemblerX64::CheckStackGuardState);
673 #elif V8_TARGET_ARCH_IA32
674 function = FUNCTION_ADDR(RegExpMacroAssemblerIA32::CheckStackGuardState);
675 #elif V8_TARGET_ARCH_ARM
676 function = FUNCTION_ADDR(RegExpMacroAssemblerARM::CheckStackGuardState);
677 #else
678 UNREACHABLE();
679 #endif
680 return ExternalReference(Redirect(function));
681 }
682
re_grow_stack()683 ExternalReference ExternalReference::re_grow_stack() {
684 return ExternalReference(
685 Redirect(FUNCTION_ADDR(NativeRegExpMacroAssembler::GrowStack)));
686 }
687
re_case_insensitive_compare_uc16()688 ExternalReference ExternalReference::re_case_insensitive_compare_uc16() {
689 return ExternalReference(Redirect(
690 FUNCTION_ADDR(NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16)));
691 }
692
re_word_character_map()693 ExternalReference ExternalReference::re_word_character_map() {
694 return ExternalReference(
695 NativeRegExpMacroAssembler::word_character_map_address());
696 }
697
address_of_static_offsets_vector()698 ExternalReference ExternalReference::address_of_static_offsets_vector() {
699 return ExternalReference(OffsetsVector::static_offsets_vector_address());
700 }
701
address_of_regexp_stack_memory_address()702 ExternalReference ExternalReference::address_of_regexp_stack_memory_address() {
703 return ExternalReference(RegExpStack::memory_address());
704 }
705
address_of_regexp_stack_memory_size()706 ExternalReference ExternalReference::address_of_regexp_stack_memory_size() {
707 return ExternalReference(RegExpStack::memory_size_address());
708 }
709
710 #endif
711
712
add_two_doubles(double x,double y)713 static double add_two_doubles(double x, double y) {
714 return x + y;
715 }
716
717
sub_two_doubles(double x,double y)718 static double sub_two_doubles(double x, double y) {
719 return x - y;
720 }
721
722
mul_two_doubles(double x,double y)723 static double mul_two_doubles(double x, double y) {
724 return x * y;
725 }
726
727
div_two_doubles(double x,double y)728 static double div_two_doubles(double x, double y) {
729 return x / y;
730 }
731
732
mod_two_doubles(double x,double y)733 static double mod_two_doubles(double x, double y) {
734 return modulo(x, y);
735 }
736
737
native_compare_doubles(double y,double x)738 static int native_compare_doubles(double y, double x) {
739 if (x == y) return EQUAL;
740 return x < y ? LESS : GREATER;
741 }
742
743
double_fp_operation(Token::Value operation)744 ExternalReference ExternalReference::double_fp_operation(
745 Token::Value operation) {
746 typedef double BinaryFPOperation(double x, double y);
747 BinaryFPOperation* function = NULL;
748 switch (operation) {
749 case Token::ADD:
750 function = &add_two_doubles;
751 break;
752 case Token::SUB:
753 function = &sub_two_doubles;
754 break;
755 case Token::MUL:
756 function = &mul_two_doubles;
757 break;
758 case Token::DIV:
759 function = &div_two_doubles;
760 break;
761 case Token::MOD:
762 function = &mod_two_doubles;
763 break;
764 default:
765 UNREACHABLE();
766 }
767 // Passing true as 2nd parameter indicates that they return an fp value.
768 return ExternalReference(Redirect(FUNCTION_ADDR(function), true));
769 }
770
771
compare_doubles()772 ExternalReference ExternalReference::compare_doubles() {
773 return ExternalReference(Redirect(FUNCTION_ADDR(native_compare_doubles),
774 false));
775 }
776
777
778 ExternalReferenceRedirector* ExternalReference::redirector_ = NULL;
779
780
781 #ifdef ENABLE_DEBUGGER_SUPPORT
debug_break()782 ExternalReference ExternalReference::debug_break() {
783 return ExternalReference(Redirect(FUNCTION_ADDR(Debug::Break)));
784 }
785
786
debug_step_in_fp_address()787 ExternalReference ExternalReference::debug_step_in_fp_address() {
788 return ExternalReference(Debug::step_in_fp_addr());
789 }
790 #endif
791
792 } } // namespace v8::internal
793