• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2006-2009 the V8 project authors. All rights reserved.
34 
35 #include "v8.h"
36 
37 #include "arguments.h"
38 #include "execution.h"
39 #include "ic-inl.h"
40 #include "factory.h"
41 #include "runtime.h"
42 #include "serialize.h"
43 #include "stub-cache.h"
44 #include "regexp-stack.h"
45 #include "ast.h"
46 #include "regexp-macro-assembler.h"
47 #include "platform.h"
48 // Include native regexp-macro-assembler.
49 #ifdef V8_NATIVE_REGEXP
50 #if V8_TARGET_ARCH_IA32
51 #include "ia32/regexp-macro-assembler-ia32.h"
52 #elif V8_TARGET_ARCH_X64
53 #include "x64/regexp-macro-assembler-x64.h"
54 #elif V8_TARGET_ARCH_ARM
55 #include "arm/regexp-macro-assembler-arm.h"
56 #else  // Unknown architecture.
57 #error "Unknown architecture."
58 #endif  // Target architecture.
59 #endif  // V8_NATIVE_REGEXP
60 
61 namespace v8 {
62 namespace internal {
63 
64 
65 // -----------------------------------------------------------------------------
66 // Implementation of Label
67 
pos() const68 int Label::pos() const {
69   if (pos_ < 0) return -pos_ - 1;
70   if (pos_ > 0) return  pos_ - 1;
71   UNREACHABLE();
72   return 0;
73 }
74 
75 
76 // -----------------------------------------------------------------------------
77 // Implementation of RelocInfoWriter and RelocIterator
78 //
79 // Encoding
80 //
81 // The most common modes are given single-byte encodings.  Also, it is
82 // easy to identify the type of reloc info and skip unwanted modes in
83 // an iteration.
84 //
85 // The encoding relies on the fact that there are less than 14
86 // different relocation modes.
87 //
88 // embedded_object:    [6 bits pc delta] 00
89 //
90 // code_taget:         [6 bits pc delta] 01
91 //
92 // position:           [6 bits pc delta] 10,
93 //                     [7 bits signed data delta] 0
94 //
95 // statement_position: [6 bits pc delta] 10,
96 //                     [7 bits signed data delta] 1
97 //
98 // any nondata mode:   00 [4 bits rmode] 11,  // rmode: 0..13 only
99 //                     00 [6 bits pc delta]
100 //
101 // pc-jump:            00 1111 11,
102 //                     00 [6 bits pc delta]
103 //
104 // pc-jump:            01 1111 11,
105 // (variable length)   7 - 26 bit pc delta, written in chunks of 7
106 //                     bits, the lowest 7 bits written first.
107 //
108 // data-jump + pos:    00 1110 11,
109 //                     signed intptr_t, lowest byte written first
110 //
111 // data-jump + st.pos: 01 1110 11,
112 //                     signed intptr_t, lowest byte written first
113 //
114 // data-jump + comm.:  10 1110 11,
115 //                     signed intptr_t, lowest byte written first
116 //
117 const int kMaxRelocModes = 14;
118 
119 const int kTagBits = 2;
120 const int kTagMask = (1 << kTagBits) - 1;
121 const int kExtraTagBits = 4;
122 const int kPositionTypeTagBits = 1;
123 const int kSmallDataBits = kBitsPerByte - kPositionTypeTagBits;
124 
125 const int kEmbeddedObjectTag = 0;
126 const int kCodeTargetTag = 1;
127 const int kPositionTag = 2;
128 const int kDefaultTag = 3;
129 
130 const int kPCJumpTag = (1 << kExtraTagBits) - 1;
131 
132 const int kSmallPCDeltaBits = kBitsPerByte - kTagBits;
133 const int kSmallPCDeltaMask = (1 << kSmallPCDeltaBits) - 1;
134 
135 const int kVariableLengthPCJumpTopTag = 1;
136 const int kChunkBits = 7;
137 const int kChunkMask = (1 << kChunkBits) - 1;
138 const int kLastChunkTagBits = 1;
139 const int kLastChunkTagMask = 1;
140 const int kLastChunkTag = 1;
141 
142 
143 const int kDataJumpTag = kPCJumpTag - 1;
144 
145 const int kNonstatementPositionTag = 0;
146 const int kStatementPositionTag = 1;
147 const int kCommentTag = 2;
148 
149 
WriteVariableLengthPCJump(uint32_t pc_delta)150 uint32_t RelocInfoWriter::WriteVariableLengthPCJump(uint32_t pc_delta) {
151   // Return if the pc_delta can fit in kSmallPCDeltaBits bits.
152   // Otherwise write a variable length PC jump for the bits that do
153   // not fit in the kSmallPCDeltaBits bits.
154   if (is_uintn(pc_delta, kSmallPCDeltaBits)) return pc_delta;
155   WriteExtraTag(kPCJumpTag, kVariableLengthPCJumpTopTag);
156   uint32_t pc_jump = pc_delta >> kSmallPCDeltaBits;
157   ASSERT(pc_jump > 0);
158   // Write kChunkBits size chunks of the pc_jump.
159   for (; pc_jump > 0; pc_jump = pc_jump >> kChunkBits) {
160     byte b = pc_jump & kChunkMask;
161     *--pos_ = b << kLastChunkTagBits;
162   }
163   // Tag the last chunk so it can be identified.
164   *pos_ = *pos_ | kLastChunkTag;
165   // Return the remaining kSmallPCDeltaBits of the pc_delta.
166   return pc_delta & kSmallPCDeltaMask;
167 }
168 
169 
WriteTaggedPC(uint32_t pc_delta,int tag)170 void RelocInfoWriter::WriteTaggedPC(uint32_t pc_delta, int tag) {
171   // Write a byte of tagged pc-delta, possibly preceded by var. length pc-jump.
172   pc_delta = WriteVariableLengthPCJump(pc_delta);
173   *--pos_ = pc_delta << kTagBits | tag;
174 }
175 
176 
WriteTaggedData(intptr_t data_delta,int tag)177 void RelocInfoWriter::WriteTaggedData(intptr_t data_delta, int tag) {
178   *--pos_ = static_cast<byte>(data_delta << kPositionTypeTagBits | tag);
179 }
180 
181 
WriteExtraTag(int extra_tag,int top_tag)182 void RelocInfoWriter::WriteExtraTag(int extra_tag, int top_tag) {
183   *--pos_ = static_cast<int>(top_tag << (kTagBits + kExtraTagBits) |
184                              extra_tag << kTagBits |
185                              kDefaultTag);
186 }
187 
188 
WriteExtraTaggedPC(uint32_t pc_delta,int extra_tag)189 void RelocInfoWriter::WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag) {
190   // Write two-byte tagged pc-delta, possibly preceded by var. length pc-jump.
191   pc_delta = WriteVariableLengthPCJump(pc_delta);
192   WriteExtraTag(extra_tag, 0);
193   *--pos_ = pc_delta;
194 }
195 
196 
WriteExtraTaggedData(intptr_t data_delta,int top_tag)197 void RelocInfoWriter::WriteExtraTaggedData(intptr_t data_delta, int top_tag) {
198   WriteExtraTag(kDataJumpTag, top_tag);
199   for (int i = 0; i < kIntptrSize; i++) {
200     *--pos_ = static_cast<byte>(data_delta);
201   // Signed right shift is arithmetic shift.  Tested in test-utils.cc.
202     data_delta = data_delta >> kBitsPerByte;
203   }
204 }
205 
206 
Write(const RelocInfo * rinfo)207 void RelocInfoWriter::Write(const RelocInfo* rinfo) {
208 #ifdef DEBUG
209   byte* begin_pos = pos_;
210 #endif
211   Counters::reloc_info_count.Increment();
212   ASSERT(rinfo->pc() - last_pc_ >= 0);
213   ASSERT(RelocInfo::NUMBER_OF_MODES < kMaxRelocModes);
214   // Use unsigned delta-encoding for pc.
215   uint32_t pc_delta = static_cast<uint32_t>(rinfo->pc() - last_pc_);
216   RelocInfo::Mode rmode = rinfo->rmode();
217 
218   // The two most common modes are given small tags, and usually fit in a byte.
219   if (rmode == RelocInfo::EMBEDDED_OBJECT) {
220     WriteTaggedPC(pc_delta, kEmbeddedObjectTag);
221   } else if (rmode == RelocInfo::CODE_TARGET) {
222     WriteTaggedPC(pc_delta, kCodeTargetTag);
223   } else if (RelocInfo::IsPosition(rmode)) {
224     // Use signed delta-encoding for data.
225     intptr_t data_delta = rinfo->data() - last_data_;
226     int pos_type_tag = rmode == RelocInfo::POSITION ? kNonstatementPositionTag
227                                                     : kStatementPositionTag;
228     // Check if data is small enough to fit in a tagged byte.
229     // We cannot use is_intn because data_delta is not an int32_t.
230     if (data_delta >= -(1 << (kSmallDataBits-1)) &&
231         data_delta < 1 << (kSmallDataBits-1)) {
232       WriteTaggedPC(pc_delta, kPositionTag);
233       WriteTaggedData(data_delta, pos_type_tag);
234       last_data_ = rinfo->data();
235     } else {
236       // Otherwise, use costly encoding.
237       WriteExtraTaggedPC(pc_delta, kPCJumpTag);
238       WriteExtraTaggedData(data_delta, pos_type_tag);
239       last_data_ = rinfo->data();
240     }
241   } else if (RelocInfo::IsComment(rmode)) {
242     // Comments are normally not generated, so we use the costly encoding.
243     WriteExtraTaggedPC(pc_delta, kPCJumpTag);
244     WriteExtraTaggedData(rinfo->data() - last_data_, kCommentTag);
245     last_data_ = rinfo->data();
246   } else {
247     // For all other modes we simply use the mode as the extra tag.
248     // None of these modes need a data component.
249     ASSERT(rmode < kPCJumpTag && rmode < kDataJumpTag);
250     WriteExtraTaggedPC(pc_delta, rmode);
251   }
252   last_pc_ = rinfo->pc();
253 #ifdef DEBUG
254   ASSERT(begin_pos - pos_ <= kMaxSize);
255 #endif
256 }
257 
258 
AdvanceGetTag()259 inline int RelocIterator::AdvanceGetTag() {
260   return *--pos_ & kTagMask;
261 }
262 
263 
GetExtraTag()264 inline int RelocIterator::GetExtraTag() {
265   return (*pos_ >> kTagBits) & ((1 << kExtraTagBits) - 1);
266 }
267 
268 
GetTopTag()269 inline int RelocIterator::GetTopTag() {
270   return *pos_ >> (kTagBits + kExtraTagBits);
271 }
272 
273 
ReadTaggedPC()274 inline void RelocIterator::ReadTaggedPC() {
275   rinfo_.pc_ += *pos_ >> kTagBits;
276 }
277 
278 
AdvanceReadPC()279 inline void RelocIterator::AdvanceReadPC() {
280   rinfo_.pc_ += *--pos_;
281 }
282 
283 
AdvanceReadData()284 void RelocIterator::AdvanceReadData() {
285   intptr_t x = 0;
286   for (int i = 0; i < kIntptrSize; i++) {
287     x |= static_cast<intptr_t>(*--pos_) << i * kBitsPerByte;
288   }
289   rinfo_.data_ += x;
290 }
291 
292 
AdvanceReadVariableLengthPCJump()293 void RelocIterator::AdvanceReadVariableLengthPCJump() {
294   // Read the 32-kSmallPCDeltaBits most significant bits of the
295   // pc jump in kChunkBits bit chunks and shift them into place.
296   // Stop when the last chunk is encountered.
297   uint32_t pc_jump = 0;
298   for (int i = 0; i < kIntSize; i++) {
299     byte pc_jump_part = *--pos_;
300     pc_jump |= (pc_jump_part >> kLastChunkTagBits) << i * kChunkBits;
301     if ((pc_jump_part & kLastChunkTagMask) == 1) break;
302   }
303   // The least significant kSmallPCDeltaBits bits will be added
304   // later.
305   rinfo_.pc_ += pc_jump << kSmallPCDeltaBits;
306 }
307 
308 
GetPositionTypeTag()309 inline int RelocIterator::GetPositionTypeTag() {
310   return *pos_ & ((1 << kPositionTypeTagBits) - 1);
311 }
312 
313 
ReadTaggedData()314 inline void RelocIterator::ReadTaggedData() {
315   int8_t signed_b = *pos_;
316   // Signed right shift is arithmetic shift.  Tested in test-utils.cc.
317   rinfo_.data_ += signed_b >> kPositionTypeTagBits;
318 }
319 
320 
DebugInfoModeFromTag(int tag)321 inline RelocInfo::Mode RelocIterator::DebugInfoModeFromTag(int tag) {
322   if (tag == kStatementPositionTag) {
323     return RelocInfo::STATEMENT_POSITION;
324   } else if (tag == kNonstatementPositionTag) {
325     return RelocInfo::POSITION;
326   } else {
327     ASSERT(tag == kCommentTag);
328     return RelocInfo::COMMENT;
329   }
330 }
331 
332 
next()333 void RelocIterator::next() {
334   ASSERT(!done());
335   // Basically, do the opposite of RelocInfoWriter::Write.
336   // Reading of data is as far as possible avoided for unwanted modes,
337   // but we must always update the pc.
338   //
339   // We exit this loop by returning when we find a mode we want.
340   while (pos_ > end_) {
341     int tag = AdvanceGetTag();
342     if (tag == kEmbeddedObjectTag) {
343       ReadTaggedPC();
344       if (SetMode(RelocInfo::EMBEDDED_OBJECT)) return;
345     } else if (tag == kCodeTargetTag) {
346       ReadTaggedPC();
347       if (SetMode(RelocInfo::CODE_TARGET)) return;
348     } else if (tag == kPositionTag) {
349       ReadTaggedPC();
350       Advance();
351       // Check if we want source positions.
352       if (mode_mask_ & RelocInfo::kPositionMask) {
353         // Check if we want this type of source position.
354         if (SetMode(DebugInfoModeFromTag(GetPositionTypeTag()))) {
355           // Finally read the data before returning.
356           ReadTaggedData();
357           return;
358         }
359       }
360     } else {
361       ASSERT(tag == kDefaultTag);
362       int extra_tag = GetExtraTag();
363       if (extra_tag == kPCJumpTag) {
364         int top_tag = GetTopTag();
365         if (top_tag == kVariableLengthPCJumpTopTag) {
366           AdvanceReadVariableLengthPCJump();
367         } else {
368           AdvanceReadPC();
369         }
370       } else if (extra_tag == kDataJumpTag) {
371         // Check if we want debug modes (the only ones with data).
372         if (mode_mask_ & RelocInfo::kDebugMask) {
373           int top_tag = GetTopTag();
374           AdvanceReadData();
375           if (SetMode(DebugInfoModeFromTag(top_tag))) return;
376         } else {
377           // Otherwise, just skip over the data.
378           Advance(kIntptrSize);
379         }
380       } else {
381         AdvanceReadPC();
382         if (SetMode(static_cast<RelocInfo::Mode>(extra_tag))) return;
383       }
384     }
385   }
386   done_ = true;
387 }
388 
389 
RelocIterator(Code * code,int mode_mask)390 RelocIterator::RelocIterator(Code* code, int mode_mask) {
391   rinfo_.pc_ = code->instruction_start();
392   rinfo_.data_ = 0;
393   // relocation info is read backwards
394   pos_ = code->relocation_start() + code->relocation_size();
395   end_ = code->relocation_start();
396   done_ = false;
397   mode_mask_ = mode_mask;
398   if (mode_mask_ == 0) pos_ = end_;
399   next();
400 }
401 
402 
RelocIterator(const CodeDesc & desc,int mode_mask)403 RelocIterator::RelocIterator(const CodeDesc& desc, int mode_mask) {
404   rinfo_.pc_ = desc.buffer;
405   rinfo_.data_ = 0;
406   // relocation info is read backwards
407   pos_ = desc.buffer + desc.buffer_size;
408   end_ = pos_ - desc.reloc_size;
409   done_ = false;
410   mode_mask_ = mode_mask;
411   if (mode_mask_ == 0) pos_ = end_;
412   next();
413 }
414 
415 
416 // -----------------------------------------------------------------------------
417 // Implementation of RelocInfo
418 
419 
420 #ifdef ENABLE_DISASSEMBLER
RelocModeName(RelocInfo::Mode rmode)421 const char* RelocInfo::RelocModeName(RelocInfo::Mode rmode) {
422   switch (rmode) {
423     case RelocInfo::NONE:
424       return "no reloc";
425     case RelocInfo::EMBEDDED_OBJECT:
426       return "embedded object";
427     case RelocInfo::EMBEDDED_STRING:
428       return "embedded string";
429     case RelocInfo::CONSTRUCT_CALL:
430       return "code target (js construct call)";
431     case RelocInfo::CODE_TARGET_CONTEXT:
432       return "code target (context)";
433     case RelocInfo::DEBUG_BREAK:
434 #ifndef ENABLE_DEBUGGER_SUPPORT
435       UNREACHABLE();
436 #endif
437       return "debug break";
438     case RelocInfo::CODE_TARGET:
439       return "code target";
440     case RelocInfo::RUNTIME_ENTRY:
441       return "runtime entry";
442     case RelocInfo::JS_RETURN:
443       return "js return";
444     case RelocInfo::COMMENT:
445       return "comment";
446     case RelocInfo::POSITION:
447       return "position";
448     case RelocInfo::STATEMENT_POSITION:
449       return "statement position";
450     case RelocInfo::EXTERNAL_REFERENCE:
451       return "external reference";
452     case RelocInfo::INTERNAL_REFERENCE:
453       return "internal reference";
454     case RelocInfo::NUMBER_OF_MODES:
455       UNREACHABLE();
456       return "number_of_modes";
457   }
458   return "unknown relocation type";
459 }
460 
461 
Print()462 void RelocInfo::Print() {
463   PrintF("%p  %s", pc_, RelocModeName(rmode_));
464   if (IsComment(rmode_)) {
465     PrintF("  (%s)", data_);
466   } else if (rmode_ == EMBEDDED_OBJECT) {
467     PrintF("  (");
468     target_object()->ShortPrint();
469     PrintF(")");
470   } else if (rmode_ == EXTERNAL_REFERENCE) {
471     ExternalReferenceEncoder ref_encoder;
472     PrintF(" (%s)  (%p)",
473            ref_encoder.NameOfAddress(*target_reference_address()),
474            *target_reference_address());
475   } else if (IsCodeTarget(rmode_)) {
476     Code* code = Code::GetCodeFromTargetAddress(target_address());
477     PrintF(" (%s)  (%p)", Code::Kind2String(code->kind()), target_address());
478   } else if (IsPosition(rmode_)) {
479     PrintF("  (%d)", data());
480   }
481 
482   PrintF("\n");
483 }
484 #endif  // ENABLE_DISASSEMBLER
485 
486 
487 #ifdef DEBUG
Verify()488 void RelocInfo::Verify() {
489   switch (rmode_) {
490     case EMBEDDED_OBJECT:
491       Object::VerifyPointer(target_object());
492       break;
493     case DEBUG_BREAK:
494 #ifndef ENABLE_DEBUGGER_SUPPORT
495       UNREACHABLE();
496       break;
497 #endif
498     case CONSTRUCT_CALL:
499     case CODE_TARGET_CONTEXT:
500     case CODE_TARGET: {
501       // convert inline target address to code object
502       Address addr = target_address();
503       ASSERT(addr != NULL);
504       // Check that we can find the right code object.
505       Code* code = Code::GetCodeFromTargetAddress(addr);
506       Object* found = Heap::FindCodeObject(addr);
507       ASSERT(found->IsCode());
508       ASSERT(code->address() == HeapObject::cast(found)->address());
509       break;
510     }
511     case RelocInfo::EMBEDDED_STRING:
512     case RUNTIME_ENTRY:
513     case JS_RETURN:
514     case COMMENT:
515     case POSITION:
516     case STATEMENT_POSITION:
517     case EXTERNAL_REFERENCE:
518     case INTERNAL_REFERENCE:
519     case NONE:
520       break;
521     case NUMBER_OF_MODES:
522       UNREACHABLE();
523       break;
524   }
525 }
526 #endif  // DEBUG
527 
528 
529 // -----------------------------------------------------------------------------
530 // Implementation of ExternalReference
531 
ExternalReference(Builtins::CFunctionId id)532 ExternalReference::ExternalReference(Builtins::CFunctionId id)
533   : address_(Redirect(Builtins::c_function_address(id))) {}
534 
535 
ExternalReference(ApiFunction * fun)536 ExternalReference::ExternalReference(ApiFunction* fun)
537   : address_(Redirect(fun->address())) {}
538 
539 
ExternalReference(Builtins::Name name)540 ExternalReference::ExternalReference(Builtins::Name name)
541   : address_(Builtins::builtin_address(name)) {}
542 
543 
ExternalReference(Runtime::FunctionId id)544 ExternalReference::ExternalReference(Runtime::FunctionId id)
545   : address_(Redirect(Runtime::FunctionForId(id)->entry)) {}
546 
547 
ExternalReference(Runtime::Function * f)548 ExternalReference::ExternalReference(Runtime::Function* f)
549   : address_(Redirect(f->entry)) {}
550 
551 
ExternalReference(const IC_Utility & ic_utility)552 ExternalReference::ExternalReference(const IC_Utility& ic_utility)
553   : address_(Redirect(ic_utility.address())) {}
554 
555 #ifdef ENABLE_DEBUGGER_SUPPORT
ExternalReference(const Debug_Address & debug_address)556 ExternalReference::ExternalReference(const Debug_Address& debug_address)
557   : address_(debug_address.address()) {}
558 #endif
559 
ExternalReference(StatsCounter * counter)560 ExternalReference::ExternalReference(StatsCounter* counter)
561   : address_(reinterpret_cast<Address>(counter->GetInternalPointer())) {}
562 
563 
ExternalReference(Top::AddressId id)564 ExternalReference::ExternalReference(Top::AddressId id)
565   : address_(Top::get_address_from_id(id)) {}
566 
567 
ExternalReference(const SCTableReference & table_ref)568 ExternalReference::ExternalReference(const SCTableReference& table_ref)
569   : address_(table_ref.address()) {}
570 
571 
perform_gc_function()572 ExternalReference ExternalReference::perform_gc_function() {
573   return ExternalReference(Redirect(FUNCTION_ADDR(Runtime::PerformGC)));
574 }
575 
576 
random_positive_smi_function()577 ExternalReference ExternalReference::random_positive_smi_function() {
578   return ExternalReference(Redirect(FUNCTION_ADDR(V8::RandomPositiveSmi)));
579 }
580 
581 
transcendental_cache_array_address()582 ExternalReference ExternalReference::transcendental_cache_array_address() {
583   return ExternalReference(TranscendentalCache::cache_array_address());
584 }
585 
586 
keyed_lookup_cache_keys()587 ExternalReference ExternalReference::keyed_lookup_cache_keys() {
588   return ExternalReference(KeyedLookupCache::keys_address());
589 }
590 
591 
keyed_lookup_cache_field_offsets()592 ExternalReference ExternalReference::keyed_lookup_cache_field_offsets() {
593   return ExternalReference(KeyedLookupCache::field_offsets_address());
594 }
595 
596 
the_hole_value_location()597 ExternalReference ExternalReference::the_hole_value_location() {
598   return ExternalReference(Factory::the_hole_value().location());
599 }
600 
601 
roots_address()602 ExternalReference ExternalReference::roots_address() {
603   return ExternalReference(Heap::roots_address());
604 }
605 
606 
address_of_stack_limit()607 ExternalReference ExternalReference::address_of_stack_limit() {
608   return ExternalReference(StackGuard::address_of_jslimit());
609 }
610 
611 
address_of_real_stack_limit()612 ExternalReference ExternalReference::address_of_real_stack_limit() {
613   return ExternalReference(StackGuard::address_of_real_jslimit());
614 }
615 
616 
address_of_regexp_stack_limit()617 ExternalReference ExternalReference::address_of_regexp_stack_limit() {
618   return ExternalReference(RegExpStack::limit_address());
619 }
620 
621 
new_space_start()622 ExternalReference ExternalReference::new_space_start() {
623   return ExternalReference(Heap::NewSpaceStart());
624 }
625 
626 
new_space_mask()627 ExternalReference ExternalReference::new_space_mask() {
628   return ExternalReference(reinterpret_cast<Address>(Heap::NewSpaceMask()));
629 }
630 
631 
new_space_allocation_top_address()632 ExternalReference ExternalReference::new_space_allocation_top_address() {
633   return ExternalReference(Heap::NewSpaceAllocationTopAddress());
634 }
635 
636 
heap_always_allocate_scope_depth()637 ExternalReference ExternalReference::heap_always_allocate_scope_depth() {
638   return ExternalReference(Heap::always_allocate_scope_depth_address());
639 }
640 
641 
new_space_allocation_limit_address()642 ExternalReference ExternalReference::new_space_allocation_limit_address() {
643   return ExternalReference(Heap::NewSpaceAllocationLimitAddress());
644 }
645 
646 
handle_scope_extensions_address()647 ExternalReference ExternalReference::handle_scope_extensions_address() {
648   return ExternalReference(HandleScope::current_extensions_address());
649 }
650 
651 
handle_scope_next_address()652 ExternalReference ExternalReference::handle_scope_next_address() {
653   return ExternalReference(HandleScope::current_next_address());
654 }
655 
656 
handle_scope_limit_address()657 ExternalReference ExternalReference::handle_scope_limit_address() {
658   return ExternalReference(HandleScope::current_limit_address());
659 }
660 
661 
scheduled_exception_address()662 ExternalReference ExternalReference::scheduled_exception_address() {
663   return ExternalReference(Top::scheduled_exception_address());
664 }
665 
666 
667 #ifdef V8_NATIVE_REGEXP
668 
re_check_stack_guard_state()669 ExternalReference ExternalReference::re_check_stack_guard_state() {
670   Address function;
671 #ifdef V8_TARGET_ARCH_X64
672   function = FUNCTION_ADDR(RegExpMacroAssemblerX64::CheckStackGuardState);
673 #elif V8_TARGET_ARCH_IA32
674   function = FUNCTION_ADDR(RegExpMacroAssemblerIA32::CheckStackGuardState);
675 #elif V8_TARGET_ARCH_ARM
676   function = FUNCTION_ADDR(RegExpMacroAssemblerARM::CheckStackGuardState);
677 #else
678   UNREACHABLE();
679 #endif
680   return ExternalReference(Redirect(function));
681 }
682 
re_grow_stack()683 ExternalReference ExternalReference::re_grow_stack() {
684   return ExternalReference(
685       Redirect(FUNCTION_ADDR(NativeRegExpMacroAssembler::GrowStack)));
686 }
687 
re_case_insensitive_compare_uc16()688 ExternalReference ExternalReference::re_case_insensitive_compare_uc16() {
689   return ExternalReference(Redirect(
690       FUNCTION_ADDR(NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16)));
691 }
692 
re_word_character_map()693 ExternalReference ExternalReference::re_word_character_map() {
694   return ExternalReference(
695       NativeRegExpMacroAssembler::word_character_map_address());
696 }
697 
address_of_static_offsets_vector()698 ExternalReference ExternalReference::address_of_static_offsets_vector() {
699   return ExternalReference(OffsetsVector::static_offsets_vector_address());
700 }
701 
address_of_regexp_stack_memory_address()702 ExternalReference ExternalReference::address_of_regexp_stack_memory_address() {
703   return ExternalReference(RegExpStack::memory_address());
704 }
705 
address_of_regexp_stack_memory_size()706 ExternalReference ExternalReference::address_of_regexp_stack_memory_size() {
707   return ExternalReference(RegExpStack::memory_size_address());
708 }
709 
710 #endif
711 
712 
add_two_doubles(double x,double y)713 static double add_two_doubles(double x, double y) {
714   return x + y;
715 }
716 
717 
sub_two_doubles(double x,double y)718 static double sub_two_doubles(double x, double y) {
719   return x - y;
720 }
721 
722 
mul_two_doubles(double x,double y)723 static double mul_two_doubles(double x, double y) {
724   return x * y;
725 }
726 
727 
div_two_doubles(double x,double y)728 static double div_two_doubles(double x, double y) {
729   return x / y;
730 }
731 
732 
mod_two_doubles(double x,double y)733 static double mod_two_doubles(double x, double y) {
734   return modulo(x, y);
735 }
736 
737 
native_compare_doubles(double y,double x)738 static int native_compare_doubles(double y, double x) {
739   if (x == y) return EQUAL;
740   return x < y ? LESS : GREATER;
741 }
742 
743 
double_fp_operation(Token::Value operation)744 ExternalReference ExternalReference::double_fp_operation(
745     Token::Value operation) {
746   typedef double BinaryFPOperation(double x, double y);
747   BinaryFPOperation* function = NULL;
748   switch (operation) {
749     case Token::ADD:
750       function = &add_two_doubles;
751       break;
752     case Token::SUB:
753       function = &sub_two_doubles;
754       break;
755     case Token::MUL:
756       function = &mul_two_doubles;
757       break;
758     case Token::DIV:
759       function = &div_two_doubles;
760       break;
761     case Token::MOD:
762       function = &mod_two_doubles;
763       break;
764     default:
765       UNREACHABLE();
766   }
767   // Passing true as 2nd parameter indicates that they return an fp value.
768   return ExternalReference(Redirect(FUNCTION_ADDR(function), true));
769 }
770 
771 
compare_doubles()772 ExternalReference ExternalReference::compare_doubles() {
773   return ExternalReference(Redirect(FUNCTION_ADDR(native_compare_doubles),
774                                     false));
775 }
776 
777 
778 ExternalReferenceRedirector* ExternalReference::redirector_ = NULL;
779 
780 
781 #ifdef ENABLE_DEBUGGER_SUPPORT
debug_break()782 ExternalReference ExternalReference::debug_break() {
783   return ExternalReference(Redirect(FUNCTION_ADDR(Debug::Break)));
784 }
785 
786 
debug_step_in_fp_address()787 ExternalReference ExternalReference::debug_step_in_fp_address() {
788   return ExternalReference(Debug::step_in_fp_addr());
789 }
790 #endif
791 
792 } }  // namespace v8::internal
793