• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _I386_PGTABLE_H
2 #define _I386_PGTABLE_H
3 
4 
5 /*
6  * The Linux memory management assumes a three-level page table setup. On
7  * the i386, we use that, but "fold" the mid level into the top-level page
8  * table, so that we physically have the same two-level page table as the
9  * i386 mmu expects.
10  *
11  * This file contains the functions and defines necessary to modify and use
12  * the i386 page table tree.
13  */
14 #ifndef __ASSEMBLY__
15 #include <asm/processor.h>
16 #include <asm/fixmap.h>
17 #include <linux/threads.h>
18 #include <asm/paravirt.h>
19 
20 #include <linux/bitops.h>
21 #include <linux/slab.h>
22 #include <linux/list.h>
23 #include <linux/spinlock.h>
24 
25 struct mm_struct;
26 struct vm_area_struct;
27 
28 /*
29  * ZERO_PAGE is a global shared page that is always zero: used
30  * for zero-mapped memory areas etc..
31  */
32 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
33 extern unsigned long empty_zero_page[1024];
34 extern pgd_t swapper_pg_dir[1024];
35 extern struct kmem_cache *pmd_cache;
36 extern spinlock_t pgd_lock;
37 extern struct page *pgd_list;
38 void check_pgt_cache(void);
39 
40 void pmd_ctor(struct kmem_cache *, void *);
41 void pgtable_cache_init(void);
42 void paging_init(void);
43 
44 
45 /*
46  * The Linux x86 paging architecture is 'compile-time dual-mode', it
47  * implements both the traditional 2-level x86 page tables and the
48  * newer 3-level PAE-mode page tables.
49  */
50 #ifdef CONFIG_X86_PAE
51 # include <asm/pgtable-3level-defs.h>
52 # define PMD_SIZE	(1UL << PMD_SHIFT)
53 # define PMD_MASK	(~(PMD_SIZE-1))
54 #else
55 # include <asm/pgtable-2level-defs.h>
56 #endif
57 
58 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
59 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
60 
61 #define USER_PTRS_PER_PGD	(TASK_SIZE/PGDIR_SIZE)
62 #define FIRST_USER_ADDRESS	0
63 
64 #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
65 #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
66 
67 #define TWOLEVEL_PGDIR_SHIFT	22
68 #define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
69 #define BOOT_KERNEL_PGD_PTRS (1024-BOOT_USER_PGD_PTRS)
70 
71 /* Just any arbitrary offset to the start of the vmalloc VM area: the
72  * current 8MB value just means that there will be a 8MB "hole" after the
73  * physical memory until the kernel virtual memory starts.  That means that
74  * any out-of-bounds memory accesses will hopefully be caught.
75  * The vmalloc() routines leaves a hole of 4kB between each vmalloced
76  * area for the same reason. ;)
77  */
78 #define VMALLOC_OFFSET	(8*1024*1024)
79 #define VMALLOC_START	(((unsigned long) high_memory + \
80 			2*VMALLOC_OFFSET-1) & ~(VMALLOC_OFFSET-1))
81 #ifdef CONFIG_HIGHMEM
82 # define VMALLOC_END	(PKMAP_BASE-2*PAGE_SIZE)
83 #else
84 # define VMALLOC_END	(FIXADDR_START-2*PAGE_SIZE)
85 #endif
86 
87 /*
88  * _PAGE_PSE set in the page directory entry just means that
89  * the page directory entry points directly to a 4MB-aligned block of
90  * memory.
91  */
92 #define _PAGE_BIT_PRESENT	0
93 #define _PAGE_BIT_RW		1
94 #define _PAGE_BIT_USER		2
95 #define _PAGE_BIT_PWT		3
96 #define _PAGE_BIT_PCD		4
97 #define _PAGE_BIT_ACCESSED	5
98 #define _PAGE_BIT_DIRTY		6
99 #define _PAGE_BIT_PSE		7	/* 4 MB (or 2MB) page, Pentium+, if present.. */
100 #define _PAGE_BIT_GLOBAL	8	/* Global TLB entry PPro+ */
101 #define _PAGE_BIT_UNUSED1	9	/* available for programmer */
102 #define _PAGE_BIT_UNUSED2	10
103 #define _PAGE_BIT_UNUSED3	11
104 #define _PAGE_BIT_NX		63
105 
106 #define _PAGE_PRESENT	0x001
107 #define _PAGE_RW	0x002
108 #define _PAGE_USER	0x004
109 #define _PAGE_PWT	0x008
110 #define _PAGE_PCD	0x010
111 #define _PAGE_ACCESSED	0x020
112 #define _PAGE_DIRTY	0x040
113 #define _PAGE_PSE	0x080	/* 4 MB (or 2MB) page, Pentium+, if present.. */
114 #define _PAGE_GLOBAL	0x100	/* Global TLB entry PPro+ */
115 #define _PAGE_UNUSED1	0x200	/* available for programmer */
116 #define _PAGE_UNUSED2	0x400
117 #define _PAGE_UNUSED3	0x800
118 
119 /* If _PAGE_PRESENT is clear, we use these: */
120 #define _PAGE_FILE	0x040	/* nonlinear file mapping, saved PTE; unset:swap */
121 #define _PAGE_PROTNONE	0x080	/* if the user mapped it with PROT_NONE;
122 				   pte_present gives true */
123 #ifdef CONFIG_X86_PAE
124 #define _PAGE_NX	(1ULL<<_PAGE_BIT_NX)
125 #else
126 #define _PAGE_NX	0
127 #endif
128 
129 #define _PAGE_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
130 #define _KERNPG_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
131 #define _PAGE_CHG_MASK	(PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
132 
133 #define PAGE_NONE \
134 	__pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
135 #define PAGE_SHARED \
136 	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
137 
138 #define PAGE_SHARED_EXEC \
139 	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
140 #define PAGE_COPY_NOEXEC \
141 	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
142 #define PAGE_COPY_EXEC \
143 	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
144 #define PAGE_COPY \
145 	PAGE_COPY_NOEXEC
146 #define PAGE_READONLY \
147 	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
148 #define PAGE_READONLY_EXEC \
149 	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
150 
151 #define _PAGE_KERNEL \
152 	(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_NX)
153 #define _PAGE_KERNEL_EXEC \
154 	(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
155 
156 extern unsigned long long __PAGE_KERNEL, __PAGE_KERNEL_EXEC;
157 #define __PAGE_KERNEL_RO		(__PAGE_KERNEL & ~_PAGE_RW)
158 #define __PAGE_KERNEL_RX		(__PAGE_KERNEL_EXEC & ~_PAGE_RW)
159 #define __PAGE_KERNEL_NOCACHE		(__PAGE_KERNEL | _PAGE_PCD)
160 #define __PAGE_KERNEL_LARGE		(__PAGE_KERNEL | _PAGE_PSE)
161 #define __PAGE_KERNEL_LARGE_EXEC	(__PAGE_KERNEL_EXEC | _PAGE_PSE)
162 
163 #define PAGE_KERNEL		__pgprot(__PAGE_KERNEL)
164 #define PAGE_KERNEL_RO		__pgprot(__PAGE_KERNEL_RO)
165 #define PAGE_KERNEL_EXEC	__pgprot(__PAGE_KERNEL_EXEC)
166 #define PAGE_KERNEL_RX		__pgprot(__PAGE_KERNEL_RX)
167 #define PAGE_KERNEL_NOCACHE	__pgprot(__PAGE_KERNEL_NOCACHE)
168 #define PAGE_KERNEL_LARGE	__pgprot(__PAGE_KERNEL_LARGE)
169 #define PAGE_KERNEL_LARGE_EXEC	__pgprot(__PAGE_KERNEL_LARGE_EXEC)
170 
171 /*
172  * The i386 can't do page protection for execute, and considers that
173  * the same are read. Also, write permissions imply read permissions.
174  * This is the closest we can get..
175  */
176 #define __P000	PAGE_NONE
177 #define __P001	PAGE_READONLY
178 #define __P010	PAGE_COPY
179 #define __P011	PAGE_COPY
180 #define __P100	PAGE_READONLY_EXEC
181 #define __P101	PAGE_READONLY_EXEC
182 #define __P110	PAGE_COPY_EXEC
183 #define __P111	PAGE_COPY_EXEC
184 
185 #define __S000	PAGE_NONE
186 #define __S001	PAGE_READONLY
187 #define __S010	PAGE_SHARED
188 #define __S011	PAGE_SHARED
189 #define __S100	PAGE_READONLY_EXEC
190 #define __S101	PAGE_READONLY_EXEC
191 #define __S110	PAGE_SHARED_EXEC
192 #define __S111	PAGE_SHARED_EXEC
193 
194 /*
195  * Define this if things work differently on an i386 and an i486:
196  * it will (on an i486) warn about kernel memory accesses that are
197  * done without a 'access_ok(VERIFY_WRITE,..)'
198  */
199 #undef TEST_ACCESS_OK
200 
201 /* The boot page tables (all created as a single array) */
202 extern unsigned long pg0[];
203 
204 #define pte_present(x)	((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE))
205 
206 /* To avoid harmful races, pmd_none(x) should check only the lower when PAE */
207 #define pmd_none(x)	(!(unsigned long)pmd_val(x))
208 #define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT)
209 #define	pmd_bad(x)	((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
210 
211 
212 #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
213 
214 /*
215  * The following only work if pte_present() is true.
216  * Undefined behaviour if not..
217  */
pte_dirty(pte_t pte)218 static inline int pte_dirty(pte_t pte)		{ return (pte).pte_low & _PAGE_DIRTY; }
pte_young(pte_t pte)219 static inline int pte_young(pte_t pte)		{ return (pte).pte_low & _PAGE_ACCESSED; }
pte_write(pte_t pte)220 static inline int pte_write(pte_t pte)		{ return (pte).pte_low & _PAGE_RW; }
pte_huge(pte_t pte)221 static inline int pte_huge(pte_t pte)		{ return (pte).pte_low & _PAGE_PSE; }
222 
223 /*
224  * The following only works if pte_present() is not true.
225  */
pte_file(pte_t pte)226 static inline int pte_file(pte_t pte)		{ return (pte).pte_low & _PAGE_FILE; }
227 
pte_mkclean(pte_t pte)228 static inline pte_t pte_mkclean(pte_t pte)	{ (pte).pte_low &= ~_PAGE_DIRTY; return pte; }
pte_mkold(pte_t pte)229 static inline pte_t pte_mkold(pte_t pte)	{ (pte).pte_low &= ~_PAGE_ACCESSED; return pte; }
pte_wrprotect(pte_t pte)230 static inline pte_t pte_wrprotect(pte_t pte)	{ (pte).pte_low &= ~_PAGE_RW; return pte; }
pte_mkdirty(pte_t pte)231 static inline pte_t pte_mkdirty(pte_t pte)	{ (pte).pte_low |= _PAGE_DIRTY; return pte; }
pte_mkyoung(pte_t pte)232 static inline pte_t pte_mkyoung(pte_t pte)	{ (pte).pte_low |= _PAGE_ACCESSED; return pte; }
pte_mkwrite(pte_t pte)233 static inline pte_t pte_mkwrite(pte_t pte)	{ (pte).pte_low |= _PAGE_RW; return pte; }
pte_mkhuge(pte_t pte)234 static inline pte_t pte_mkhuge(pte_t pte)	{ (pte).pte_low |= _PAGE_PSE; return pte; }
235 
236 #ifdef CONFIG_X86_PAE
237 # include <asm/pgtable-3level.h>
238 #else
239 # include <asm/pgtable-2level.h>
240 #endif
241 
242 #ifndef CONFIG_PARAVIRT
243 /*
244  * Rules for using pte_update - it must be called after any PTE update which
245  * has not been done using the set_pte / clear_pte interfaces.  It is used by
246  * shadow mode hypervisors to resynchronize the shadow page tables.  Kernel PTE
247  * updates should either be sets, clears, or set_pte_atomic for P->P
248  * transitions, which means this hook should only be called for user PTEs.
249  * This hook implies a P->P protection or access change has taken place, which
250  * requires a subsequent TLB flush.  The notification can optionally be delayed
251  * until the TLB flush event by using the pte_update_defer form of the
252  * interface, but care must be taken to assure that the flush happens while
253  * still holding the same page table lock so that the shadow and primary pages
254  * do not become out of sync on SMP.
255  */
256 #define pte_update(mm, addr, ptep)		do { } while (0)
257 #define pte_update_defer(mm, addr, ptep)	do { } while (0)
258 #endif
259 
260 /* local pte updates need not use xchg for locking */
native_local_ptep_get_and_clear(pte_t * ptep)261 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
262 {
263 	pte_t res = *ptep;
264 
265 	/* Pure native function needs no input for mm, addr */
266 	native_pte_clear(NULL, 0, ptep);
267 	return res;
268 }
269 
270 /*
271  * We only update the dirty/accessed state if we set
272  * the dirty bit by hand in the kernel, since the hardware
273  * will do the accessed bit for us, and we don't want to
274  * race with other CPU's that might be updating the dirty
275  * bit at the same time.
276  */
277 #define  __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
278 #define ptep_set_access_flags(vma, address, ptep, entry, dirty)		\
279 ({									\
280 	int __changed = !pte_same(*(ptep), entry);			\
281 	if (__changed && dirty) {					\
282 		(ptep)->pte_low = (entry).pte_low;			\
283 		pte_update_defer((vma)->vm_mm, (address), (ptep));	\
284 		flush_tlb_page(vma, address);				\
285 	}								\
286 	__changed;							\
287 })
288 
289 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
290 #define ptep_test_and_clear_young(vma, addr, ptep) ({			\
291 	int __ret = 0;							\
292 	if (pte_young(*(ptep)))						\
293 		__ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,		\
294 						&(ptep)->pte_low);	\
295 	if (__ret)							\
296 		pte_update((vma)->vm_mm, addr, ptep);			\
297 	__ret;								\
298 })
299 
300 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
301 #define ptep_clear_flush_young(vma, address, ptep)			\
302 ({									\
303 	int __young;							\
304 	__young = ptep_test_and_clear_young((vma), (address), (ptep));	\
305 	if (__young)							\
306 		flush_tlb_page(vma, address);				\
307 	__young;							\
308 })
309 
310 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)311 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
312 {
313 	pte_t pte = native_ptep_get_and_clear(ptep);
314 	pte_update(mm, addr, ptep);
315 	return pte;
316 }
317 
318 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)319 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full)
320 {
321 	pte_t pte;
322 	if (full) {
323 		/*
324 		 * Full address destruction in progress; paravirt does not
325 		 * care about updates and native needs no locking
326 		 */
327 		pte = native_local_ptep_get_and_clear(ptep);
328 	} else {
329 		pte = ptep_get_and_clear(mm, addr, ptep);
330 	}
331 	return pte;
332 }
333 
334 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)335 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
336 {
337 	clear_bit(_PAGE_BIT_RW, &ptep->pte_low);
338 	pte_update(mm, addr, ptep);
339 }
340 
341 /*
342  * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
343  *
344  *  dst - pointer to pgd range anwhere on a pgd page
345  *  src - ""
346  *  count - the number of pgds to copy.
347  *
348  * dst and src can be on the same page, but the range must not overlap,
349  * and must not cross a page boundary.
350  */
clone_pgd_range(pgd_t * dst,pgd_t * src,int count)351 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
352 {
353        memcpy(dst, src, count * sizeof(pgd_t));
354 }
355 
356 /*
357  * Macro to mark a page protection value as "uncacheable".  On processors which do not support
358  * it, this is a no-op.
359  */
360 #define pgprot_noncached(prot)	((boot_cpu_data.x86 > 3)					  \
361 				 ? (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT)) : (prot))
362 
363 /*
364  * Conversion functions: convert a page and protection to a page entry,
365  * and a page entry and page directory to the page they refer to.
366  */
367 
368 #define mk_pte(page, pgprot)	pfn_pte(page_to_pfn(page), (pgprot))
369 
pte_modify(pte_t pte,pgprot_t newprot)370 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
371 {
372 	pte.pte_low &= _PAGE_CHG_MASK;
373 	pte.pte_low |= pgprot_val(newprot);
374 #ifdef CONFIG_X86_PAE
375 	/*
376 	 * Chop off the NX bit (if present), and add the NX portion of
377 	 * the newprot (if present):
378 	 */
379 	pte.pte_high &= ~(1 << (_PAGE_BIT_NX - 32));
380 	pte.pte_high |= (pgprot_val(newprot) >> 32) & \
381 					(__supported_pte_mask >> 32);
382 #endif
383 	return pte;
384 }
385 
386 #define pmd_large(pmd) \
387 ((pmd_val(pmd) & (_PAGE_PSE|_PAGE_PRESENT)) == (_PAGE_PSE|_PAGE_PRESENT))
388 
389 /*
390  * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
391  *
392  * this macro returns the index of the entry in the pgd page which would
393  * control the given virtual address
394  */
395 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
396 #define pgd_index_k(addr) pgd_index(addr)
397 
398 /*
399  * pgd_offset() returns a (pgd_t *)
400  * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
401  */
402 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
403 
404 /*
405  * a shortcut which implies the use of the kernel's pgd, instead
406  * of a process's
407  */
408 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
409 
410 /*
411  * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
412  *
413  * this macro returns the index of the entry in the pmd page which would
414  * control the given virtual address
415  */
416 #define pmd_index(address) \
417 		(((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
418 
419 /*
420  * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
421  *
422  * this macro returns the index of the entry in the pte page which would
423  * control the given virtual address
424  */
425 #define pte_index(address) \
426 		(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
427 #define pte_offset_kernel(dir, address) \
428 	((pte_t *) pmd_page_vaddr(*(dir)) +  pte_index(address))
429 
430 #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
431 
432 #define pmd_page_vaddr(pmd) \
433 		((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
434 
435 /*
436  * Helper function that returns the kernel pagetable entry controlling
437  * the virtual address 'address'. NULL means no pagetable entry present.
438  * NOTE: the return type is pte_t but if the pmd is PSE then we return it
439  * as a pte too.
440  */
441 extern pte_t *lookup_address(unsigned long address);
442 
443 /*
444  * Make a given kernel text page executable/non-executable.
445  * Returns the previous executability setting of that page (which
446  * is used to restore the previous state). Used by the SMP bootup code.
447  * NOTE: this is an __init function for security reasons.
448  */
449 #ifdef CONFIG_X86_PAE
450  extern int set_kernel_exec(unsigned long vaddr, int enable);
451 #else
set_kernel_exec(unsigned long vaddr,int enable)452  static inline int set_kernel_exec(unsigned long vaddr, int enable) { return 0;}
453 #endif
454 
455 #if defined(CONFIG_HIGHPTE)
456 #define pte_offset_map(dir, address) \
457 	((pte_t *)kmap_atomic_pte(pmd_page(*(dir)),KM_PTE0) + pte_index(address))
458 #define pte_offset_map_nested(dir, address) \
459 	((pte_t *)kmap_atomic_pte(pmd_page(*(dir)),KM_PTE1) + pte_index(address))
460 #define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
461 #define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1)
462 #else
463 #define pte_offset_map(dir, address) \
464 	((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
465 #define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)
466 #define pte_unmap(pte) do { } while (0)
467 #define pte_unmap_nested(pte) do { } while (0)
468 #endif
469 
470 /* Clear a kernel PTE and flush it from the TLB */
471 #define kpte_clear_flush(ptep, vaddr)					\
472 do {									\
473 	pte_clear(&init_mm, vaddr, ptep);				\
474 	__flush_tlb_one(vaddr);						\
475 } while (0)
476 
477 /*
478  * The i386 doesn't have any external MMU info: the kernel page
479  * tables contain all the necessary information.
480  */
481 #define update_mmu_cache(vma,address,pte) do { } while (0)
482 
483 void native_pagetable_setup_start(pgd_t *base);
484 void native_pagetable_setup_done(pgd_t *base);
485 
486 #ifndef CONFIG_PARAVIRT
paravirt_pagetable_setup_start(pgd_t * base)487 static inline void paravirt_pagetable_setup_start(pgd_t *base)
488 {
489 	native_pagetable_setup_start(base);
490 }
491 
paravirt_pagetable_setup_done(pgd_t * base)492 static inline void paravirt_pagetable_setup_done(pgd_t *base)
493 {
494 	native_pagetable_setup_done(base);
495 }
496 #endif	/* !CONFIG_PARAVIRT */
497 
498 #endif /* !__ASSEMBLY__ */
499 
500 #ifdef CONFIG_FLATMEM
501 #define kern_addr_valid(addr)	(1)
502 #endif /* CONFIG_FLATMEM */
503 
504 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot)		\
505 		remap_pfn_range(vma, vaddr, pfn, size, prot)
506 
507 #include <asm-generic/pgtable.h>
508 
509 #endif /* _I386_PGTABLE_H */
510