1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in
12 * the documentation and/or other materials provided with the
13 * distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <signal.h>
31 #include <stdint.h>
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <errno.h>
35 #include <sys/atomics.h>
36 #include <bionic_tls.h>
37 #include <sys/mman.h>
38 #include <pthread.h>
39 #include <time.h>
40 #include "pthread_internal.h"
41 #include "thread_private.h"
42 #include <limits.h>
43 #include <memory.h>
44 #include <assert.h>
45 #include <malloc.h>
46 #include <bionic_futex.h>
47 #include <bionic_atomic_inline.h>
48 #include <sys/prctl.h>
49 #include <sys/stat.h>
50 #include <fcntl.h>
51 #include <stdio.h>
52
53 extern int __pthread_clone(int (*fn)(void*), void *child_stack, int flags, void *arg);
54 extern void _exit_with_stack_teardown(void * stackBase, int stackSize, int retCode);
55 extern void _exit_thread(int retCode);
56 extern int __set_errno(int);
57
__futex_wake_ex(volatile void * ftx,int pshared,int val)58 int __futex_wake_ex(volatile void *ftx, int pshared, int val)
59 {
60 return __futex_syscall3(ftx, pshared ? FUTEX_WAKE : FUTEX_WAKE_PRIVATE, val);
61 }
62
__futex_wait_ex(volatile void * ftx,int pshared,int val,const struct timespec * timeout)63 int __futex_wait_ex(volatile void *ftx, int pshared, int val, const struct timespec *timeout)
64 {
65 return __futex_syscall4(ftx, pshared ? FUTEX_WAIT : FUTEX_WAIT_PRIVATE, val, timeout);
66 }
67
68 #define __likely(cond) __builtin_expect(!!(cond), 1)
69 #define __unlikely(cond) __builtin_expect(!!(cond), 0)
70
71 void _thread_created_hook(pid_t thread_id) __attribute__((noinline));
72
73 #define PTHREAD_ATTR_FLAG_DETACHED 0x00000001
74 #define PTHREAD_ATTR_FLAG_USER_STACK 0x00000002
75
76 #define DEFAULT_STACKSIZE (1024 * 1024)
77 #define STACKBASE 0x10000000
78
79 static uint8_t * gStackBase = (uint8_t *)STACKBASE;
80
81 static pthread_mutex_t mmap_lock = PTHREAD_MUTEX_INITIALIZER;
82
83
84 static const pthread_attr_t gDefaultPthreadAttr = {
85 .flags = 0,
86 .stack_base = NULL,
87 .stack_size = DEFAULT_STACKSIZE,
88 .guard_size = PAGE_SIZE,
89 .sched_policy = SCHED_NORMAL,
90 .sched_priority = 0
91 };
92
93 #define INIT_THREADS 1
94
95 static pthread_internal_t* gThreadList = NULL;
96 static pthread_mutex_t gThreadListLock = PTHREAD_MUTEX_INITIALIZER;
97 static pthread_mutex_t gDebuggerNotificationLock = PTHREAD_MUTEX_INITIALIZER;
98
99
100 /* we simply malloc/free the internal pthread_internal_t structures. we may
101 * want to use a different allocation scheme in the future, but this one should
102 * be largely enough
103 */
104 static pthread_internal_t*
_pthread_internal_alloc(void)105 _pthread_internal_alloc(void)
106 {
107 pthread_internal_t* thread;
108
109 thread = calloc( sizeof(*thread), 1 );
110 if (thread)
111 thread->intern = 1;
112
113 return thread;
114 }
115
116 static void
_pthread_internal_free(pthread_internal_t * thread)117 _pthread_internal_free( pthread_internal_t* thread )
118 {
119 if (thread && thread->intern) {
120 thread->intern = 0; /* just in case */
121 free (thread);
122 }
123 }
124
125
126 static void
_pthread_internal_remove_locked(pthread_internal_t * thread)127 _pthread_internal_remove_locked( pthread_internal_t* thread )
128 {
129 thread->next->pref = thread->pref;
130 thread->pref[0] = thread->next;
131 }
132
133 static void
_pthread_internal_remove(pthread_internal_t * thread)134 _pthread_internal_remove( pthread_internal_t* thread )
135 {
136 pthread_mutex_lock(&gThreadListLock);
137 _pthread_internal_remove_locked(thread);
138 pthread_mutex_unlock(&gThreadListLock);
139 }
140
141 static void
_pthread_internal_add(pthread_internal_t * thread)142 _pthread_internal_add( pthread_internal_t* thread )
143 {
144 pthread_mutex_lock(&gThreadListLock);
145 thread->pref = &gThreadList;
146 thread->next = thread->pref[0];
147 if (thread->next)
148 thread->next->pref = &thread->next;
149 thread->pref[0] = thread;
150 pthread_mutex_unlock(&gThreadListLock);
151 }
152
153 pthread_internal_t*
__get_thread(void)154 __get_thread(void)
155 {
156 void** tls = (void**)__get_tls();
157
158 return (pthread_internal_t*) tls[TLS_SLOT_THREAD_ID];
159 }
160
161
162 void*
__get_stack_base(int * p_stack_size)163 __get_stack_base(int *p_stack_size)
164 {
165 pthread_internal_t* thread = __get_thread();
166
167 *p_stack_size = thread->attr.stack_size;
168 return thread->attr.stack_base;
169 }
170
171
__init_tls(void ** tls,void * thread)172 void __init_tls(void** tls, void* thread)
173 {
174 int nn;
175
176 ((pthread_internal_t*)thread)->tls = tls;
177
178 // slot 0 must point to the tls area, this is required by the implementation
179 // of the x86 Linux kernel thread-local-storage
180 tls[TLS_SLOT_SELF] = (void*)tls;
181 tls[TLS_SLOT_THREAD_ID] = thread;
182 for (nn = TLS_SLOT_ERRNO; nn < BIONIC_TLS_SLOTS; nn++)
183 tls[nn] = 0;
184
185 __set_tls( (void*)tls );
186 }
187
188
189 /*
190 * This trampoline is called from the assembly clone() function
191 */
__thread_entry(int (* func)(void *),void * arg,void ** tls)192 void __thread_entry(int (*func)(void*), void *arg, void **tls)
193 {
194 int retValue;
195 pthread_internal_t * thrInfo;
196
197 // Wait for our creating thread to release us. This lets it have time to
198 // notify gdb about this thread before it starts doing anything.
199 pthread_mutex_t * start_mutex = (pthread_mutex_t *)&tls[TLS_SLOT_SELF];
200 pthread_mutex_lock(start_mutex);
201 pthread_mutex_destroy(start_mutex);
202
203 thrInfo = (pthread_internal_t *) tls[TLS_SLOT_THREAD_ID];
204
205 __init_tls( tls, thrInfo );
206
207 pthread_exit( (void*)func(arg) );
208 }
209
_init_thread(pthread_internal_t * thread,pid_t kernel_id,pthread_attr_t * attr,void * stack_base)210 void _init_thread(pthread_internal_t * thread, pid_t kernel_id, pthread_attr_t * attr, void * stack_base)
211 {
212 if (attr == NULL) {
213 thread->attr = gDefaultPthreadAttr;
214 } else {
215 thread->attr = *attr;
216 }
217 thread->attr.stack_base = stack_base;
218 thread->kernel_id = kernel_id;
219
220 // set the scheduling policy/priority of the thread
221 if (thread->attr.sched_policy != SCHED_NORMAL) {
222 struct sched_param param;
223 param.sched_priority = thread->attr.sched_priority;
224 sched_setscheduler(kernel_id, thread->attr.sched_policy, ¶m);
225 }
226
227 pthread_cond_init(&thread->join_cond, NULL);
228 thread->join_count = 0;
229
230 thread->cleanup_stack = NULL;
231
232 _pthread_internal_add(thread);
233 }
234
235
236 /* XXX stacks not reclaimed if thread spawn fails */
237 /* XXX stacks address spaces should be reused if available again */
238
mkstack(size_t size,size_t guard_size)239 static void *mkstack(size_t size, size_t guard_size)
240 {
241 void * stack;
242
243 pthread_mutex_lock(&mmap_lock);
244
245 stack = mmap((void *)gStackBase, size,
246 PROT_READ | PROT_WRITE,
247 MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
248 -1, 0);
249
250 if(stack == MAP_FAILED) {
251 stack = NULL;
252 goto done;
253 }
254
255 if(mprotect(stack, guard_size, PROT_NONE)){
256 munmap(stack, size);
257 stack = NULL;
258 goto done;
259 }
260
261 done:
262 pthread_mutex_unlock(&mmap_lock);
263 return stack;
264 }
265
266 /*
267 * Create a new thread. The thread's stack is layed out like so:
268 *
269 * +---------------------------+
270 * | pthread_internal_t |
271 * +---------------------------+
272 * | |
273 * | TLS area |
274 * | |
275 * +---------------------------+
276 * | |
277 * . .
278 * . stack area .
279 * . .
280 * | |
281 * +---------------------------+
282 * | guard page |
283 * +---------------------------+
284 *
285 * note that TLS[0] must be a pointer to itself, this is required
286 * by the thread-local storage implementation of the x86 Linux
287 * kernel, where the TLS pointer is read by reading fs:[0]
288 */
pthread_create(pthread_t * thread_out,pthread_attr_t const * attr,void * (* start_routine)(void *),void * arg)289 int pthread_create(pthread_t *thread_out, pthread_attr_t const * attr,
290 void *(*start_routine)(void *), void * arg)
291 {
292 char* stack;
293 void** tls;
294 int tid;
295 pthread_mutex_t * start_mutex;
296 pthread_internal_t * thread;
297 int madestack = 0;
298 int old_errno = errno;
299
300 /* this will inform the rest of the C library that at least one thread
301 * was created. this will enforce certain functions to acquire/release
302 * locks (e.g. atexit()) to protect shared global structures.
303 *
304 * this works because pthread_create() is not called by the C library
305 * initialization routine that sets up the main thread's data structures.
306 */
307 __isthreaded = 1;
308
309 thread = _pthread_internal_alloc();
310 if (thread == NULL)
311 return ENOMEM;
312
313 if (attr == NULL) {
314 attr = &gDefaultPthreadAttr;
315 }
316
317 // make sure the stack is PAGE_SIZE aligned
318 size_t stackSize = (attr->stack_size +
319 (PAGE_SIZE-1)) & ~(PAGE_SIZE-1);
320
321 if (!attr->stack_base) {
322 stack = mkstack(stackSize, attr->guard_size);
323 if(stack == NULL) {
324 _pthread_internal_free(thread);
325 return ENOMEM;
326 }
327 madestack = 1;
328 } else {
329 stack = attr->stack_base;
330 }
331
332 // Make room for TLS
333 tls = (void**)(stack + stackSize - BIONIC_TLS_SLOTS*sizeof(void*));
334
335 // Create a mutex for the thread in TLS_SLOT_SELF to wait on once it starts so we can keep
336 // it from doing anything until after we notify the debugger about it
337 start_mutex = (pthread_mutex_t *) &tls[TLS_SLOT_SELF];
338 pthread_mutex_init(start_mutex, NULL);
339 pthread_mutex_lock(start_mutex);
340
341 tls[TLS_SLOT_THREAD_ID] = thread;
342
343 tid = __pthread_clone((int(*)(void*))start_routine, tls,
344 CLONE_FILES | CLONE_FS | CLONE_VM | CLONE_SIGHAND
345 | CLONE_THREAD | CLONE_SYSVSEM | CLONE_DETACHED,
346 arg);
347
348 if(tid < 0) {
349 int result;
350 if (madestack)
351 munmap(stack, stackSize);
352 _pthread_internal_free(thread);
353 result = errno;
354 errno = old_errno;
355 return result;
356 }
357
358 _init_thread(thread, tid, (pthread_attr_t*)attr, stack);
359
360 if (!madestack)
361 thread->attr.flags |= PTHREAD_ATTR_FLAG_USER_STACK;
362
363 // Notify any debuggers about the new thread
364 pthread_mutex_lock(&gDebuggerNotificationLock);
365 _thread_created_hook(tid);
366 pthread_mutex_unlock(&gDebuggerNotificationLock);
367
368 // Let the thread do it's thing
369 pthread_mutex_unlock(start_mutex);
370
371 *thread_out = (pthread_t)thread;
372 return 0;
373 }
374
375
pthread_attr_init(pthread_attr_t * attr)376 int pthread_attr_init(pthread_attr_t * attr)
377 {
378 *attr = gDefaultPthreadAttr;
379 return 0;
380 }
381
pthread_attr_destroy(pthread_attr_t * attr)382 int pthread_attr_destroy(pthread_attr_t * attr)
383 {
384 memset(attr, 0x42, sizeof(pthread_attr_t));
385 return 0;
386 }
387
pthread_attr_setdetachstate(pthread_attr_t * attr,int state)388 int pthread_attr_setdetachstate(pthread_attr_t * attr, int state)
389 {
390 if (state == PTHREAD_CREATE_DETACHED) {
391 attr->flags |= PTHREAD_ATTR_FLAG_DETACHED;
392 } else if (state == PTHREAD_CREATE_JOINABLE) {
393 attr->flags &= ~PTHREAD_ATTR_FLAG_DETACHED;
394 } else {
395 return EINVAL;
396 }
397 return 0;
398 }
399
pthread_attr_getdetachstate(pthread_attr_t const * attr,int * state)400 int pthread_attr_getdetachstate(pthread_attr_t const * attr, int * state)
401 {
402 *state = (attr->flags & PTHREAD_ATTR_FLAG_DETACHED)
403 ? PTHREAD_CREATE_DETACHED
404 : PTHREAD_CREATE_JOINABLE;
405 return 0;
406 }
407
pthread_attr_setschedpolicy(pthread_attr_t * attr,int policy)408 int pthread_attr_setschedpolicy(pthread_attr_t * attr, int policy)
409 {
410 attr->sched_policy = policy;
411 return 0;
412 }
413
pthread_attr_getschedpolicy(pthread_attr_t const * attr,int * policy)414 int pthread_attr_getschedpolicy(pthread_attr_t const * attr, int * policy)
415 {
416 *policy = attr->sched_policy;
417 return 0;
418 }
419
pthread_attr_setschedparam(pthread_attr_t * attr,struct sched_param const * param)420 int pthread_attr_setschedparam(pthread_attr_t * attr, struct sched_param const * param)
421 {
422 attr->sched_priority = param->sched_priority;
423 return 0;
424 }
425
pthread_attr_getschedparam(pthread_attr_t const * attr,struct sched_param * param)426 int pthread_attr_getschedparam(pthread_attr_t const * attr, struct sched_param * param)
427 {
428 param->sched_priority = attr->sched_priority;
429 return 0;
430 }
431
pthread_attr_setstacksize(pthread_attr_t * attr,size_t stack_size)432 int pthread_attr_setstacksize(pthread_attr_t * attr, size_t stack_size)
433 {
434 if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) {
435 return EINVAL;
436 }
437 attr->stack_size = stack_size;
438 return 0;
439 }
440
pthread_attr_getstacksize(pthread_attr_t const * attr,size_t * stack_size)441 int pthread_attr_getstacksize(pthread_attr_t const * attr, size_t * stack_size)
442 {
443 *stack_size = attr->stack_size;
444 return 0;
445 }
446
pthread_attr_setstackaddr(pthread_attr_t * attr,void * stack_addr)447 int pthread_attr_setstackaddr(pthread_attr_t * attr, void * stack_addr)
448 {
449 #if 1
450 // It's not clear if this is setting the top or bottom of the stack, so don't handle it for now.
451 return ENOSYS;
452 #else
453 if ((uint32_t)stack_addr & (PAGE_SIZE - 1)) {
454 return EINVAL;
455 }
456 attr->stack_base = stack_addr;
457 return 0;
458 #endif
459 }
460
pthread_attr_getstackaddr(pthread_attr_t const * attr,void ** stack_addr)461 int pthread_attr_getstackaddr(pthread_attr_t const * attr, void ** stack_addr)
462 {
463 *stack_addr = (char*)attr->stack_base + attr->stack_size;
464 return 0;
465 }
466
pthread_attr_setstack(pthread_attr_t * attr,void * stack_base,size_t stack_size)467 int pthread_attr_setstack(pthread_attr_t * attr, void * stack_base, size_t stack_size)
468 {
469 if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) {
470 return EINVAL;
471 }
472 if ((uint32_t)stack_base & (PAGE_SIZE - 1)) {
473 return EINVAL;
474 }
475 attr->stack_base = stack_base;
476 attr->stack_size = stack_size;
477 return 0;
478 }
479
pthread_attr_getstack(pthread_attr_t const * attr,void ** stack_base,size_t * stack_size)480 int pthread_attr_getstack(pthread_attr_t const * attr, void ** stack_base, size_t * stack_size)
481 {
482 *stack_base = attr->stack_base;
483 *stack_size = attr->stack_size;
484 return 0;
485 }
486
pthread_attr_setguardsize(pthread_attr_t * attr,size_t guard_size)487 int pthread_attr_setguardsize(pthread_attr_t * attr, size_t guard_size)
488 {
489 if (guard_size & (PAGE_SIZE - 1) || guard_size < PAGE_SIZE) {
490 return EINVAL;
491 }
492
493 attr->guard_size = guard_size;
494 return 0;
495 }
496
pthread_attr_getguardsize(pthread_attr_t const * attr,size_t * guard_size)497 int pthread_attr_getguardsize(pthread_attr_t const * attr, size_t * guard_size)
498 {
499 *guard_size = attr->guard_size;
500 return 0;
501 }
502
pthread_getattr_np(pthread_t thid,pthread_attr_t * attr)503 int pthread_getattr_np(pthread_t thid, pthread_attr_t * attr)
504 {
505 pthread_internal_t * thread = (pthread_internal_t *)thid;
506 *attr = thread->attr;
507 return 0;
508 }
509
pthread_attr_setscope(pthread_attr_t * attr,int scope)510 int pthread_attr_setscope(pthread_attr_t *attr, int scope)
511 {
512 if (scope == PTHREAD_SCOPE_SYSTEM)
513 return 0;
514 if (scope == PTHREAD_SCOPE_PROCESS)
515 return ENOTSUP;
516
517 return EINVAL;
518 }
519
pthread_attr_getscope(pthread_attr_t const * attr)520 int pthread_attr_getscope(pthread_attr_t const *attr)
521 {
522 return PTHREAD_SCOPE_SYSTEM;
523 }
524
525
526 /* CAVEAT: our implementation of pthread_cleanup_push/pop doesn't support C++ exceptions
527 * and thread cancelation
528 */
529
__pthread_cleanup_push(__pthread_cleanup_t * c,__pthread_cleanup_func_t routine,void * arg)530 void __pthread_cleanup_push( __pthread_cleanup_t* c,
531 __pthread_cleanup_func_t routine,
532 void* arg )
533 {
534 pthread_internal_t* thread = __get_thread();
535
536 c->__cleanup_routine = routine;
537 c->__cleanup_arg = arg;
538 c->__cleanup_prev = thread->cleanup_stack;
539 thread->cleanup_stack = c;
540 }
541
__pthread_cleanup_pop(__pthread_cleanup_t * c,int execute)542 void __pthread_cleanup_pop( __pthread_cleanup_t* c, int execute )
543 {
544 pthread_internal_t* thread = __get_thread();
545
546 thread->cleanup_stack = c->__cleanup_prev;
547 if (execute)
548 c->__cleanup_routine(c->__cleanup_arg);
549 }
550
551 /* used by pthread_exit() to clean all TLS keys of the current thread */
552 static void pthread_key_clean_all(void);
553
pthread_exit(void * retval)554 void pthread_exit(void * retval)
555 {
556 pthread_internal_t* thread = __get_thread();
557 void* stack_base = thread->attr.stack_base;
558 int stack_size = thread->attr.stack_size;
559 int user_stack = (thread->attr.flags & PTHREAD_ATTR_FLAG_USER_STACK) != 0;
560
561 // call the cleanup handlers first
562 while (thread->cleanup_stack) {
563 __pthread_cleanup_t* c = thread->cleanup_stack;
564 thread->cleanup_stack = c->__cleanup_prev;
565 c->__cleanup_routine(c->__cleanup_arg);
566 }
567
568 // call the TLS destructors, it is important to do that before removing this
569 // thread from the global list. this will ensure that if someone else deletes
570 // a TLS key, the corresponding value will be set to NULL in this thread's TLS
571 // space (see pthread_key_delete)
572 pthread_key_clean_all();
573
574 // if the thread is detached, destroy the pthread_internal_t
575 // otherwise, keep it in memory and signal any joiners
576 if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
577 _pthread_internal_remove(thread);
578 _pthread_internal_free(thread);
579 } else {
580 /* the join_count field is used to store the number of threads waiting for
581 * the termination of this thread with pthread_join(),
582 *
583 * if it is positive we need to signal the waiters, and we do not touch
584 * the count (it will be decremented by the waiters, the last one will
585 * also remove/free the thread structure
586 *
587 * if it is zero, we set the count value to -1 to indicate that the
588 * thread is in 'zombie' state: it has stopped executing, and its stack
589 * is gone (as well as its TLS area). when another thread calls pthread_join()
590 * on it, it will immediately free the thread and return.
591 */
592 pthread_mutex_lock(&gThreadListLock);
593 thread->return_value = retval;
594 if (thread->join_count > 0) {
595 pthread_cond_broadcast(&thread->join_cond);
596 } else {
597 thread->join_count = -1; /* zombie thread */
598 }
599 pthread_mutex_unlock(&gThreadListLock);
600 }
601
602 // destroy the thread stack
603 if (user_stack)
604 _exit_thread((int)retval);
605 else
606 _exit_with_stack_teardown(stack_base, stack_size, (int)retval);
607 }
608
pthread_join(pthread_t thid,void ** ret_val)609 int pthread_join(pthread_t thid, void ** ret_val)
610 {
611 pthread_internal_t* thread = (pthread_internal_t*)thid;
612 int count;
613
614 // check that the thread still exists and is not detached
615 pthread_mutex_lock(&gThreadListLock);
616
617 for (thread = gThreadList; thread != NULL; thread = thread->next)
618 if (thread == (pthread_internal_t*)thid)
619 goto FoundIt;
620
621 pthread_mutex_unlock(&gThreadListLock);
622 return ESRCH;
623
624 FoundIt:
625 if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
626 pthread_mutex_unlock(&gThreadListLock);
627 return EINVAL;
628 }
629
630 /* wait for thread death when needed
631 *
632 * if the 'join_count' is negative, this is a 'zombie' thread that
633 * is already dead and without stack/TLS
634 *
635 * otherwise, we need to increment 'join-count' and wait to be signaled
636 */
637 count = thread->join_count;
638 if (count >= 0) {
639 thread->join_count += 1;
640 pthread_cond_wait( &thread->join_cond, &gThreadListLock );
641 count = --thread->join_count;
642 }
643 if (ret_val)
644 *ret_val = thread->return_value;
645
646 /* remove thread descriptor when we're the last joiner or when the
647 * thread was already a zombie.
648 */
649 if (count <= 0) {
650 _pthread_internal_remove_locked(thread);
651 _pthread_internal_free(thread);
652 }
653 pthread_mutex_unlock(&gThreadListLock);
654 return 0;
655 }
656
pthread_detach(pthread_t thid)657 int pthread_detach( pthread_t thid )
658 {
659 pthread_internal_t* thread;
660 int result = 0;
661 int flags;
662
663 pthread_mutex_lock(&gThreadListLock);
664 for (thread = gThreadList; thread != NULL; thread = thread->next)
665 if (thread == (pthread_internal_t*)thid)
666 goto FoundIt;
667
668 result = ESRCH;
669 goto Exit;
670
671 FoundIt:
672 do {
673 flags = thread->attr.flags;
674
675 if ( flags & PTHREAD_ATTR_FLAG_DETACHED ) {
676 /* thread is not joinable ! */
677 result = EINVAL;
678 goto Exit;
679 }
680 }
681 while ( __atomic_cmpxchg( flags, flags | PTHREAD_ATTR_FLAG_DETACHED,
682 (volatile int*)&thread->attr.flags ) != 0 );
683 Exit:
684 pthread_mutex_unlock(&gThreadListLock);
685 return result;
686 }
687
pthread_self(void)688 pthread_t pthread_self(void)
689 {
690 return (pthread_t)__get_thread();
691 }
692
pthread_equal(pthread_t one,pthread_t two)693 int pthread_equal(pthread_t one, pthread_t two)
694 {
695 return (one == two ? 1 : 0);
696 }
697
pthread_getschedparam(pthread_t thid,int * policy,struct sched_param * param)698 int pthread_getschedparam(pthread_t thid, int * policy,
699 struct sched_param * param)
700 {
701 int old_errno = errno;
702
703 pthread_internal_t * thread = (pthread_internal_t *)thid;
704 int err = sched_getparam(thread->kernel_id, param);
705 if (!err) {
706 *policy = sched_getscheduler(thread->kernel_id);
707 } else {
708 err = errno;
709 errno = old_errno;
710 }
711 return err;
712 }
713
pthread_setschedparam(pthread_t thid,int policy,struct sched_param const * param)714 int pthread_setschedparam(pthread_t thid, int policy,
715 struct sched_param const * param)
716 {
717 pthread_internal_t * thread = (pthread_internal_t *)thid;
718 int old_errno = errno;
719 int ret;
720
721 ret = sched_setscheduler(thread->kernel_id, policy, param);
722 if (ret < 0) {
723 ret = errno;
724 errno = old_errno;
725 }
726 return ret;
727 }
728
729
730 // mutex lock states
731 //
732 // 0: unlocked
733 // 1: locked, no waiters
734 // 2: locked, maybe waiters
735
736 /* a mutex is implemented as a 32-bit integer holding the following fields
737 *
738 * bits: name description
739 * 31-16 tid owner thread's kernel id (recursive and errorcheck only)
740 * 15-14 type mutex type
741 * 13 shared process-shared flag
742 * 12-2 counter counter of recursive mutexes
743 * 1-0 state lock state (0, 1 or 2)
744 */
745
746
747 #define MUTEX_OWNER(m) (((m)->value >> 16) & 0xffff)
748 #define MUTEX_COUNTER(m) (((m)->value >> 2) & 0xfff)
749
750 #define MUTEX_TYPE_MASK 0xc000
751 #define MUTEX_TYPE_NORMAL 0x0000
752 #define MUTEX_TYPE_RECURSIVE 0x4000
753 #define MUTEX_TYPE_ERRORCHECK 0x8000
754
755 #define MUTEX_COUNTER_SHIFT 2
756 #define MUTEX_COUNTER_MASK 0x1ffc
757 #define MUTEX_SHARED_MASK 0x2000
758
759 /* a mutex attribute holds the following fields
760 *
761 * bits: name description
762 * 0-3 type type of mutex
763 * 4 shared process-shared flag
764 */
765 #define MUTEXATTR_TYPE_MASK 0x000f
766 #define MUTEXATTR_SHARED_MASK 0x0010
767
768
pthread_mutexattr_init(pthread_mutexattr_t * attr)769 int pthread_mutexattr_init(pthread_mutexattr_t *attr)
770 {
771 if (attr) {
772 *attr = PTHREAD_MUTEX_DEFAULT;
773 return 0;
774 } else {
775 return EINVAL;
776 }
777 }
778
pthread_mutexattr_destroy(pthread_mutexattr_t * attr)779 int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
780 {
781 if (attr) {
782 *attr = -1;
783 return 0;
784 } else {
785 return EINVAL;
786 }
787 }
788
pthread_mutexattr_gettype(const pthread_mutexattr_t * attr,int * type)789 int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type)
790 {
791 if (attr) {
792 int atype = (*attr & MUTEXATTR_TYPE_MASK);
793
794 if (atype >= PTHREAD_MUTEX_NORMAL &&
795 atype <= PTHREAD_MUTEX_ERRORCHECK) {
796 *type = atype;
797 return 0;
798 }
799 }
800 return EINVAL;
801 }
802
pthread_mutexattr_settype(pthread_mutexattr_t * attr,int type)803 int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
804 {
805 if (attr && type >= PTHREAD_MUTEX_NORMAL &&
806 type <= PTHREAD_MUTEX_ERRORCHECK ) {
807 *attr = (*attr & ~MUTEXATTR_TYPE_MASK) | type;
808 return 0;
809 }
810 return EINVAL;
811 }
812
813 /* process-shared mutexes are not supported at the moment */
814
pthread_mutexattr_setpshared(pthread_mutexattr_t * attr,int pshared)815 int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
816 {
817 if (!attr)
818 return EINVAL;
819
820 switch (pshared) {
821 case PTHREAD_PROCESS_PRIVATE:
822 *attr &= ~MUTEXATTR_SHARED_MASK;
823 return 0;
824
825 case PTHREAD_PROCESS_SHARED:
826 /* our current implementation of pthread actually supports shared
827 * mutexes but won't cleanup if a process dies with the mutex held.
828 * Nevertheless, it's better than nothing. Shared mutexes are used
829 * by surfaceflinger and audioflinger.
830 */
831 *attr |= MUTEXATTR_SHARED_MASK;
832 return 0;
833 }
834 return EINVAL;
835 }
836
pthread_mutexattr_getpshared(pthread_mutexattr_t * attr,int * pshared)837 int pthread_mutexattr_getpshared(pthread_mutexattr_t *attr, int *pshared)
838 {
839 if (!attr || !pshared)
840 return EINVAL;
841
842 *pshared = (*attr & MUTEXATTR_SHARED_MASK) ? PTHREAD_PROCESS_SHARED
843 : PTHREAD_PROCESS_PRIVATE;
844 return 0;
845 }
846
pthread_mutex_init(pthread_mutex_t * mutex,const pthread_mutexattr_t * attr)847 int pthread_mutex_init(pthread_mutex_t *mutex,
848 const pthread_mutexattr_t *attr)
849 {
850 int value = 0;
851
852 if (mutex == NULL)
853 return EINVAL;
854
855 if (__likely(attr == NULL)) {
856 mutex->value = MUTEX_TYPE_NORMAL;
857 return 0;
858 }
859
860 if ((*attr & MUTEXATTR_SHARED_MASK) != 0)
861 value |= MUTEX_SHARED_MASK;
862
863 switch (*attr & MUTEXATTR_TYPE_MASK) {
864 case PTHREAD_MUTEX_NORMAL:
865 value |= MUTEX_TYPE_NORMAL;
866 break;
867 case PTHREAD_MUTEX_RECURSIVE:
868 value |= MUTEX_TYPE_RECURSIVE;
869 break;
870 case PTHREAD_MUTEX_ERRORCHECK:
871 value |= MUTEX_TYPE_ERRORCHECK;
872 break;
873 default:
874 return EINVAL;
875 }
876
877 mutex->value = value;
878 return 0;
879 }
880
pthread_mutex_destroy(pthread_mutex_t * mutex)881 int pthread_mutex_destroy(pthread_mutex_t *mutex)
882 {
883 int ret;
884
885 /* use trylock to ensure that the mutex value is
886 * valid and is not already locked. */
887 ret = pthread_mutex_trylock(mutex);
888 if (ret != 0)
889 return ret;
890
891 mutex->value = 0xdead10cc;
892 return 0;
893 }
894
895
896 /*
897 * Lock a non-recursive mutex.
898 *
899 * As noted above, there are three states:
900 * 0 (unlocked, no contention)
901 * 1 (locked, no contention)
902 * 2 (locked, contention)
903 *
904 * Non-recursive mutexes don't use the thread-id or counter fields, and the
905 * "type" value is zero, so the only bits that will be set are the ones in
906 * the lock state field.
907 */
908 static __inline__ void
_normal_lock(pthread_mutex_t * mutex)909 _normal_lock(pthread_mutex_t* mutex)
910 {
911 /* We need to preserve the shared flag during operations */
912 int shared = mutex->value & MUTEX_SHARED_MASK;
913 /*
914 * The common case is an unlocked mutex, so we begin by trying to
915 * change the lock's state from 0 to 1. __atomic_cmpxchg() returns 0
916 * if it made the swap successfully. If the result is nonzero, this
917 * lock is already held by another thread.
918 */
919 if (__atomic_cmpxchg(shared|0, shared|1, &mutex->value ) != 0) {
920 /*
921 * We want to go to sleep until the mutex is available, which
922 * requires promoting it to state 2. We need to swap in the new
923 * state value and then wait until somebody wakes us up.
924 *
925 * __atomic_swap() returns the previous value. We swap 2 in and
926 * see if we got zero back; if so, we have acquired the lock. If
927 * not, another thread still holds the lock and we wait again.
928 *
929 * The second argument to the __futex_wait() call is compared
930 * against the current value. If it doesn't match, __futex_wait()
931 * returns immediately (otherwise, it sleeps for a time specified
932 * by the third argument; 0 means sleep forever). This ensures
933 * that the mutex is in state 2 when we go to sleep on it, which
934 * guarantees a wake-up call.
935 */
936 while (__atomic_swap(shared|2, &mutex->value ) != (shared|0))
937 __futex_wait_ex(&mutex->value, shared, shared|2, 0);
938 }
939 ANDROID_MEMBAR_FULL();
940 }
941
942 /*
943 * Release a non-recursive mutex. The caller is responsible for determining
944 * that we are in fact the owner of this lock.
945 */
946 static __inline__ void
_normal_unlock(pthread_mutex_t * mutex)947 _normal_unlock(pthread_mutex_t* mutex)
948 {
949 ANDROID_MEMBAR_FULL();
950
951 /* We need to preserve the shared flag during operations */
952 int shared = mutex->value & MUTEX_SHARED_MASK;
953
954 /*
955 * The mutex state will be 1 or (rarely) 2. We use an atomic decrement
956 * to release the lock. __atomic_dec() returns the previous value;
957 * if it wasn't 1 we have to do some additional work.
958 */
959 if (__atomic_dec(&mutex->value) != (shared|1)) {
960 /*
961 * Start by releasing the lock. The decrement changed it from
962 * "contended lock" to "uncontended lock", which means we still
963 * hold it, and anybody who tries to sneak in will push it back
964 * to state 2.
965 *
966 * Once we set it to zero the lock is up for grabs. We follow
967 * this with a __futex_wake() to ensure that one of the waiting
968 * threads has a chance to grab it.
969 *
970 * This doesn't cause a race with the swap/wait pair in
971 * _normal_lock(), because the __futex_wait() call there will
972 * return immediately if the mutex value isn't 2.
973 */
974 mutex->value = shared;
975
976 /*
977 * Wake up one waiting thread. We don't know which thread will be
978 * woken or when it'll start executing -- futexes make no guarantees
979 * here. There may not even be a thread waiting.
980 *
981 * The newly-woken thread will replace the 0 we just set above
982 * with 2, which means that when it eventually releases the mutex
983 * it will also call FUTEX_WAKE. This results in one extra wake
984 * call whenever a lock is contended, but lets us avoid forgetting
985 * anyone without requiring us to track the number of sleepers.
986 *
987 * It's possible for another thread to sneak in and grab the lock
988 * between the zero assignment above and the wake call below. If
989 * the new thread is "slow" and holds the lock for a while, we'll
990 * wake up a sleeper, which will swap in a 2 and then go back to
991 * sleep since the lock is still held. If the new thread is "fast",
992 * running to completion before we call wake, the thread we
993 * eventually wake will find an unlocked mutex and will execute.
994 * Either way we have correct behavior and nobody is orphaned on
995 * the wait queue.
996 */
997 __futex_wake_ex(&mutex->value, shared, 1);
998 }
999 }
1000
1001 static pthread_mutex_t __recursive_lock = PTHREAD_MUTEX_INITIALIZER;
1002
1003 static void
_recursive_lock(void)1004 _recursive_lock(void)
1005 {
1006 _normal_lock(&__recursive_lock);
1007 }
1008
1009 static void
_recursive_unlock(void)1010 _recursive_unlock(void)
1011 {
1012 _normal_unlock(&__recursive_lock );
1013 }
1014
pthread_mutex_lock(pthread_mutex_t * mutex)1015 int pthread_mutex_lock(pthread_mutex_t *mutex)
1016 {
1017 int mtype, tid, new_lock_type, shared;
1018
1019 if (__unlikely(mutex == NULL))
1020 return EINVAL;
1021
1022 mtype = (mutex->value & MUTEX_TYPE_MASK);
1023 shared = (mutex->value & MUTEX_SHARED_MASK);
1024
1025 /* Handle normal case first */
1026 if ( __likely(mtype == MUTEX_TYPE_NORMAL) ) {
1027 _normal_lock(mutex);
1028 return 0;
1029 }
1030
1031 /* Do we already own this recursive or error-check mutex ? */
1032 tid = __get_thread()->kernel_id;
1033 if ( tid == MUTEX_OWNER(mutex) )
1034 {
1035 int oldv, counter;
1036
1037 if (mtype == MUTEX_TYPE_ERRORCHECK) {
1038 /* trying to re-lock a mutex we already acquired */
1039 return EDEADLK;
1040 }
1041 /*
1042 * We own the mutex, but other threads are able to change
1043 * the contents (e.g. promoting it to "contended"), so we
1044 * need to hold the global lock.
1045 */
1046 _recursive_lock();
1047 oldv = mutex->value;
1048 counter = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK;
1049 mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter;
1050 _recursive_unlock();
1051 return 0;
1052 }
1053
1054 /* We don't own the mutex, so try to get it.
1055 *
1056 * First, we try to change its state from 0 to 1, if this
1057 * doesn't work, try to change it to state 2.
1058 */
1059 new_lock_type = 1;
1060
1061 /* compute futex wait opcode and restore shared flag in mtype */
1062 mtype |= shared;
1063
1064 for (;;) {
1065 int oldv;
1066
1067 _recursive_lock();
1068 oldv = mutex->value;
1069 if (oldv == mtype) { /* uncontended released lock => 1 or 2 */
1070 mutex->value = ((tid << 16) | mtype | new_lock_type);
1071 } else if ((oldv & 3) == 1) { /* locked state 1 => state 2 */
1072 oldv ^= 3;
1073 mutex->value = oldv;
1074 }
1075 _recursive_unlock();
1076
1077 if (oldv == mtype)
1078 break;
1079
1080 /*
1081 * The lock was held, possibly contended by others. From
1082 * now on, if we manage to acquire the lock, we have to
1083 * assume that others are still contending for it so that
1084 * we'll wake them when we unlock it.
1085 */
1086 new_lock_type = 2;
1087
1088 __futex_wait_ex(&mutex->value, shared, oldv, NULL);
1089 }
1090 return 0;
1091 }
1092
1093
pthread_mutex_unlock(pthread_mutex_t * mutex)1094 int pthread_mutex_unlock(pthread_mutex_t *mutex)
1095 {
1096 int mtype, tid, oldv, shared;
1097
1098 if (__unlikely(mutex == NULL))
1099 return EINVAL;
1100
1101 mtype = (mutex->value & MUTEX_TYPE_MASK);
1102 shared = (mutex->value & MUTEX_SHARED_MASK);
1103
1104 /* Handle common case first */
1105 if (__likely(mtype == MUTEX_TYPE_NORMAL)) {
1106 _normal_unlock(mutex);
1107 return 0;
1108 }
1109
1110 /* Do we already own this recursive or error-check mutex ? */
1111 tid = __get_thread()->kernel_id;
1112 if ( tid != MUTEX_OWNER(mutex) )
1113 return EPERM;
1114
1115 /* We do, decrement counter or release the mutex if it is 0 */
1116 _recursive_lock();
1117 oldv = mutex->value;
1118 if (oldv & MUTEX_COUNTER_MASK) {
1119 mutex->value = oldv - (1 << MUTEX_COUNTER_SHIFT);
1120 oldv = 0;
1121 } else {
1122 mutex->value = shared | mtype;
1123 }
1124 _recursive_unlock();
1125
1126 /* Wake one waiting thread, if any */
1127 if ((oldv & 3) == 2) {
1128 __futex_wake_ex(&mutex->value, shared, 1);
1129 }
1130 return 0;
1131 }
1132
1133
pthread_mutex_trylock(pthread_mutex_t * mutex)1134 int pthread_mutex_trylock(pthread_mutex_t *mutex)
1135 {
1136 int mtype, tid, oldv, shared;
1137
1138 if (__unlikely(mutex == NULL))
1139 return EINVAL;
1140
1141 mtype = (mutex->value & MUTEX_TYPE_MASK);
1142 shared = (mutex->value & MUTEX_SHARED_MASK);
1143
1144 /* Handle common case first */
1145 if ( __likely(mtype == MUTEX_TYPE_NORMAL) )
1146 {
1147 if (__atomic_cmpxchg(shared|0, shared|1, &mutex->value) == 0) {
1148 ANDROID_MEMBAR_FULL();
1149 return 0;
1150 }
1151
1152 return EBUSY;
1153 }
1154
1155 /* Do we already own this recursive or error-check mutex ? */
1156 tid = __get_thread()->kernel_id;
1157 if ( tid == MUTEX_OWNER(mutex) )
1158 {
1159 int counter;
1160
1161 if (mtype == MUTEX_TYPE_ERRORCHECK) {
1162 /* already locked by ourselves */
1163 return EDEADLK;
1164 }
1165
1166 _recursive_lock();
1167 oldv = mutex->value;
1168 counter = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK;
1169 mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter;
1170 _recursive_unlock();
1171 return 0;
1172 }
1173
1174 /* Restore sharing bit in mtype */
1175 mtype |= shared;
1176
1177 /* Try to lock it, just once. */
1178 _recursive_lock();
1179 oldv = mutex->value;
1180 if (oldv == mtype) /* uncontended released lock => state 1 */
1181 mutex->value = ((tid << 16) | mtype | 1);
1182 _recursive_unlock();
1183
1184 if (oldv != mtype)
1185 return EBUSY;
1186
1187 return 0;
1188 }
1189
1190
1191 /* initialize 'ts' with the difference between 'abstime' and the current time
1192 * according to 'clock'. Returns -1 if abstime already expired, or 0 otherwise.
1193 */
1194 static int
__timespec_to_absolute(struct timespec * ts,const struct timespec * abstime,clockid_t clock)1195 __timespec_to_absolute(struct timespec* ts, const struct timespec* abstime, clockid_t clock)
1196 {
1197 clock_gettime(clock, ts);
1198 ts->tv_sec = abstime->tv_sec - ts->tv_sec;
1199 ts->tv_nsec = abstime->tv_nsec - ts->tv_nsec;
1200 if (ts->tv_nsec < 0) {
1201 ts->tv_sec--;
1202 ts->tv_nsec += 1000000000;
1203 }
1204 if ((ts->tv_nsec < 0) || (ts->tv_sec < 0))
1205 return -1;
1206
1207 return 0;
1208 }
1209
1210 /* initialize 'abstime' to the current time according to 'clock' plus 'msecs'
1211 * milliseconds.
1212 */
1213 static void
__timespec_to_relative_msec(struct timespec * abstime,unsigned msecs,clockid_t clock)1214 __timespec_to_relative_msec(struct timespec* abstime, unsigned msecs, clockid_t clock)
1215 {
1216 clock_gettime(clock, abstime);
1217 abstime->tv_sec += msecs/1000;
1218 abstime->tv_nsec += (msecs%1000)*1000000;
1219 if (abstime->tv_nsec >= 1000000000) {
1220 abstime->tv_sec++;
1221 abstime->tv_nsec -= 1000000000;
1222 }
1223 }
1224
pthread_mutex_lock_timeout_np(pthread_mutex_t * mutex,unsigned msecs)1225 int pthread_mutex_lock_timeout_np(pthread_mutex_t *mutex, unsigned msecs)
1226 {
1227 clockid_t clock = CLOCK_MONOTONIC;
1228 struct timespec abstime;
1229 struct timespec ts;
1230 int mtype, tid, oldv, new_lock_type, shared;
1231
1232 /* compute absolute expiration time */
1233 __timespec_to_relative_msec(&abstime, msecs, clock);
1234
1235 if (__unlikely(mutex == NULL))
1236 return EINVAL;
1237
1238 mtype = (mutex->value & MUTEX_TYPE_MASK);
1239 shared = (mutex->value & MUTEX_SHARED_MASK);
1240
1241 /* Handle common case first */
1242 if ( __likely(mtype == MUTEX_TYPE_NORMAL) )
1243 {
1244 /* fast path for uncontended lock */
1245 if (__atomic_cmpxchg(shared|0, shared|1, &mutex->value) == 0) {
1246 ANDROID_MEMBAR_FULL();
1247 return 0;
1248 }
1249
1250 /* loop while needed */
1251 while (__atomic_swap(shared|2, &mutex->value) != (shared|0)) {
1252 if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
1253 return EBUSY;
1254
1255 __futex_wait_ex(&mutex->value, shared, shared|2, &ts);
1256 }
1257 ANDROID_MEMBAR_FULL();
1258 return 0;
1259 }
1260
1261 /* Do we already own this recursive or error-check mutex ? */
1262 tid = __get_thread()->kernel_id;
1263 if ( tid == MUTEX_OWNER(mutex) )
1264 {
1265 int oldv, counter;
1266
1267 if (mtype == MUTEX_TYPE_ERRORCHECK) {
1268 /* already locked by ourselves */
1269 return EDEADLK;
1270 }
1271
1272 _recursive_lock();
1273 oldv = mutex->value;
1274 counter = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK;
1275 mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter;
1276 _recursive_unlock();
1277 return 0;
1278 }
1279
1280 /* We don't own the mutex, so try to get it.
1281 *
1282 * First, we try to change its state from 0 to 1, if this
1283 * doesn't work, try to change it to state 2.
1284 */
1285 new_lock_type = 1;
1286
1287 /* Compute wait op and restore sharing bit in mtype */
1288 mtype |= shared;
1289
1290 for (;;) {
1291 int oldv;
1292 struct timespec ts;
1293
1294 _recursive_lock();
1295 oldv = mutex->value;
1296 if (oldv == mtype) { /* uncontended released lock => 1 or 2 */
1297 mutex->value = ((tid << 16) | mtype | new_lock_type);
1298 } else if ((oldv & 3) == 1) { /* locked state 1 => state 2 */
1299 oldv ^= 3;
1300 mutex->value = oldv;
1301 }
1302 _recursive_unlock();
1303
1304 if (oldv == mtype)
1305 break;
1306
1307 /*
1308 * The lock was held, possibly contended by others. From
1309 * now on, if we manage to acquire the lock, we have to
1310 * assume that others are still contending for it so that
1311 * we'll wake them when we unlock it.
1312 */
1313 new_lock_type = 2;
1314
1315 if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
1316 return EBUSY;
1317
1318 __futex_wait_ex(&mutex->value, shared, oldv, &ts);
1319 }
1320 return 0;
1321 }
1322
pthread_condattr_init(pthread_condattr_t * attr)1323 int pthread_condattr_init(pthread_condattr_t *attr)
1324 {
1325 if (attr == NULL)
1326 return EINVAL;
1327
1328 *attr = PTHREAD_PROCESS_PRIVATE;
1329 return 0;
1330 }
1331
pthread_condattr_getpshared(pthread_condattr_t * attr,int * pshared)1332 int pthread_condattr_getpshared(pthread_condattr_t *attr, int *pshared)
1333 {
1334 if (attr == NULL || pshared == NULL)
1335 return EINVAL;
1336
1337 *pshared = *attr;
1338 return 0;
1339 }
1340
pthread_condattr_setpshared(pthread_condattr_t * attr,int pshared)1341 int pthread_condattr_setpshared(pthread_condattr_t *attr, int pshared)
1342 {
1343 if (attr == NULL)
1344 return EINVAL;
1345
1346 if (pshared != PTHREAD_PROCESS_SHARED &&
1347 pshared != PTHREAD_PROCESS_PRIVATE)
1348 return EINVAL;
1349
1350 *attr = pshared;
1351 return 0;
1352 }
1353
pthread_condattr_destroy(pthread_condattr_t * attr)1354 int pthread_condattr_destroy(pthread_condattr_t *attr)
1355 {
1356 if (attr == NULL)
1357 return EINVAL;
1358
1359 *attr = 0xdeada11d;
1360 return 0;
1361 }
1362
1363 /* We use one bit in condition variable values as the 'shared' flag
1364 * The rest is a counter.
1365 */
1366 #define COND_SHARED_MASK 0x0001
1367 #define COND_COUNTER_INCREMENT 0x0002
1368 #define COND_COUNTER_MASK (~COND_SHARED_MASK)
1369
1370 #define COND_IS_SHARED(c) (((c)->value & COND_SHARED_MASK) != 0)
1371
1372 /* XXX *technically* there is a race condition that could allow
1373 * XXX a signal to be missed. If thread A is preempted in _wait()
1374 * XXX after unlocking the mutex and before waiting, and if other
1375 * XXX threads call signal or broadcast UINT_MAX/2 times (exactly),
1376 * XXX before thread A is scheduled again and calls futex_wait(),
1377 * XXX then the signal will be lost.
1378 */
1379
pthread_cond_init(pthread_cond_t * cond,const pthread_condattr_t * attr)1380 int pthread_cond_init(pthread_cond_t *cond,
1381 const pthread_condattr_t *attr)
1382 {
1383 if (cond == NULL)
1384 return EINVAL;
1385
1386 cond->value = 0;
1387
1388 if (attr != NULL && *attr == PTHREAD_PROCESS_SHARED)
1389 cond->value |= COND_SHARED_MASK;
1390
1391 return 0;
1392 }
1393
pthread_cond_destroy(pthread_cond_t * cond)1394 int pthread_cond_destroy(pthread_cond_t *cond)
1395 {
1396 if (cond == NULL)
1397 return EINVAL;
1398
1399 cond->value = 0xdeadc04d;
1400 return 0;
1401 }
1402
1403 /* This function is used by pthread_cond_broadcast and
1404 * pthread_cond_signal to atomically decrement the counter
1405 * then wake-up 'counter' threads.
1406 */
1407 static int
__pthread_cond_pulse(pthread_cond_t * cond,int counter)1408 __pthread_cond_pulse(pthread_cond_t *cond, int counter)
1409 {
1410 long flags;
1411
1412 if (__unlikely(cond == NULL))
1413 return EINVAL;
1414
1415 flags = (cond->value & ~COND_COUNTER_MASK);
1416 for (;;) {
1417 long oldval = cond->value;
1418 long newval = ((oldval - COND_COUNTER_INCREMENT) & COND_COUNTER_MASK)
1419 | flags;
1420 if (__atomic_cmpxchg(oldval, newval, &cond->value) == 0)
1421 break;
1422 }
1423
1424 __futex_wake_ex(&cond->value, COND_IS_SHARED(cond), counter);
1425 return 0;
1426 }
1427
pthread_cond_broadcast(pthread_cond_t * cond)1428 int pthread_cond_broadcast(pthread_cond_t *cond)
1429 {
1430 return __pthread_cond_pulse(cond, INT_MAX);
1431 }
1432
pthread_cond_signal(pthread_cond_t * cond)1433 int pthread_cond_signal(pthread_cond_t *cond)
1434 {
1435 return __pthread_cond_pulse(cond, 1);
1436 }
1437
pthread_cond_wait(pthread_cond_t * cond,pthread_mutex_t * mutex)1438 int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
1439 {
1440 return pthread_cond_timedwait(cond, mutex, NULL);
1441 }
1442
__pthread_cond_timedwait_relative(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * reltime)1443 int __pthread_cond_timedwait_relative(pthread_cond_t *cond,
1444 pthread_mutex_t * mutex,
1445 const struct timespec *reltime)
1446 {
1447 int status;
1448 int oldvalue = cond->value;
1449
1450 pthread_mutex_unlock(mutex);
1451 status = __futex_wait_ex(&cond->value, COND_IS_SHARED(cond), oldvalue, reltime);
1452 pthread_mutex_lock(mutex);
1453
1454 if (status == (-ETIMEDOUT)) return ETIMEDOUT;
1455 return 0;
1456 }
1457
__pthread_cond_timedwait(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * abstime,clockid_t clock)1458 int __pthread_cond_timedwait(pthread_cond_t *cond,
1459 pthread_mutex_t * mutex,
1460 const struct timespec *abstime,
1461 clockid_t clock)
1462 {
1463 struct timespec ts;
1464 struct timespec * tsp;
1465
1466 if (abstime != NULL) {
1467 if (__timespec_to_absolute(&ts, abstime, clock) < 0)
1468 return ETIMEDOUT;
1469 tsp = &ts;
1470 } else {
1471 tsp = NULL;
1472 }
1473
1474 return __pthread_cond_timedwait_relative(cond, mutex, tsp);
1475 }
1476
pthread_cond_timedwait(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * abstime)1477 int pthread_cond_timedwait(pthread_cond_t *cond,
1478 pthread_mutex_t * mutex,
1479 const struct timespec *abstime)
1480 {
1481 return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_REALTIME);
1482 }
1483
1484
1485 /* this one exists only for backward binary compatibility */
pthread_cond_timedwait_monotonic(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * abstime)1486 int pthread_cond_timedwait_monotonic(pthread_cond_t *cond,
1487 pthread_mutex_t * mutex,
1488 const struct timespec *abstime)
1489 {
1490 return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
1491 }
1492
pthread_cond_timedwait_monotonic_np(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * abstime)1493 int pthread_cond_timedwait_monotonic_np(pthread_cond_t *cond,
1494 pthread_mutex_t * mutex,
1495 const struct timespec *abstime)
1496 {
1497 return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
1498 }
1499
pthread_cond_timedwait_relative_np(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * reltime)1500 int pthread_cond_timedwait_relative_np(pthread_cond_t *cond,
1501 pthread_mutex_t * mutex,
1502 const struct timespec *reltime)
1503 {
1504 return __pthread_cond_timedwait_relative(cond, mutex, reltime);
1505 }
1506
pthread_cond_timeout_np(pthread_cond_t * cond,pthread_mutex_t * mutex,unsigned msecs)1507 int pthread_cond_timeout_np(pthread_cond_t *cond,
1508 pthread_mutex_t * mutex,
1509 unsigned msecs)
1510 {
1511 struct timespec ts;
1512
1513 ts.tv_sec = msecs / 1000;
1514 ts.tv_nsec = (msecs % 1000) * 1000000;
1515
1516 return __pthread_cond_timedwait_relative(cond, mutex, &ts);
1517 }
1518
1519
1520
1521 /* A technical note regarding our thread-local-storage (TLS) implementation:
1522 *
1523 * There can be up to TLSMAP_SIZE independent TLS keys in a given process,
1524 * though the first TLSMAP_START keys are reserved for Bionic to hold
1525 * special thread-specific variables like errno or a pointer to
1526 * the current thread's descriptor.
1527 *
1528 * while stored in the TLS area, these entries cannot be accessed through
1529 * pthread_getspecific() / pthread_setspecific() and pthread_key_delete()
1530 *
1531 * also, some entries in the key table are pre-allocated (see tlsmap_lock)
1532 * to greatly simplify and speedup some OpenGL-related operations. though the
1533 * initialy value will be NULL on all threads.
1534 *
1535 * you can use pthread_getspecific()/setspecific() on these, and in theory
1536 * you could also call pthread_key_delete() as well, though this would
1537 * probably break some apps.
1538 *
1539 * The 'tlsmap_t' type defined below implements a shared global map of
1540 * currently created/allocated TLS keys and the destructors associated
1541 * with them. You should use tlsmap_lock/unlock to access it to avoid
1542 * any race condition.
1543 *
1544 * the global TLS map simply contains a bitmap of allocated keys, and
1545 * an array of destructors.
1546 *
1547 * each thread has a TLS area that is a simple array of TLSMAP_SIZE void*
1548 * pointers. the TLS area of the main thread is stack-allocated in
1549 * __libc_init_common, while the TLS area of other threads is placed at
1550 * the top of their stack in pthread_create.
1551 *
1552 * when pthread_key_create() is called, it finds the first free key in the
1553 * bitmap, then set it to 1, saving the destructor altogether
1554 *
1555 * when pthread_key_delete() is called. it will erase the key's bitmap bit
1556 * and its destructor, and will also clear the key data in the TLS area of
1557 * all created threads. As mandated by Posix, it is the responsability of
1558 * the caller of pthread_key_delete() to properly reclaim the objects that
1559 * were pointed to by these data fields (either before or after the call).
1560 *
1561 */
1562
1563 /* TLS Map implementation
1564 */
1565
1566 #define TLSMAP_START (TLS_SLOT_MAX_WELL_KNOWN+1)
1567 #define TLSMAP_SIZE BIONIC_TLS_SLOTS
1568 #define TLSMAP_BITS 32
1569 #define TLSMAP_WORDS ((TLSMAP_SIZE+TLSMAP_BITS-1)/TLSMAP_BITS)
1570 #define TLSMAP_WORD(m,k) (m)->map[(k)/TLSMAP_BITS]
1571 #define TLSMAP_MASK(k) (1U << ((k)&(TLSMAP_BITS-1)))
1572
1573 /* this macro is used to quickly check that a key belongs to a reasonable range */
1574 #define TLSMAP_VALIDATE_KEY(key) \
1575 ((key) >= TLSMAP_START && (key) < TLSMAP_SIZE)
1576
1577 /* the type of tls key destructor functions */
1578 typedef void (*tls_dtor_t)(void*);
1579
1580 typedef struct {
1581 int init; /* see comment in tlsmap_lock() */
1582 uint32_t map[TLSMAP_WORDS]; /* bitmap of allocated keys */
1583 tls_dtor_t dtors[TLSMAP_SIZE]; /* key destructors */
1584 } tlsmap_t;
1585
1586 static pthread_mutex_t _tlsmap_lock = PTHREAD_MUTEX_INITIALIZER;
1587 static tlsmap_t _tlsmap;
1588
1589 /* lock the global TLS map lock and return a handle to it */
tlsmap_lock(void)1590 static __inline__ tlsmap_t* tlsmap_lock(void)
1591 {
1592 tlsmap_t* m = &_tlsmap;
1593
1594 pthread_mutex_lock(&_tlsmap_lock);
1595 /* we need to initialize the first entry of the 'map' array
1596 * with the value TLS_DEFAULT_ALLOC_MAP. doing it statically
1597 * when declaring _tlsmap is a bit awkward and is going to
1598 * produce warnings, so do it the first time we use the map
1599 * instead
1600 */
1601 if (__unlikely(!m->init)) {
1602 TLSMAP_WORD(m,0) = TLS_DEFAULT_ALLOC_MAP;
1603 m->init = 1;
1604 }
1605 return m;
1606 }
1607
1608 /* unlock the global TLS map */
tlsmap_unlock(tlsmap_t * m)1609 static __inline__ void tlsmap_unlock(tlsmap_t* m)
1610 {
1611 pthread_mutex_unlock(&_tlsmap_lock);
1612 (void)m; /* a good compiler is a happy compiler */
1613 }
1614
1615 /* test to see wether a key is allocated */
tlsmap_test(tlsmap_t * m,int key)1616 static __inline__ int tlsmap_test(tlsmap_t* m, int key)
1617 {
1618 return (TLSMAP_WORD(m,key) & TLSMAP_MASK(key)) != 0;
1619 }
1620
1621 /* set the destructor and bit flag on a newly allocated key */
tlsmap_set(tlsmap_t * m,int key,tls_dtor_t dtor)1622 static __inline__ void tlsmap_set(tlsmap_t* m, int key, tls_dtor_t dtor)
1623 {
1624 TLSMAP_WORD(m,key) |= TLSMAP_MASK(key);
1625 m->dtors[key] = dtor;
1626 }
1627
1628 /* clear the destructor and bit flag on an existing key */
tlsmap_clear(tlsmap_t * m,int key)1629 static __inline__ void tlsmap_clear(tlsmap_t* m, int key)
1630 {
1631 TLSMAP_WORD(m,key) &= ~TLSMAP_MASK(key);
1632 m->dtors[key] = NULL;
1633 }
1634
1635 /* allocate a new TLS key, return -1 if no room left */
tlsmap_alloc(tlsmap_t * m,tls_dtor_t dtor)1636 static int tlsmap_alloc(tlsmap_t* m, tls_dtor_t dtor)
1637 {
1638 int key;
1639
1640 for ( key = TLSMAP_START; key < TLSMAP_SIZE; key++ ) {
1641 if ( !tlsmap_test(m, key) ) {
1642 tlsmap_set(m, key, dtor);
1643 return key;
1644 }
1645 }
1646 return -1;
1647 }
1648
1649
pthread_key_create(pthread_key_t * key,void (* destructor_function)(void *))1650 int pthread_key_create(pthread_key_t *key, void (*destructor_function)(void *))
1651 {
1652 uint32_t err = ENOMEM;
1653 tlsmap_t* map = tlsmap_lock();
1654 int k = tlsmap_alloc(map, destructor_function);
1655
1656 if (k >= 0) {
1657 *key = k;
1658 err = 0;
1659 }
1660 tlsmap_unlock(map);
1661 return err;
1662 }
1663
1664
1665 /* This deletes a pthread_key_t. note that the standard mandates that this does
1666 * not call the destructor of non-NULL key values. Instead, it is the
1667 * responsability of the caller to properly dispose of the corresponding data
1668 * and resources, using any mean it finds suitable.
1669 *
1670 * On the other hand, this function will clear the corresponding key data
1671 * values in all known threads. this prevents later (invalid) calls to
1672 * pthread_getspecific() to receive invalid/stale values.
1673 */
pthread_key_delete(pthread_key_t key)1674 int pthread_key_delete(pthread_key_t key)
1675 {
1676 uint32_t err;
1677 pthread_internal_t* thr;
1678 tlsmap_t* map;
1679
1680 if (!TLSMAP_VALIDATE_KEY(key)) {
1681 return EINVAL;
1682 }
1683
1684 map = tlsmap_lock();
1685
1686 if (!tlsmap_test(map, key)) {
1687 err = EINVAL;
1688 goto err1;
1689 }
1690
1691 /* clear value in all threads */
1692 pthread_mutex_lock(&gThreadListLock);
1693 for ( thr = gThreadList; thr != NULL; thr = thr->next ) {
1694 /* avoid zombie threads with a negative 'join_count'. these are really
1695 * already dead and don't have a TLS area anymore.
1696 *
1697 * similarly, it is possible to have thr->tls == NULL for threads that
1698 * were just recently created through pthread_create() but whose
1699 * startup trampoline (__thread_entry) hasn't been run yet by the
1700 * scheduler. so check for this too.
1701 */
1702 if (thr->join_count < 0 || !thr->tls)
1703 continue;
1704
1705 thr->tls[key] = NULL;
1706 }
1707 tlsmap_clear(map, key);
1708
1709 pthread_mutex_unlock(&gThreadListLock);
1710 err = 0;
1711
1712 err1:
1713 tlsmap_unlock(map);
1714 return err;
1715 }
1716
1717
pthread_setspecific(pthread_key_t key,const void * ptr)1718 int pthread_setspecific(pthread_key_t key, const void *ptr)
1719 {
1720 int err = EINVAL;
1721 tlsmap_t* map;
1722
1723 if (TLSMAP_VALIDATE_KEY(key)) {
1724 /* check that we're trying to set data for an allocated key */
1725 map = tlsmap_lock();
1726 if (tlsmap_test(map, key)) {
1727 ((uint32_t *)__get_tls())[key] = (uint32_t)ptr;
1728 err = 0;
1729 }
1730 tlsmap_unlock(map);
1731 }
1732 return err;
1733 }
1734
pthread_getspecific(pthread_key_t key)1735 void * pthread_getspecific(pthread_key_t key)
1736 {
1737 if (!TLSMAP_VALIDATE_KEY(key)) {
1738 return NULL;
1739 }
1740
1741 /* for performance reason, we do not lock/unlock the global TLS map
1742 * to check that the key is properly allocated. if the key was not
1743 * allocated, the value read from the TLS should always be NULL
1744 * due to pthread_key_delete() clearing the values for all threads.
1745 */
1746 return (void *)(((unsigned *)__get_tls())[key]);
1747 }
1748
1749 /* Posix mandates that this be defined in <limits.h> but we don't have
1750 * it just yet.
1751 */
1752 #ifndef PTHREAD_DESTRUCTOR_ITERATIONS
1753 # define PTHREAD_DESTRUCTOR_ITERATIONS 4
1754 #endif
1755
1756 /* this function is called from pthread_exit() to remove all TLS key data
1757 * from this thread's TLS area. this must call the destructor of all keys
1758 * that have a non-NULL data value (and a non-NULL destructor).
1759 *
1760 * because destructors can do funky things like deleting/creating other
1761 * keys, we need to implement this in a loop
1762 */
pthread_key_clean_all(void)1763 static void pthread_key_clean_all(void)
1764 {
1765 tlsmap_t* map;
1766 void** tls = (void**)__get_tls();
1767 int rounds = PTHREAD_DESTRUCTOR_ITERATIONS;
1768
1769 map = tlsmap_lock();
1770
1771 for (rounds = PTHREAD_DESTRUCTOR_ITERATIONS; rounds > 0; rounds--)
1772 {
1773 int kk, count = 0;
1774
1775 for (kk = TLSMAP_START; kk < TLSMAP_SIZE; kk++) {
1776 if ( tlsmap_test(map, kk) )
1777 {
1778 void* data = tls[kk];
1779 tls_dtor_t dtor = map->dtors[kk];
1780
1781 if (data != NULL && dtor != NULL)
1782 {
1783 /* we need to clear the key data now, this will prevent the
1784 * destructor (or a later one) from seeing the old value if
1785 * it calls pthread_getspecific() for some odd reason
1786 *
1787 * we do not do this if 'dtor == NULL' just in case another
1788 * destructor function might be responsible for manually
1789 * releasing the corresponding data.
1790 */
1791 tls[kk] = NULL;
1792
1793 /* because the destructor is free to call pthread_key_create
1794 * and/or pthread_key_delete, we need to temporarily unlock
1795 * the TLS map
1796 */
1797 tlsmap_unlock(map);
1798 (*dtor)(data);
1799 map = tlsmap_lock();
1800
1801 count += 1;
1802 }
1803 }
1804 }
1805
1806 /* if we didn't call any destructor, there is no need to check the
1807 * TLS data again
1808 */
1809 if (count == 0)
1810 break;
1811 }
1812 tlsmap_unlock(map);
1813 }
1814
1815 // man says this should be in <linux/unistd.h>, but it isn't
1816 extern int tkill(int tid, int sig);
1817
pthread_kill(pthread_t tid,int sig)1818 int pthread_kill(pthread_t tid, int sig)
1819 {
1820 int ret;
1821 int old_errno = errno;
1822 pthread_internal_t * thread = (pthread_internal_t *)tid;
1823
1824 ret = tkill(thread->kernel_id, sig);
1825 if (ret < 0) {
1826 ret = errno;
1827 errno = old_errno;
1828 }
1829
1830 return ret;
1831 }
1832
1833 extern int __rt_sigprocmask(int, const sigset_t *, sigset_t *, size_t);
1834
pthread_sigmask(int how,const sigset_t * set,sigset_t * oset)1835 int pthread_sigmask(int how, const sigset_t *set, sigset_t *oset)
1836 {
1837 /* pthread_sigmask must return the error code, but the syscall
1838 * will set errno instead and return 0/-1
1839 */
1840 int ret, old_errno = errno;
1841
1842 ret = __rt_sigprocmask(how, set, oset, _NSIG / 8);
1843 if (ret < 0)
1844 ret = errno;
1845
1846 errno = old_errno;
1847 return ret;
1848 }
1849
1850
pthread_getcpuclockid(pthread_t tid,clockid_t * clockid)1851 int pthread_getcpuclockid(pthread_t tid, clockid_t *clockid)
1852 {
1853 const int CLOCK_IDTYPE_BITS = 3;
1854 pthread_internal_t* thread = (pthread_internal_t*)tid;
1855
1856 if (!thread)
1857 return ESRCH;
1858
1859 *clockid = CLOCK_THREAD_CPUTIME_ID | (thread->kernel_id << CLOCK_IDTYPE_BITS);
1860 return 0;
1861 }
1862
1863
1864 /* NOTE: this implementation doesn't support a init function that throws a C++ exception
1865 * or calls fork()
1866 */
pthread_once(pthread_once_t * once_control,void (* init_routine)(void))1867 int pthread_once( pthread_once_t* once_control, void (*init_routine)(void) )
1868 {
1869 static pthread_mutex_t once_lock = PTHREAD_RECURSIVE_MUTEX_INITIALIZER;
1870
1871 if (*once_control == PTHREAD_ONCE_INIT) {
1872 pthread_mutex_lock( &once_lock );
1873 if (*once_control == PTHREAD_ONCE_INIT) {
1874 (*init_routine)();
1875 *once_control = ~PTHREAD_ONCE_INIT;
1876 }
1877 pthread_mutex_unlock( &once_lock );
1878 }
1879 return 0;
1880 }
1881
1882 /* This value is not exported by kernel headers, so hardcode it here */
1883 #define MAX_TASK_COMM_LEN 16
1884 #define TASK_COMM_FMT "/proc/self/task/%u/comm"
1885
pthread_setname_np(pthread_t thid,const char * thname)1886 int pthread_setname_np(pthread_t thid, const char *thname)
1887 {
1888 size_t thname_len;
1889 int saved_errno, ret;
1890
1891 if (thid == 0 || thname == NULL)
1892 return EINVAL;
1893
1894 thname_len = strlen(thname);
1895 if (thname_len >= MAX_TASK_COMM_LEN)
1896 return ERANGE;
1897
1898 saved_errno = errno;
1899 if (thid == pthread_self())
1900 {
1901 ret = prctl(PR_SET_NAME, (unsigned long)thname, 0, 0, 0) ? errno : 0;
1902 }
1903 else
1904 {
1905 /* Have to change another thread's name */
1906 pthread_internal_t *thread = (pthread_internal_t *)thid;
1907 char comm_name[sizeof(TASK_COMM_FMT) + 8];
1908 ssize_t n;
1909 int fd;
1910
1911 snprintf(comm_name, sizeof(comm_name), TASK_COMM_FMT, (unsigned int)thread->kernel_id);
1912 fd = open(comm_name, O_RDWR);
1913 if (fd == -1)
1914 {
1915 ret = errno;
1916 goto exit;
1917 }
1918 n = TEMP_FAILURE_RETRY(write(fd, thname, thname_len));
1919 close(fd);
1920
1921 if (n < 0)
1922 ret = errno;
1923 else if ((size_t)n != thname_len)
1924 ret = EIO;
1925 else
1926 ret = 0;
1927 }
1928 exit:
1929 errno = saved_errno;
1930 return ret;
1931 }
1932