• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include <zlib.h>
26 
27 #include "qemu-common.h"
28 #include "block_int.h"
29 #include "block/qcow2.h"
30 
qcow2_grow_l1_table(BlockDriverState * bs,int min_size)31 int qcow2_grow_l1_table(BlockDriverState *bs, int min_size)
32 {
33     BDRVQcowState *s = bs->opaque;
34     int new_l1_size, new_l1_size2, ret, i;
35     uint64_t *new_l1_table;
36     uint64_t new_l1_table_offset;
37     uint8_t data[12];
38 
39     new_l1_size = s->l1_size;
40     if (min_size <= new_l1_size)
41         return 0;
42     while (min_size > new_l1_size) {
43         new_l1_size = (new_l1_size * 3 + 1) / 2;
44     }
45 #ifdef DEBUG_ALLOC2
46     printf("grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
47 #endif
48 
49     new_l1_size2 = sizeof(uint64_t) * new_l1_size;
50     new_l1_table = qemu_mallocz(new_l1_size2);
51     memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
52 
53     /* write new table (align to cluster) */
54     new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
55 
56     for(i = 0; i < s->l1_size; i++)
57         new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
58     ret = bdrv_pwrite(s->hd, new_l1_table_offset, new_l1_table, new_l1_size2);
59     if (ret != new_l1_size2)
60         goto fail;
61     for(i = 0; i < s->l1_size; i++)
62         new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
63 
64     /* set new table */
65     cpu_to_be32w((uint32_t*)data, new_l1_size);
66     cpu_to_be64w((uint64_t*)(data + 4), new_l1_table_offset);
67     if (bdrv_pwrite(s->hd, offsetof(QCowHeader, l1_size), data,
68                 sizeof(data)) != sizeof(data))
69         goto fail;
70     qemu_free(s->l1_table);
71     qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
72     s->l1_table_offset = new_l1_table_offset;
73     s->l1_table = new_l1_table;
74     s->l1_size = new_l1_size;
75     return 0;
76  fail:
77     qemu_free(s->l1_table);
78     return -EIO;
79 }
80 
qcow2_l2_cache_reset(BlockDriverState * bs)81 void qcow2_l2_cache_reset(BlockDriverState *bs)
82 {
83     BDRVQcowState *s = bs->opaque;
84 
85     memset(s->l2_cache, 0, s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
86     memset(s->l2_cache_offsets, 0, L2_CACHE_SIZE * sizeof(uint64_t));
87     memset(s->l2_cache_counts, 0, L2_CACHE_SIZE * sizeof(uint32_t));
88 }
89 
l2_cache_new_entry(BlockDriverState * bs)90 static inline int l2_cache_new_entry(BlockDriverState *bs)
91 {
92     BDRVQcowState *s = bs->opaque;
93     uint32_t min_count;
94     int min_index, i;
95 
96     /* find a new entry in the least used one */
97     min_index = 0;
98     min_count = 0xffffffff;
99     for(i = 0; i < L2_CACHE_SIZE; i++) {
100         if (s->l2_cache_counts[i] < min_count) {
101             min_count = s->l2_cache_counts[i];
102             min_index = i;
103         }
104     }
105     return min_index;
106 }
107 
108 /*
109  * seek_l2_table
110  *
111  * seek l2_offset in the l2_cache table
112  * if not found, return NULL,
113  * if found,
114  *   increments the l2 cache hit count of the entry,
115  *   if counter overflow, divide by two all counters
116  *   return the pointer to the l2 cache entry
117  *
118  */
119 
seek_l2_table(BDRVQcowState * s,uint64_t l2_offset)120 static uint64_t *seek_l2_table(BDRVQcowState *s, uint64_t l2_offset)
121 {
122     int i, j;
123 
124     for(i = 0; i < L2_CACHE_SIZE; i++) {
125         if (l2_offset == s->l2_cache_offsets[i]) {
126             /* increment the hit count */
127             if (++s->l2_cache_counts[i] == 0xffffffff) {
128                 for(j = 0; j < L2_CACHE_SIZE; j++) {
129                     s->l2_cache_counts[j] >>= 1;
130                 }
131             }
132             return s->l2_cache + (i << s->l2_bits);
133         }
134     }
135     return NULL;
136 }
137 
138 /*
139  * l2_load
140  *
141  * Loads a L2 table into memory. If the table is in the cache, the cache
142  * is used; otherwise the L2 table is loaded from the image file.
143  *
144  * Returns a pointer to the L2 table on success, or NULL if the read from
145  * the image file failed.
146  */
147 
l2_load(BlockDriverState * bs,uint64_t l2_offset)148 static uint64_t *l2_load(BlockDriverState *bs, uint64_t l2_offset)
149 {
150     BDRVQcowState *s = bs->opaque;
151     int min_index;
152     uint64_t *l2_table;
153 
154     /* seek if the table for the given offset is in the cache */
155 
156     l2_table = seek_l2_table(s, l2_offset);
157     if (l2_table != NULL)
158         return l2_table;
159 
160     /* not found: load a new entry in the least used one */
161 
162     min_index = l2_cache_new_entry(bs);
163     l2_table = s->l2_cache + (min_index << s->l2_bits);
164     if (bdrv_pread(s->hd, l2_offset, l2_table, s->l2_size * sizeof(uint64_t)) !=
165         s->l2_size * sizeof(uint64_t))
166         return NULL;
167     s->l2_cache_offsets[min_index] = l2_offset;
168     s->l2_cache_counts[min_index] = 1;
169 
170     return l2_table;
171 }
172 
173 /*
174  * Writes one sector of the L1 table to the disk (can't update single entries
175  * and we really don't want bdrv_pread to perform a read-modify-write)
176  */
177 #define L1_ENTRIES_PER_SECTOR (512 / 8)
write_l1_entry(BDRVQcowState * s,int l1_index)178 static int write_l1_entry(BDRVQcowState *s, int l1_index)
179 {
180     uint64_t buf[L1_ENTRIES_PER_SECTOR];
181     int l1_start_index;
182     int i;
183 
184     l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
185     for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
186         buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
187     }
188 
189     if (bdrv_pwrite(s->hd, s->l1_table_offset + 8 * l1_start_index,
190         buf, sizeof(buf)) != sizeof(buf))
191     {
192         return -1;
193     }
194 
195     return 0;
196 }
197 
198 /*
199  * l2_allocate
200  *
201  * Allocate a new l2 entry in the file. If l1_index points to an already
202  * used entry in the L2 table (i.e. we are doing a copy on write for the L2
203  * table) copy the contents of the old L2 table into the newly allocated one.
204  * Otherwise the new table is initialized with zeros.
205  *
206  */
207 
l2_allocate(BlockDriverState * bs,int l1_index)208 static uint64_t *l2_allocate(BlockDriverState *bs, int l1_index)
209 {
210     BDRVQcowState *s = bs->opaque;
211     int min_index;
212     uint64_t old_l2_offset;
213     uint64_t *l2_table, l2_offset;
214 
215     old_l2_offset = s->l1_table[l1_index];
216 
217     /* allocate a new l2 entry */
218 
219     l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
220 
221     /* update the L1 entry */
222 
223     s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
224     if (write_l1_entry(s, l1_index) < 0) {
225         return NULL;
226     }
227 
228     /* allocate a new entry in the l2 cache */
229 
230     min_index = l2_cache_new_entry(bs);
231     l2_table = s->l2_cache + (min_index << s->l2_bits);
232 
233     if (old_l2_offset == 0) {
234         /* if there was no old l2 table, clear the new table */
235         memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
236     } else {
237         /* if there was an old l2 table, read it from the disk */
238         if (bdrv_pread(s->hd, old_l2_offset,
239                        l2_table, s->l2_size * sizeof(uint64_t)) !=
240             s->l2_size * sizeof(uint64_t))
241             return NULL;
242     }
243     /* write the l2 table to the file */
244     if (bdrv_pwrite(s->hd, l2_offset,
245                     l2_table, s->l2_size * sizeof(uint64_t)) !=
246         s->l2_size * sizeof(uint64_t))
247         return NULL;
248 
249     /* update the l2 cache entry */
250 
251     s->l2_cache_offsets[min_index] = l2_offset;
252     s->l2_cache_counts[min_index] = 1;
253 
254     return l2_table;
255 }
256 
count_contiguous_clusters(uint64_t nb_clusters,int cluster_size,uint64_t * l2_table,uint64_t start,uint64_t mask)257 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
258         uint64_t *l2_table, uint64_t start, uint64_t mask)
259 {
260     int i;
261     uint64_t offset = be64_to_cpu(l2_table[0]) & ~mask;
262 
263     if (!offset)
264         return 0;
265 
266     for (i = start; i < start + nb_clusters; i++)
267         if (offset + i * cluster_size != (be64_to_cpu(l2_table[i]) & ~mask))
268             break;
269 
270 	return (i - start);
271 }
272 
count_contiguous_free_clusters(uint64_t nb_clusters,uint64_t * l2_table)273 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
274 {
275     int i = 0;
276 
277     while(nb_clusters-- && l2_table[i] == 0)
278         i++;
279 
280     return i;
281 }
282 
283 /* The crypt function is compatible with the linux cryptoloop
284    algorithm for < 4 GB images. NOTE: out_buf == in_buf is
285    supported */
qcow2_encrypt_sectors(BDRVQcowState * s,int64_t sector_num,uint8_t * out_buf,const uint8_t * in_buf,int nb_sectors,int enc,const AES_KEY * key)286 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
287                            uint8_t *out_buf, const uint8_t *in_buf,
288                            int nb_sectors, int enc,
289                            const AES_KEY *key)
290 {
291     union {
292         uint64_t ll[2];
293         uint8_t b[16];
294     } ivec;
295     int i;
296 
297     for(i = 0; i < nb_sectors; i++) {
298         ivec.ll[0] = cpu_to_le64(sector_num);
299         ivec.ll[1] = 0;
300         AES_cbc_encrypt(in_buf, out_buf, 512, key,
301                         ivec.b, enc);
302         sector_num++;
303         in_buf += 512;
304         out_buf += 512;
305     }
306 }
307 
308 
qcow_read(BlockDriverState * bs,int64_t sector_num,uint8_t * buf,int nb_sectors)309 static int qcow_read(BlockDriverState *bs, int64_t sector_num,
310                      uint8_t *buf, int nb_sectors)
311 {
312     BDRVQcowState *s = bs->opaque;
313     int ret, index_in_cluster, n, n1;
314     uint64_t cluster_offset;
315 
316     while (nb_sectors > 0) {
317         n = nb_sectors;
318         cluster_offset = qcow2_get_cluster_offset(bs, sector_num << 9, &n);
319         index_in_cluster = sector_num & (s->cluster_sectors - 1);
320         if (!cluster_offset) {
321             if (bs->backing_hd) {
322                 /* read from the base image */
323                 n1 = qcow2_backing_read1(bs->backing_hd, sector_num, buf, n);
324                 if (n1 > 0) {
325                     ret = bdrv_read(bs->backing_hd, sector_num, buf, n1);
326                     if (ret < 0)
327                         return -1;
328                 }
329             } else {
330                 memset(buf, 0, 512 * n);
331             }
332         } else if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
333             if (qcow2_decompress_cluster(s, cluster_offset) < 0)
334                 return -1;
335             memcpy(buf, s->cluster_cache + index_in_cluster * 512, 512 * n);
336         } else {
337             ret = bdrv_pread(s->hd, cluster_offset + index_in_cluster * 512, buf, n * 512);
338             if (ret != n * 512)
339                 return -1;
340             if (s->crypt_method) {
341                 qcow2_encrypt_sectors(s, sector_num, buf, buf, n, 0,
342                                 &s->aes_decrypt_key);
343             }
344         }
345         nb_sectors -= n;
346         sector_num += n;
347         buf += n * 512;
348     }
349     return 0;
350 }
351 
copy_sectors(BlockDriverState * bs,uint64_t start_sect,uint64_t cluster_offset,int n_start,int n_end)352 static int copy_sectors(BlockDriverState *bs, uint64_t start_sect,
353                         uint64_t cluster_offset, int n_start, int n_end)
354 {
355     BDRVQcowState *s = bs->opaque;
356     int n, ret;
357 
358     n = n_end - n_start;
359     if (n <= 0)
360         return 0;
361     ret = qcow_read(bs, start_sect + n_start, s->cluster_data, n);
362     if (ret < 0)
363         return ret;
364     if (s->crypt_method) {
365         qcow2_encrypt_sectors(s, start_sect + n_start,
366                         s->cluster_data,
367                         s->cluster_data, n, 1,
368                         &s->aes_encrypt_key);
369     }
370     ret = bdrv_write(s->hd, (cluster_offset >> 9) + n_start,
371                      s->cluster_data, n);
372     if (ret < 0)
373         return ret;
374     return 0;
375 }
376 
377 
378 /*
379  * get_cluster_offset
380  *
381  * For a given offset of the disk image, return cluster offset in
382  * qcow2 file.
383  *
384  * on entry, *num is the number of contiguous clusters we'd like to
385  * access following offset.
386  *
387  * on exit, *num is the number of contiguous clusters we can read.
388  *
389  * Return 1, if the offset is found
390  * Return 0, otherwise.
391  *
392  */
393 
qcow2_get_cluster_offset(BlockDriverState * bs,uint64_t offset,int * num)394 uint64_t qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
395     int *num)
396 {
397     BDRVQcowState *s = bs->opaque;
398     int l1_index, l2_index;
399     uint64_t l2_offset, *l2_table, cluster_offset;
400     int l1_bits, c;
401     int index_in_cluster, nb_available, nb_needed, nb_clusters;
402 
403     index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
404     nb_needed = *num + index_in_cluster;
405 
406     l1_bits = s->l2_bits + s->cluster_bits;
407 
408     /* compute how many bytes there are between the offset and
409      * the end of the l1 entry
410      */
411 
412     nb_available = (1 << l1_bits) - (offset & ((1 << l1_bits) - 1));
413 
414     /* compute the number of available sectors */
415 
416     nb_available = (nb_available >> 9) + index_in_cluster;
417 
418     if (nb_needed > nb_available) {
419         nb_needed = nb_available;
420     }
421 
422     cluster_offset = 0;
423 
424     /* seek the the l2 offset in the l1 table */
425 
426     l1_index = offset >> l1_bits;
427     if (l1_index >= s->l1_size)
428         goto out;
429 
430     l2_offset = s->l1_table[l1_index];
431 
432     /* seek the l2 table of the given l2 offset */
433 
434     if (!l2_offset)
435         goto out;
436 
437     /* load the l2 table in memory */
438 
439     l2_offset &= ~QCOW_OFLAG_COPIED;
440     l2_table = l2_load(bs, l2_offset);
441     if (l2_table == NULL)
442         return 0;
443 
444     /* find the cluster offset for the given disk offset */
445 
446     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
447     cluster_offset = be64_to_cpu(l2_table[l2_index]);
448     nb_clusters = size_to_clusters(s, nb_needed << 9);
449 
450     if (!cluster_offset) {
451         /* how many empty clusters ? */
452         c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
453     } else {
454         /* how many allocated clusters ? */
455         c = count_contiguous_clusters(nb_clusters, s->cluster_size,
456                 &l2_table[l2_index], 0, QCOW_OFLAG_COPIED);
457     }
458 
459    nb_available = (c * s->cluster_sectors);
460 out:
461     if (nb_available > nb_needed)
462         nb_available = nb_needed;
463 
464     *num = nb_available - index_in_cluster;
465 
466     return cluster_offset & ~QCOW_OFLAG_COPIED;
467 }
468 
469 /*
470  * get_cluster_table
471  *
472  * for a given disk offset, load (and allocate if needed)
473  * the l2 table.
474  *
475  * the l2 table offset in the qcow2 file and the cluster index
476  * in the l2 table are given to the caller.
477  *
478  */
479 
get_cluster_table(BlockDriverState * bs,uint64_t offset,uint64_t ** new_l2_table,uint64_t * new_l2_offset,int * new_l2_index)480 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
481                              uint64_t **new_l2_table,
482                              uint64_t *new_l2_offset,
483                              int *new_l2_index)
484 {
485     BDRVQcowState *s = bs->opaque;
486     int l1_index, l2_index, ret;
487     uint64_t l2_offset, *l2_table;
488 
489     /* seek the the l2 offset in the l1 table */
490 
491     l1_index = offset >> (s->l2_bits + s->cluster_bits);
492     if (l1_index >= s->l1_size) {
493         ret = qcow2_grow_l1_table(bs, l1_index + 1);
494         if (ret < 0)
495             return 0;
496     }
497     l2_offset = s->l1_table[l1_index];
498 
499     /* seek the l2 table of the given l2 offset */
500 
501     if (l2_offset & QCOW_OFLAG_COPIED) {
502         /* load the l2 table in memory */
503         l2_offset &= ~QCOW_OFLAG_COPIED;
504         l2_table = l2_load(bs, l2_offset);
505         if (l2_table == NULL)
506             return 0;
507     } else {
508         if (l2_offset)
509             qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
510         l2_table = l2_allocate(bs, l1_index);
511         if (l2_table == NULL)
512             return 0;
513         l2_offset = s->l1_table[l1_index] & ~QCOW_OFLAG_COPIED;
514     }
515 
516     /* find the cluster offset for the given disk offset */
517 
518     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
519 
520     *new_l2_table = l2_table;
521     *new_l2_offset = l2_offset;
522     *new_l2_index = l2_index;
523 
524     return 1;
525 }
526 
527 /*
528  * alloc_compressed_cluster_offset
529  *
530  * For a given offset of the disk image, return cluster offset in
531  * qcow2 file.
532  *
533  * If the offset is not found, allocate a new compressed cluster.
534  *
535  * Return the cluster offset if successful,
536  * Return 0, otherwise.
537  *
538  */
539 
qcow2_alloc_compressed_cluster_offset(BlockDriverState * bs,uint64_t offset,int compressed_size)540 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
541                                                uint64_t offset,
542                                                int compressed_size)
543 {
544     BDRVQcowState *s = bs->opaque;
545     int l2_index, ret;
546     uint64_t l2_offset, *l2_table, cluster_offset;
547     int nb_csectors;
548 
549     ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
550     if (ret == 0)
551         return 0;
552 
553     cluster_offset = be64_to_cpu(l2_table[l2_index]);
554     if (cluster_offset & QCOW_OFLAG_COPIED)
555         return cluster_offset & ~QCOW_OFLAG_COPIED;
556 
557     if (cluster_offset)
558         qcow2_free_any_clusters(bs, cluster_offset, 1);
559 
560     cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
561     nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
562                   (cluster_offset >> 9);
563 
564     cluster_offset |= QCOW_OFLAG_COMPRESSED |
565                       ((uint64_t)nb_csectors << s->csize_shift);
566 
567     /* update L2 table */
568 
569     /* compressed clusters never have the copied flag */
570 
571     l2_table[l2_index] = cpu_to_be64(cluster_offset);
572     if (bdrv_pwrite(s->hd,
573                     l2_offset + l2_index * sizeof(uint64_t),
574                     l2_table + l2_index,
575                     sizeof(uint64_t)) != sizeof(uint64_t))
576         return 0;
577 
578     return cluster_offset;
579 }
580 
581 /*
582  * Write L2 table updates to disk, writing whole sectors to avoid a
583  * read-modify-write in bdrv_pwrite
584  */
585 #define L2_ENTRIES_PER_SECTOR (512 / 8)
write_l2_entries(BDRVQcowState * s,uint64_t * l2_table,uint64_t l2_offset,int l2_index,int num)586 static int write_l2_entries(BDRVQcowState *s, uint64_t *l2_table,
587     uint64_t l2_offset, int l2_index, int num)
588 {
589     int l2_start_index = l2_index & ~(L1_ENTRIES_PER_SECTOR - 1);
590     int start_offset = (8 * l2_index) & ~511;
591     int end_offset = (8 * (l2_index + num) + 511) & ~511;
592     size_t len = end_offset - start_offset;
593 
594     if (bdrv_pwrite(s->hd, l2_offset + start_offset, &l2_table[l2_start_index],
595         len) != len)
596     {
597         return -1;
598     }
599 
600     return 0;
601 }
602 
qcow2_alloc_cluster_link_l2(BlockDriverState * bs,uint64_t cluster_offset,QCowL2Meta * m)603 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, uint64_t cluster_offset,
604     QCowL2Meta *m)
605 {
606     BDRVQcowState *s = bs->opaque;
607     int i, j = 0, l2_index, ret;
608     uint64_t *old_cluster, start_sect, l2_offset, *l2_table;
609 
610     if (m->nb_clusters == 0)
611         return 0;
612 
613     old_cluster = qemu_malloc(m->nb_clusters * sizeof(uint64_t));
614 
615     /* copy content of unmodified sectors */
616     start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
617     if (m->n_start) {
618         ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
619         if (ret < 0)
620             goto err;
621     }
622 
623     if (m->nb_available & (s->cluster_sectors - 1)) {
624         uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
625         ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
626                 m->nb_available - end, s->cluster_sectors);
627         if (ret < 0)
628             goto err;
629     }
630 
631     ret = -EIO;
632     /* update L2 table */
633     if (!get_cluster_table(bs, m->offset, &l2_table, &l2_offset, &l2_index))
634         goto err;
635 
636     for (i = 0; i < m->nb_clusters; i++) {
637         /* if two concurrent writes happen to the same unallocated cluster
638 	 * each write allocates separate cluster and writes data concurrently.
639 	 * The first one to complete updates l2 table with pointer to its
640 	 * cluster the second one has to do RMW (which is done above by
641 	 * copy_sectors()), update l2 table with its cluster pointer and free
642 	 * old cluster. This is what this loop does */
643         if(l2_table[l2_index + i] != 0)
644             old_cluster[j++] = l2_table[l2_index + i];
645 
646         l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
647                     (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
648      }
649 
650     if (write_l2_entries(s, l2_table, l2_offset, l2_index, m->nb_clusters) < 0) {
651         ret = -1;
652         goto err;
653     }
654 
655     for (i = 0; i < j; i++)
656         qcow2_free_any_clusters(bs,
657             be64_to_cpu(old_cluster[i]) & ~QCOW_OFLAG_COPIED, 1);
658 
659     ret = 0;
660 err:
661     qemu_free(old_cluster);
662     return ret;
663  }
664 
665 /*
666  * alloc_cluster_offset
667  *
668  * For a given offset of the disk image, return cluster offset in
669  * qcow2 file.
670  *
671  * If the offset is not found, allocate a new cluster.
672  *
673  * Return the cluster offset if successful,
674  * Return 0, otherwise.
675  *
676  */
677 
qcow2_alloc_cluster_offset(BlockDriverState * bs,uint64_t offset,int n_start,int n_end,int * num,QCowL2Meta * m)678 uint64_t qcow2_alloc_cluster_offset(BlockDriverState *bs,
679                                     uint64_t offset,
680                                     int n_start, int n_end,
681                                     int *num, QCowL2Meta *m)
682 {
683     BDRVQcowState *s = bs->opaque;
684     int l2_index, ret;
685     uint64_t l2_offset, *l2_table, cluster_offset;
686     int nb_clusters, i = 0;
687 
688     ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
689     if (ret == 0)
690         return 0;
691 
692     nb_clusters = size_to_clusters(s, n_end << 9);
693 
694     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
695 
696     cluster_offset = be64_to_cpu(l2_table[l2_index]);
697 
698     /* We keep all QCOW_OFLAG_COPIED clusters */
699 
700     if (cluster_offset & QCOW_OFLAG_COPIED) {
701         nb_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size,
702                 &l2_table[l2_index], 0, 0);
703 
704         cluster_offset &= ~QCOW_OFLAG_COPIED;
705         m->nb_clusters = 0;
706 
707         goto out;
708     }
709 
710     /* for the moment, multiple compressed clusters are not managed */
711 
712     if (cluster_offset & QCOW_OFLAG_COMPRESSED)
713         nb_clusters = 1;
714 
715     /* how many available clusters ? */
716 
717     while (i < nb_clusters) {
718         i += count_contiguous_clusters(nb_clusters - i, s->cluster_size,
719                 &l2_table[l2_index], i, 0);
720 
721         if(be64_to_cpu(l2_table[l2_index + i]))
722             break;
723 
724         i += count_contiguous_free_clusters(nb_clusters - i,
725                 &l2_table[l2_index + i]);
726 
727         cluster_offset = be64_to_cpu(l2_table[l2_index + i]);
728 
729         if ((cluster_offset & QCOW_OFLAG_COPIED) ||
730                 (cluster_offset & QCOW_OFLAG_COMPRESSED))
731             break;
732     }
733     nb_clusters = i;
734 
735     /* allocate a new cluster */
736 
737     cluster_offset = qcow2_alloc_clusters(bs, nb_clusters * s->cluster_size);
738 
739     /* save info needed for meta data update */
740     m->offset = offset;
741     m->n_start = n_start;
742     m->nb_clusters = nb_clusters;
743 
744 out:
745     m->nb_available = MIN(nb_clusters << (s->cluster_bits - 9), n_end);
746 
747     *num = m->nb_available - n_start;
748 
749     return cluster_offset;
750 }
751 
decompress_buffer(uint8_t * out_buf,int out_buf_size,const uint8_t * buf,int buf_size)752 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
753                              const uint8_t *buf, int buf_size)
754 {
755     z_stream strm1, *strm = &strm1;
756     int ret, out_len;
757 
758     memset(strm, 0, sizeof(*strm));
759 
760     strm->next_in = (uint8_t *)buf;
761     strm->avail_in = buf_size;
762     strm->next_out = out_buf;
763     strm->avail_out = out_buf_size;
764 
765     ret = inflateInit2(strm, -12);
766     if (ret != Z_OK)
767         return -1;
768     ret = inflate(strm, Z_FINISH);
769     out_len = strm->next_out - out_buf;
770     if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
771         out_len != out_buf_size) {
772         inflateEnd(strm);
773         return -1;
774     }
775     inflateEnd(strm);
776     return 0;
777 }
778 
qcow2_decompress_cluster(BDRVQcowState * s,uint64_t cluster_offset)779 int qcow2_decompress_cluster(BDRVQcowState *s, uint64_t cluster_offset)
780 {
781     int ret, csize, nb_csectors, sector_offset;
782     uint64_t coffset;
783 
784     coffset = cluster_offset & s->cluster_offset_mask;
785     if (s->cluster_cache_offset != coffset) {
786         nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
787         sector_offset = coffset & 511;
788         csize = nb_csectors * 512 - sector_offset;
789         ret = bdrv_read(s->hd, coffset >> 9, s->cluster_data, nb_csectors);
790         if (ret < 0) {
791             return -1;
792         }
793         if (decompress_buffer(s->cluster_cache, s->cluster_size,
794                               s->cluster_data + sector_offset, csize) < 0) {
795             return -1;
796         }
797         s->cluster_cache_offset = coffset;
798     }
799     return 0;
800 }
801