1 /*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include <zlib.h>
26
27 #include "qemu-common.h"
28 #include "block_int.h"
29 #include "block/qcow2.h"
30
qcow2_grow_l1_table(BlockDriverState * bs,int min_size)31 int qcow2_grow_l1_table(BlockDriverState *bs, int min_size)
32 {
33 BDRVQcowState *s = bs->opaque;
34 int new_l1_size, new_l1_size2, ret, i;
35 uint64_t *new_l1_table;
36 uint64_t new_l1_table_offset;
37 uint8_t data[12];
38
39 new_l1_size = s->l1_size;
40 if (min_size <= new_l1_size)
41 return 0;
42 while (min_size > new_l1_size) {
43 new_l1_size = (new_l1_size * 3 + 1) / 2;
44 }
45 #ifdef DEBUG_ALLOC2
46 printf("grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
47 #endif
48
49 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
50 new_l1_table = qemu_mallocz(new_l1_size2);
51 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
52
53 /* write new table (align to cluster) */
54 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
55
56 for(i = 0; i < s->l1_size; i++)
57 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
58 ret = bdrv_pwrite(s->hd, new_l1_table_offset, new_l1_table, new_l1_size2);
59 if (ret != new_l1_size2)
60 goto fail;
61 for(i = 0; i < s->l1_size; i++)
62 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
63
64 /* set new table */
65 cpu_to_be32w((uint32_t*)data, new_l1_size);
66 cpu_to_be64w((uint64_t*)(data + 4), new_l1_table_offset);
67 if (bdrv_pwrite(s->hd, offsetof(QCowHeader, l1_size), data,
68 sizeof(data)) != sizeof(data))
69 goto fail;
70 qemu_free(s->l1_table);
71 qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
72 s->l1_table_offset = new_l1_table_offset;
73 s->l1_table = new_l1_table;
74 s->l1_size = new_l1_size;
75 return 0;
76 fail:
77 qemu_free(s->l1_table);
78 return -EIO;
79 }
80
qcow2_l2_cache_reset(BlockDriverState * bs)81 void qcow2_l2_cache_reset(BlockDriverState *bs)
82 {
83 BDRVQcowState *s = bs->opaque;
84
85 memset(s->l2_cache, 0, s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
86 memset(s->l2_cache_offsets, 0, L2_CACHE_SIZE * sizeof(uint64_t));
87 memset(s->l2_cache_counts, 0, L2_CACHE_SIZE * sizeof(uint32_t));
88 }
89
l2_cache_new_entry(BlockDriverState * bs)90 static inline int l2_cache_new_entry(BlockDriverState *bs)
91 {
92 BDRVQcowState *s = bs->opaque;
93 uint32_t min_count;
94 int min_index, i;
95
96 /* find a new entry in the least used one */
97 min_index = 0;
98 min_count = 0xffffffff;
99 for(i = 0; i < L2_CACHE_SIZE; i++) {
100 if (s->l2_cache_counts[i] < min_count) {
101 min_count = s->l2_cache_counts[i];
102 min_index = i;
103 }
104 }
105 return min_index;
106 }
107
108 /*
109 * seek_l2_table
110 *
111 * seek l2_offset in the l2_cache table
112 * if not found, return NULL,
113 * if found,
114 * increments the l2 cache hit count of the entry,
115 * if counter overflow, divide by two all counters
116 * return the pointer to the l2 cache entry
117 *
118 */
119
seek_l2_table(BDRVQcowState * s,uint64_t l2_offset)120 static uint64_t *seek_l2_table(BDRVQcowState *s, uint64_t l2_offset)
121 {
122 int i, j;
123
124 for(i = 0; i < L2_CACHE_SIZE; i++) {
125 if (l2_offset == s->l2_cache_offsets[i]) {
126 /* increment the hit count */
127 if (++s->l2_cache_counts[i] == 0xffffffff) {
128 for(j = 0; j < L2_CACHE_SIZE; j++) {
129 s->l2_cache_counts[j] >>= 1;
130 }
131 }
132 return s->l2_cache + (i << s->l2_bits);
133 }
134 }
135 return NULL;
136 }
137
138 /*
139 * l2_load
140 *
141 * Loads a L2 table into memory. If the table is in the cache, the cache
142 * is used; otherwise the L2 table is loaded from the image file.
143 *
144 * Returns a pointer to the L2 table on success, or NULL if the read from
145 * the image file failed.
146 */
147
l2_load(BlockDriverState * bs,uint64_t l2_offset)148 static uint64_t *l2_load(BlockDriverState *bs, uint64_t l2_offset)
149 {
150 BDRVQcowState *s = bs->opaque;
151 int min_index;
152 uint64_t *l2_table;
153
154 /* seek if the table for the given offset is in the cache */
155
156 l2_table = seek_l2_table(s, l2_offset);
157 if (l2_table != NULL)
158 return l2_table;
159
160 /* not found: load a new entry in the least used one */
161
162 min_index = l2_cache_new_entry(bs);
163 l2_table = s->l2_cache + (min_index << s->l2_bits);
164 if (bdrv_pread(s->hd, l2_offset, l2_table, s->l2_size * sizeof(uint64_t)) !=
165 s->l2_size * sizeof(uint64_t))
166 return NULL;
167 s->l2_cache_offsets[min_index] = l2_offset;
168 s->l2_cache_counts[min_index] = 1;
169
170 return l2_table;
171 }
172
173 /*
174 * Writes one sector of the L1 table to the disk (can't update single entries
175 * and we really don't want bdrv_pread to perform a read-modify-write)
176 */
177 #define L1_ENTRIES_PER_SECTOR (512 / 8)
write_l1_entry(BDRVQcowState * s,int l1_index)178 static int write_l1_entry(BDRVQcowState *s, int l1_index)
179 {
180 uint64_t buf[L1_ENTRIES_PER_SECTOR];
181 int l1_start_index;
182 int i;
183
184 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
185 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
186 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
187 }
188
189 if (bdrv_pwrite(s->hd, s->l1_table_offset + 8 * l1_start_index,
190 buf, sizeof(buf)) != sizeof(buf))
191 {
192 return -1;
193 }
194
195 return 0;
196 }
197
198 /*
199 * l2_allocate
200 *
201 * Allocate a new l2 entry in the file. If l1_index points to an already
202 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
203 * table) copy the contents of the old L2 table into the newly allocated one.
204 * Otherwise the new table is initialized with zeros.
205 *
206 */
207
l2_allocate(BlockDriverState * bs,int l1_index)208 static uint64_t *l2_allocate(BlockDriverState *bs, int l1_index)
209 {
210 BDRVQcowState *s = bs->opaque;
211 int min_index;
212 uint64_t old_l2_offset;
213 uint64_t *l2_table, l2_offset;
214
215 old_l2_offset = s->l1_table[l1_index];
216
217 /* allocate a new l2 entry */
218
219 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
220
221 /* update the L1 entry */
222
223 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
224 if (write_l1_entry(s, l1_index) < 0) {
225 return NULL;
226 }
227
228 /* allocate a new entry in the l2 cache */
229
230 min_index = l2_cache_new_entry(bs);
231 l2_table = s->l2_cache + (min_index << s->l2_bits);
232
233 if (old_l2_offset == 0) {
234 /* if there was no old l2 table, clear the new table */
235 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
236 } else {
237 /* if there was an old l2 table, read it from the disk */
238 if (bdrv_pread(s->hd, old_l2_offset,
239 l2_table, s->l2_size * sizeof(uint64_t)) !=
240 s->l2_size * sizeof(uint64_t))
241 return NULL;
242 }
243 /* write the l2 table to the file */
244 if (bdrv_pwrite(s->hd, l2_offset,
245 l2_table, s->l2_size * sizeof(uint64_t)) !=
246 s->l2_size * sizeof(uint64_t))
247 return NULL;
248
249 /* update the l2 cache entry */
250
251 s->l2_cache_offsets[min_index] = l2_offset;
252 s->l2_cache_counts[min_index] = 1;
253
254 return l2_table;
255 }
256
count_contiguous_clusters(uint64_t nb_clusters,int cluster_size,uint64_t * l2_table,uint64_t start,uint64_t mask)257 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
258 uint64_t *l2_table, uint64_t start, uint64_t mask)
259 {
260 int i;
261 uint64_t offset = be64_to_cpu(l2_table[0]) & ~mask;
262
263 if (!offset)
264 return 0;
265
266 for (i = start; i < start + nb_clusters; i++)
267 if (offset + i * cluster_size != (be64_to_cpu(l2_table[i]) & ~mask))
268 break;
269
270 return (i - start);
271 }
272
count_contiguous_free_clusters(uint64_t nb_clusters,uint64_t * l2_table)273 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
274 {
275 int i = 0;
276
277 while(nb_clusters-- && l2_table[i] == 0)
278 i++;
279
280 return i;
281 }
282
283 /* The crypt function is compatible with the linux cryptoloop
284 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
285 supported */
qcow2_encrypt_sectors(BDRVQcowState * s,int64_t sector_num,uint8_t * out_buf,const uint8_t * in_buf,int nb_sectors,int enc,const AES_KEY * key)286 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
287 uint8_t *out_buf, const uint8_t *in_buf,
288 int nb_sectors, int enc,
289 const AES_KEY *key)
290 {
291 union {
292 uint64_t ll[2];
293 uint8_t b[16];
294 } ivec;
295 int i;
296
297 for(i = 0; i < nb_sectors; i++) {
298 ivec.ll[0] = cpu_to_le64(sector_num);
299 ivec.ll[1] = 0;
300 AES_cbc_encrypt(in_buf, out_buf, 512, key,
301 ivec.b, enc);
302 sector_num++;
303 in_buf += 512;
304 out_buf += 512;
305 }
306 }
307
308
qcow_read(BlockDriverState * bs,int64_t sector_num,uint8_t * buf,int nb_sectors)309 static int qcow_read(BlockDriverState *bs, int64_t sector_num,
310 uint8_t *buf, int nb_sectors)
311 {
312 BDRVQcowState *s = bs->opaque;
313 int ret, index_in_cluster, n, n1;
314 uint64_t cluster_offset;
315
316 while (nb_sectors > 0) {
317 n = nb_sectors;
318 cluster_offset = qcow2_get_cluster_offset(bs, sector_num << 9, &n);
319 index_in_cluster = sector_num & (s->cluster_sectors - 1);
320 if (!cluster_offset) {
321 if (bs->backing_hd) {
322 /* read from the base image */
323 n1 = qcow2_backing_read1(bs->backing_hd, sector_num, buf, n);
324 if (n1 > 0) {
325 ret = bdrv_read(bs->backing_hd, sector_num, buf, n1);
326 if (ret < 0)
327 return -1;
328 }
329 } else {
330 memset(buf, 0, 512 * n);
331 }
332 } else if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
333 if (qcow2_decompress_cluster(s, cluster_offset) < 0)
334 return -1;
335 memcpy(buf, s->cluster_cache + index_in_cluster * 512, 512 * n);
336 } else {
337 ret = bdrv_pread(s->hd, cluster_offset + index_in_cluster * 512, buf, n * 512);
338 if (ret != n * 512)
339 return -1;
340 if (s->crypt_method) {
341 qcow2_encrypt_sectors(s, sector_num, buf, buf, n, 0,
342 &s->aes_decrypt_key);
343 }
344 }
345 nb_sectors -= n;
346 sector_num += n;
347 buf += n * 512;
348 }
349 return 0;
350 }
351
copy_sectors(BlockDriverState * bs,uint64_t start_sect,uint64_t cluster_offset,int n_start,int n_end)352 static int copy_sectors(BlockDriverState *bs, uint64_t start_sect,
353 uint64_t cluster_offset, int n_start, int n_end)
354 {
355 BDRVQcowState *s = bs->opaque;
356 int n, ret;
357
358 n = n_end - n_start;
359 if (n <= 0)
360 return 0;
361 ret = qcow_read(bs, start_sect + n_start, s->cluster_data, n);
362 if (ret < 0)
363 return ret;
364 if (s->crypt_method) {
365 qcow2_encrypt_sectors(s, start_sect + n_start,
366 s->cluster_data,
367 s->cluster_data, n, 1,
368 &s->aes_encrypt_key);
369 }
370 ret = bdrv_write(s->hd, (cluster_offset >> 9) + n_start,
371 s->cluster_data, n);
372 if (ret < 0)
373 return ret;
374 return 0;
375 }
376
377
378 /*
379 * get_cluster_offset
380 *
381 * For a given offset of the disk image, return cluster offset in
382 * qcow2 file.
383 *
384 * on entry, *num is the number of contiguous clusters we'd like to
385 * access following offset.
386 *
387 * on exit, *num is the number of contiguous clusters we can read.
388 *
389 * Return 1, if the offset is found
390 * Return 0, otherwise.
391 *
392 */
393
qcow2_get_cluster_offset(BlockDriverState * bs,uint64_t offset,int * num)394 uint64_t qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
395 int *num)
396 {
397 BDRVQcowState *s = bs->opaque;
398 int l1_index, l2_index;
399 uint64_t l2_offset, *l2_table, cluster_offset;
400 int l1_bits, c;
401 int index_in_cluster, nb_available, nb_needed, nb_clusters;
402
403 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
404 nb_needed = *num + index_in_cluster;
405
406 l1_bits = s->l2_bits + s->cluster_bits;
407
408 /* compute how many bytes there are between the offset and
409 * the end of the l1 entry
410 */
411
412 nb_available = (1 << l1_bits) - (offset & ((1 << l1_bits) - 1));
413
414 /* compute the number of available sectors */
415
416 nb_available = (nb_available >> 9) + index_in_cluster;
417
418 if (nb_needed > nb_available) {
419 nb_needed = nb_available;
420 }
421
422 cluster_offset = 0;
423
424 /* seek the the l2 offset in the l1 table */
425
426 l1_index = offset >> l1_bits;
427 if (l1_index >= s->l1_size)
428 goto out;
429
430 l2_offset = s->l1_table[l1_index];
431
432 /* seek the l2 table of the given l2 offset */
433
434 if (!l2_offset)
435 goto out;
436
437 /* load the l2 table in memory */
438
439 l2_offset &= ~QCOW_OFLAG_COPIED;
440 l2_table = l2_load(bs, l2_offset);
441 if (l2_table == NULL)
442 return 0;
443
444 /* find the cluster offset for the given disk offset */
445
446 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
447 cluster_offset = be64_to_cpu(l2_table[l2_index]);
448 nb_clusters = size_to_clusters(s, nb_needed << 9);
449
450 if (!cluster_offset) {
451 /* how many empty clusters ? */
452 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
453 } else {
454 /* how many allocated clusters ? */
455 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
456 &l2_table[l2_index], 0, QCOW_OFLAG_COPIED);
457 }
458
459 nb_available = (c * s->cluster_sectors);
460 out:
461 if (nb_available > nb_needed)
462 nb_available = nb_needed;
463
464 *num = nb_available - index_in_cluster;
465
466 return cluster_offset & ~QCOW_OFLAG_COPIED;
467 }
468
469 /*
470 * get_cluster_table
471 *
472 * for a given disk offset, load (and allocate if needed)
473 * the l2 table.
474 *
475 * the l2 table offset in the qcow2 file and the cluster index
476 * in the l2 table are given to the caller.
477 *
478 */
479
get_cluster_table(BlockDriverState * bs,uint64_t offset,uint64_t ** new_l2_table,uint64_t * new_l2_offset,int * new_l2_index)480 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
481 uint64_t **new_l2_table,
482 uint64_t *new_l2_offset,
483 int *new_l2_index)
484 {
485 BDRVQcowState *s = bs->opaque;
486 int l1_index, l2_index, ret;
487 uint64_t l2_offset, *l2_table;
488
489 /* seek the the l2 offset in the l1 table */
490
491 l1_index = offset >> (s->l2_bits + s->cluster_bits);
492 if (l1_index >= s->l1_size) {
493 ret = qcow2_grow_l1_table(bs, l1_index + 1);
494 if (ret < 0)
495 return 0;
496 }
497 l2_offset = s->l1_table[l1_index];
498
499 /* seek the l2 table of the given l2 offset */
500
501 if (l2_offset & QCOW_OFLAG_COPIED) {
502 /* load the l2 table in memory */
503 l2_offset &= ~QCOW_OFLAG_COPIED;
504 l2_table = l2_load(bs, l2_offset);
505 if (l2_table == NULL)
506 return 0;
507 } else {
508 if (l2_offset)
509 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
510 l2_table = l2_allocate(bs, l1_index);
511 if (l2_table == NULL)
512 return 0;
513 l2_offset = s->l1_table[l1_index] & ~QCOW_OFLAG_COPIED;
514 }
515
516 /* find the cluster offset for the given disk offset */
517
518 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
519
520 *new_l2_table = l2_table;
521 *new_l2_offset = l2_offset;
522 *new_l2_index = l2_index;
523
524 return 1;
525 }
526
527 /*
528 * alloc_compressed_cluster_offset
529 *
530 * For a given offset of the disk image, return cluster offset in
531 * qcow2 file.
532 *
533 * If the offset is not found, allocate a new compressed cluster.
534 *
535 * Return the cluster offset if successful,
536 * Return 0, otherwise.
537 *
538 */
539
qcow2_alloc_compressed_cluster_offset(BlockDriverState * bs,uint64_t offset,int compressed_size)540 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
541 uint64_t offset,
542 int compressed_size)
543 {
544 BDRVQcowState *s = bs->opaque;
545 int l2_index, ret;
546 uint64_t l2_offset, *l2_table, cluster_offset;
547 int nb_csectors;
548
549 ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
550 if (ret == 0)
551 return 0;
552
553 cluster_offset = be64_to_cpu(l2_table[l2_index]);
554 if (cluster_offset & QCOW_OFLAG_COPIED)
555 return cluster_offset & ~QCOW_OFLAG_COPIED;
556
557 if (cluster_offset)
558 qcow2_free_any_clusters(bs, cluster_offset, 1);
559
560 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
561 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
562 (cluster_offset >> 9);
563
564 cluster_offset |= QCOW_OFLAG_COMPRESSED |
565 ((uint64_t)nb_csectors << s->csize_shift);
566
567 /* update L2 table */
568
569 /* compressed clusters never have the copied flag */
570
571 l2_table[l2_index] = cpu_to_be64(cluster_offset);
572 if (bdrv_pwrite(s->hd,
573 l2_offset + l2_index * sizeof(uint64_t),
574 l2_table + l2_index,
575 sizeof(uint64_t)) != sizeof(uint64_t))
576 return 0;
577
578 return cluster_offset;
579 }
580
581 /*
582 * Write L2 table updates to disk, writing whole sectors to avoid a
583 * read-modify-write in bdrv_pwrite
584 */
585 #define L2_ENTRIES_PER_SECTOR (512 / 8)
write_l2_entries(BDRVQcowState * s,uint64_t * l2_table,uint64_t l2_offset,int l2_index,int num)586 static int write_l2_entries(BDRVQcowState *s, uint64_t *l2_table,
587 uint64_t l2_offset, int l2_index, int num)
588 {
589 int l2_start_index = l2_index & ~(L1_ENTRIES_PER_SECTOR - 1);
590 int start_offset = (8 * l2_index) & ~511;
591 int end_offset = (8 * (l2_index + num) + 511) & ~511;
592 size_t len = end_offset - start_offset;
593
594 if (bdrv_pwrite(s->hd, l2_offset + start_offset, &l2_table[l2_start_index],
595 len) != len)
596 {
597 return -1;
598 }
599
600 return 0;
601 }
602
qcow2_alloc_cluster_link_l2(BlockDriverState * bs,uint64_t cluster_offset,QCowL2Meta * m)603 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, uint64_t cluster_offset,
604 QCowL2Meta *m)
605 {
606 BDRVQcowState *s = bs->opaque;
607 int i, j = 0, l2_index, ret;
608 uint64_t *old_cluster, start_sect, l2_offset, *l2_table;
609
610 if (m->nb_clusters == 0)
611 return 0;
612
613 old_cluster = qemu_malloc(m->nb_clusters * sizeof(uint64_t));
614
615 /* copy content of unmodified sectors */
616 start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
617 if (m->n_start) {
618 ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
619 if (ret < 0)
620 goto err;
621 }
622
623 if (m->nb_available & (s->cluster_sectors - 1)) {
624 uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
625 ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
626 m->nb_available - end, s->cluster_sectors);
627 if (ret < 0)
628 goto err;
629 }
630
631 ret = -EIO;
632 /* update L2 table */
633 if (!get_cluster_table(bs, m->offset, &l2_table, &l2_offset, &l2_index))
634 goto err;
635
636 for (i = 0; i < m->nb_clusters; i++) {
637 /* if two concurrent writes happen to the same unallocated cluster
638 * each write allocates separate cluster and writes data concurrently.
639 * The first one to complete updates l2 table with pointer to its
640 * cluster the second one has to do RMW (which is done above by
641 * copy_sectors()), update l2 table with its cluster pointer and free
642 * old cluster. This is what this loop does */
643 if(l2_table[l2_index + i] != 0)
644 old_cluster[j++] = l2_table[l2_index + i];
645
646 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
647 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
648 }
649
650 if (write_l2_entries(s, l2_table, l2_offset, l2_index, m->nb_clusters) < 0) {
651 ret = -1;
652 goto err;
653 }
654
655 for (i = 0; i < j; i++)
656 qcow2_free_any_clusters(bs,
657 be64_to_cpu(old_cluster[i]) & ~QCOW_OFLAG_COPIED, 1);
658
659 ret = 0;
660 err:
661 qemu_free(old_cluster);
662 return ret;
663 }
664
665 /*
666 * alloc_cluster_offset
667 *
668 * For a given offset of the disk image, return cluster offset in
669 * qcow2 file.
670 *
671 * If the offset is not found, allocate a new cluster.
672 *
673 * Return the cluster offset if successful,
674 * Return 0, otherwise.
675 *
676 */
677
qcow2_alloc_cluster_offset(BlockDriverState * bs,uint64_t offset,int n_start,int n_end,int * num,QCowL2Meta * m)678 uint64_t qcow2_alloc_cluster_offset(BlockDriverState *bs,
679 uint64_t offset,
680 int n_start, int n_end,
681 int *num, QCowL2Meta *m)
682 {
683 BDRVQcowState *s = bs->opaque;
684 int l2_index, ret;
685 uint64_t l2_offset, *l2_table, cluster_offset;
686 int nb_clusters, i = 0;
687
688 ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
689 if (ret == 0)
690 return 0;
691
692 nb_clusters = size_to_clusters(s, n_end << 9);
693
694 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
695
696 cluster_offset = be64_to_cpu(l2_table[l2_index]);
697
698 /* We keep all QCOW_OFLAG_COPIED clusters */
699
700 if (cluster_offset & QCOW_OFLAG_COPIED) {
701 nb_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size,
702 &l2_table[l2_index], 0, 0);
703
704 cluster_offset &= ~QCOW_OFLAG_COPIED;
705 m->nb_clusters = 0;
706
707 goto out;
708 }
709
710 /* for the moment, multiple compressed clusters are not managed */
711
712 if (cluster_offset & QCOW_OFLAG_COMPRESSED)
713 nb_clusters = 1;
714
715 /* how many available clusters ? */
716
717 while (i < nb_clusters) {
718 i += count_contiguous_clusters(nb_clusters - i, s->cluster_size,
719 &l2_table[l2_index], i, 0);
720
721 if(be64_to_cpu(l2_table[l2_index + i]))
722 break;
723
724 i += count_contiguous_free_clusters(nb_clusters - i,
725 &l2_table[l2_index + i]);
726
727 cluster_offset = be64_to_cpu(l2_table[l2_index + i]);
728
729 if ((cluster_offset & QCOW_OFLAG_COPIED) ||
730 (cluster_offset & QCOW_OFLAG_COMPRESSED))
731 break;
732 }
733 nb_clusters = i;
734
735 /* allocate a new cluster */
736
737 cluster_offset = qcow2_alloc_clusters(bs, nb_clusters * s->cluster_size);
738
739 /* save info needed for meta data update */
740 m->offset = offset;
741 m->n_start = n_start;
742 m->nb_clusters = nb_clusters;
743
744 out:
745 m->nb_available = MIN(nb_clusters << (s->cluster_bits - 9), n_end);
746
747 *num = m->nb_available - n_start;
748
749 return cluster_offset;
750 }
751
decompress_buffer(uint8_t * out_buf,int out_buf_size,const uint8_t * buf,int buf_size)752 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
753 const uint8_t *buf, int buf_size)
754 {
755 z_stream strm1, *strm = &strm1;
756 int ret, out_len;
757
758 memset(strm, 0, sizeof(*strm));
759
760 strm->next_in = (uint8_t *)buf;
761 strm->avail_in = buf_size;
762 strm->next_out = out_buf;
763 strm->avail_out = out_buf_size;
764
765 ret = inflateInit2(strm, -12);
766 if (ret != Z_OK)
767 return -1;
768 ret = inflate(strm, Z_FINISH);
769 out_len = strm->next_out - out_buf;
770 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
771 out_len != out_buf_size) {
772 inflateEnd(strm);
773 return -1;
774 }
775 inflateEnd(strm);
776 return 0;
777 }
778
qcow2_decompress_cluster(BDRVQcowState * s,uint64_t cluster_offset)779 int qcow2_decompress_cluster(BDRVQcowState *s, uint64_t cluster_offset)
780 {
781 int ret, csize, nb_csectors, sector_offset;
782 uint64_t coffset;
783
784 coffset = cluster_offset & s->cluster_offset_mask;
785 if (s->cluster_cache_offset != coffset) {
786 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
787 sector_offset = coffset & 511;
788 csize = nb_csectors * 512 - sector_offset;
789 ret = bdrv_read(s->hd, coffset >> 9, s->cluster_data, nb_csectors);
790 if (ret < 0) {
791 return -1;
792 }
793 if (decompress_buffer(s->cluster_cache, s->cluster_size,
794 s->cluster_data + sector_offset, csize) < 0) {
795 return -1;
796 }
797 s->cluster_cache_offset = coffset;
798 }
799 return 0;
800 }
801