• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis
2  *
3  * LibTomCrypt is a library that provides various cryptographic
4  * algorithms in a highly modular and flexible manner.
5  *
6  * The library is free for all purposes without any express
7  * guarantee it works.
8  *
9  * Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com
10  */
11 
12 /**
13    @file rc6.c
14    RC6 code by Tom St Denis
15 */
16 #include "tomcrypt.h"
17 
18 #ifdef RC6
19 
20 const struct ltc_cipher_descriptor rc6_desc =
21 {
22     "rc6",
23     3,
24     8, 128, 16, 20,
25     &rc6_setup,
26     &rc6_ecb_encrypt,
27     &rc6_ecb_decrypt,
28     &rc6_test,
29     &rc6_done,
30     &rc6_keysize,
31     NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
32 };
33 
34 static const ulong32 stab[44] = {
35 0xb7e15163UL, 0x5618cb1cUL, 0xf45044d5UL, 0x9287be8eUL, 0x30bf3847UL, 0xcef6b200UL, 0x6d2e2bb9UL, 0x0b65a572UL,
36 0xa99d1f2bUL, 0x47d498e4UL, 0xe60c129dUL, 0x84438c56UL, 0x227b060fUL, 0xc0b27fc8UL, 0x5ee9f981UL, 0xfd21733aUL,
37 0x9b58ecf3UL, 0x399066acUL, 0xd7c7e065UL, 0x75ff5a1eUL, 0x1436d3d7UL, 0xb26e4d90UL, 0x50a5c749UL, 0xeedd4102UL,
38 0x8d14babbUL, 0x2b4c3474UL, 0xc983ae2dUL, 0x67bb27e6UL, 0x05f2a19fUL, 0xa42a1b58UL, 0x42619511UL, 0xe0990ecaUL,
39 0x7ed08883UL, 0x1d08023cUL, 0xbb3f7bf5UL, 0x5976f5aeUL, 0xf7ae6f67UL, 0x95e5e920UL, 0x341d62d9UL, 0xd254dc92UL,
40 0x708c564bUL, 0x0ec3d004UL, 0xacfb49bdUL, 0x4b32c376UL };
41 
42  /**
43     Initialize the RC6 block cipher
44     @param key The symmetric key you wish to pass
45     @param keylen The key length in bytes
46     @param num_rounds The number of rounds desired (0 for default)
47     @param skey The key in as scheduled by this function.
48     @return CRYPT_OK if successful
49  */
50 #ifdef LTC_CLEAN_STACK
_rc6_setup(const unsigned char * key,int keylen,int num_rounds,symmetric_key * skey)51 static int _rc6_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
52 #else
53 int rc6_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
54 #endif
55 {
56     ulong32 L[64], S[50], A, B, i, j, v, s, l;
57 
58     LTC_ARGCHK(key != NULL);
59     LTC_ARGCHK(skey != NULL);
60 
61     /* test parameters */
62     if (num_rounds != 0 && num_rounds != 20) {
63        return CRYPT_INVALID_ROUNDS;
64     }
65 
66     /* key must be between 64 and 1024 bits */
67     if (keylen < 8 || keylen > 128) {
68        return CRYPT_INVALID_KEYSIZE;
69     }
70 
71     /* copy the key into the L array */
72     for (A = i = j = 0; i < (ulong32)keylen; ) {
73         A = (A << 8) | ((ulong32)(key[i++] & 255));
74         if (!(i & 3)) {
75            L[j++] = BSWAP(A);
76            A = 0;
77         }
78     }
79 
80     /* handle odd sized keys */
81     if (keylen & 3) {
82        A <<= (8 * (4 - (keylen&3)));
83        L[j++] = BSWAP(A);
84     }
85 
86     /* setup the S array */
87     XMEMCPY(S, stab, 44 * sizeof(stab[0]));
88 
89     /* mix buffer */
90     s = 3 * MAX(44, j);
91     l = j;
92     for (A = B = i = j = v = 0; v < s; v++) {
93         A = S[i] = ROLc(S[i] + A + B, 3);
94         B = L[j] = ROL(L[j] + A + B, (A+B));
95         if (++i == 44) { i = 0; }
96         if (++j == l)  { j = 0; }
97     }
98 
99     /* copy to key */
100     for (i = 0; i < 44; i++) {
101         skey->rc6.K[i] = S[i];
102     }
103     return CRYPT_OK;
104 }
105 
106 #ifdef LTC_CLEAN_STACK
rc6_setup(const unsigned char * key,int keylen,int num_rounds,symmetric_key * skey)107 int rc6_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
108 {
109    int x;
110    x = _rc6_setup(key, keylen, num_rounds, skey);
111    burn_stack(sizeof(ulong32) * 122);
112    return x;
113 }
114 #endif
115 
116 /**
117   Encrypts a block of text with RC6
118   @param pt The input plaintext (16 bytes)
119   @param ct The output ciphertext (16 bytes)
120   @param skey The key as scheduled
121 */
122 #ifdef LTC_CLEAN_STACK
_rc6_ecb_encrypt(const unsigned char * pt,unsigned char * ct,symmetric_key * skey)123 static int _rc6_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
124 #else
125 int rc6_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
126 #endif
127 {
128    ulong32 a,b,c,d,t,u, *K;
129    int r;
130 
131    LTC_ARGCHK(skey != NULL);
132    LTC_ARGCHK(pt   != NULL);
133    LTC_ARGCHK(ct   != NULL);
134    LOAD32L(a,&pt[0]);LOAD32L(b,&pt[4]);LOAD32L(c,&pt[8]);LOAD32L(d,&pt[12]);
135 
136    b += skey->rc6.K[0];
137    d += skey->rc6.K[1];
138 
139 #define RND(a,b,c,d) \
140        t = (b * (b + b + 1)); t = ROLc(t, 5); \
141        u = (d * (d + d + 1)); u = ROLc(u, 5); \
142        a = ROL(a^t,u) + K[0];                \
143        c = ROL(c^u,t) + K[1]; K += 2;
144 
145    K = skey->rc6.K + 2;
146    for (r = 0; r < 20; r += 4) {
147        RND(a,b,c,d);
148        RND(b,c,d,a);
149        RND(c,d,a,b);
150        RND(d,a,b,c);
151    }
152 
153 #undef RND
154 
155    a += skey->rc6.K[42];
156    c += skey->rc6.K[43];
157    STORE32L(a,&ct[0]);STORE32L(b,&ct[4]);STORE32L(c,&ct[8]);STORE32L(d,&ct[12]);
158    return CRYPT_OK;
159 }
160 
161 #ifdef LTC_CLEAN_STACK
rc6_ecb_encrypt(const unsigned char * pt,unsigned char * ct,symmetric_key * skey)162 int rc6_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
163 {
164    int err = _rc6_ecb_encrypt(pt, ct, skey);
165    burn_stack(sizeof(ulong32) * 6 + sizeof(int));
166    return err;
167 }
168 #endif
169 
170 /**
171   Decrypts a block of text with RC6
172   @param ct The input ciphertext (16 bytes)
173   @param pt The output plaintext (16 bytes)
174   @param skey The key as scheduled
175 */
176 #ifdef LTC_CLEAN_STACK
_rc6_ecb_decrypt(const unsigned char * ct,unsigned char * pt,symmetric_key * skey)177 static int _rc6_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
178 #else
179 int rc6_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
180 #endif
181 {
182    ulong32 a,b,c,d,t,u, *K;
183    int r;
184 
185    LTC_ARGCHK(skey != NULL);
186    LTC_ARGCHK(pt   != NULL);
187    LTC_ARGCHK(ct   != NULL);
188 
189    LOAD32L(a,&ct[0]);LOAD32L(b,&ct[4]);LOAD32L(c,&ct[8]);LOAD32L(d,&ct[12]);
190    a -= skey->rc6.K[42];
191    c -= skey->rc6.K[43];
192 
193 #define RND(a,b,c,d) \
194        t = (b * (b + b + 1)); t = ROLc(t, 5); \
195        u = (d * (d + d + 1)); u = ROLc(u, 5); \
196        c = ROR(c - K[1], t) ^ u; \
197        a = ROR(a - K[0], u) ^ t; K -= 2;
198 
199    K = skey->rc6.K + 40;
200 
201    for (r = 0; r < 20; r += 4) {
202        RND(d,a,b,c);
203        RND(c,d,a,b);
204        RND(b,c,d,a);
205        RND(a,b,c,d);
206    }
207 
208 #undef RND
209 
210    b -= skey->rc6.K[0];
211    d -= skey->rc6.K[1];
212    STORE32L(a,&pt[0]);STORE32L(b,&pt[4]);STORE32L(c,&pt[8]);STORE32L(d,&pt[12]);
213 
214    return CRYPT_OK;
215 }
216 
217 #ifdef LTC_CLEAN_STACK
rc6_ecb_decrypt(const unsigned char * ct,unsigned char * pt,symmetric_key * skey)218 int rc6_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
219 {
220    int err = _rc6_ecb_decrypt(ct, pt, skey);
221    burn_stack(sizeof(ulong32) * 6 + sizeof(int));
222    return err;
223 }
224 #endif
225 
226 /**
227   Performs a self-test of the RC6 block cipher
228   @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
229 */
rc6_test(void)230 int rc6_test(void)
231 {
232  #ifndef LTC_TEST
233     return CRYPT_NOP;
234  #else
235    static const struct {
236        int keylen;
237        unsigned char key[32], pt[16], ct[16];
238    } tests[] = {
239    {
240        16,
241        { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
242          0x01, 0x12, 0x23, 0x34, 0x45, 0x56, 0x67, 0x78,
243          0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
244          0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
245        { 0x02, 0x13, 0x24, 0x35, 0x46, 0x57, 0x68, 0x79,
246          0x8a, 0x9b, 0xac, 0xbd, 0xce, 0xdf, 0xe0, 0xf1 },
247        { 0x52, 0x4e, 0x19, 0x2f, 0x47, 0x15, 0xc6, 0x23,
248          0x1f, 0x51, 0xf6, 0x36, 0x7e, 0xa4, 0x3f, 0x18 }
249    },
250    {
251        24,
252        { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
253          0x01, 0x12, 0x23, 0x34, 0x45, 0x56, 0x67, 0x78,
254          0x89, 0x9a, 0xab, 0xbc, 0xcd, 0xde, 0xef, 0xf0,
255          0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
256        { 0x02, 0x13, 0x24, 0x35, 0x46, 0x57, 0x68, 0x79,
257          0x8a, 0x9b, 0xac, 0xbd, 0xce, 0xdf, 0xe0, 0xf1 },
258        { 0x68, 0x83, 0x29, 0xd0, 0x19, 0xe5, 0x05, 0x04,
259          0x1e, 0x52, 0xe9, 0x2a, 0xf9, 0x52, 0x91, 0xd4 }
260    },
261    {
262        32,
263        { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
264          0x01, 0x12, 0x23, 0x34, 0x45, 0x56, 0x67, 0x78,
265          0x89, 0x9a, 0xab, 0xbc, 0xcd, 0xde, 0xef, 0xf0,
266          0x10, 0x32, 0x54, 0x76, 0x98, 0xba, 0xdc, 0xfe },
267        { 0x02, 0x13, 0x24, 0x35, 0x46, 0x57, 0x68, 0x79,
268          0x8a, 0x9b, 0xac, 0xbd, 0xce, 0xdf, 0xe0, 0xf1 },
269        { 0xc8, 0x24, 0x18, 0x16, 0xf0, 0xd7, 0xe4, 0x89,
270          0x20, 0xad, 0x16, 0xa1, 0x67, 0x4e, 0x5d, 0x48 }
271    }
272    };
273    unsigned char tmp[2][16];
274    int x, y, err;
275    symmetric_key key;
276 
277    for (x  = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) {
278       /* setup key */
279       if ((err = rc6_setup(tests[x].key, tests[x].keylen, 0, &key)) != CRYPT_OK) {
280          return err;
281       }
282 
283       /* encrypt and decrypt */
284       rc6_ecb_encrypt(tests[x].pt, tmp[0], &key);
285       rc6_ecb_decrypt(tmp[0], tmp[1], &key);
286 
287       /* compare */
288       if (XMEMCMP(tmp[0], tests[x].ct, 16) || XMEMCMP(tmp[1], tests[x].pt, 16)) {
289 #if 0
290          printf("\n\nFailed test %d\n", x);
291          if (XMEMCMP(tmp[0], tests[x].ct, 16)) {
292             printf("Ciphertext:  ");
293             for (y = 0; y < 16; y++) printf("%02x ", tmp[0][y]);
294             printf("\nExpected  :  ");
295             for (y = 0; y < 16; y++) printf("%02x ", tests[x].ct[y]);
296             printf("\n");
297          }
298          if (XMEMCMP(tmp[1], tests[x].pt, 16)) {
299             printf("Plaintext:  ");
300             for (y = 0; y < 16; y++) printf("%02x ", tmp[0][y]);
301             printf("\nExpected :  ");
302             for (y = 0; y < 16; y++) printf("%02x ", tests[x].pt[y]);
303             printf("\n");
304          }
305 #endif
306          return CRYPT_FAIL_TESTVECTOR;
307       }
308 
309       /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
310       for (y = 0; y < 16; y++) tmp[0][y] = 0;
311       for (y = 0; y < 1000; y++) rc6_ecb_encrypt(tmp[0], tmp[0], &key);
312       for (y = 0; y < 1000; y++) rc6_ecb_decrypt(tmp[0], tmp[0], &key);
313       for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
314    }
315    return CRYPT_OK;
316   #endif
317 }
318 
319 /** Terminate the context
320    @param skey    The scheduled key
321 */
rc6_done(symmetric_key * skey)322 void rc6_done(symmetric_key *skey)
323 {
324 }
325 
326 /**
327   Gets suitable key size
328   @param keysize [in/out] The length of the recommended key (in bytes).  This function will store the suitable size back in this variable.
329   @return CRYPT_OK if the input key size is acceptable.
330 */
rc6_keysize(int * keysize)331 int rc6_keysize(int *keysize)
332 {
333    LTC_ARGCHK(keysize != NULL);
334    if (*keysize < 8) {
335       return CRYPT_INVALID_KEYSIZE;
336    } else if (*keysize > 128) {
337       *keysize = 128;
338    }
339    return CRYPT_OK;
340 }
341 
342 #endif /*RC6*/
343 
344 
345 
346 /* $Source: /cvs/libtom/libtomcrypt/src/ciphers/rc6.c,v $ */
347 /* $Revision: 1.12 $ */
348 /* $Date: 2006/11/08 23:01:06 $ */
349