1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P10003.2/D11.2, except for
3 internationalization features.)
4
5 Copyright (C) 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
20 USA. */
21
22 /* AIX requires this to be the first thing in the file. */
23 #if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25 #endif
26
27 #undef _GNU_SOURCE
28 #define _GNU_SOURCE
29
30 #include "cs_config.h"
31 #include "util/osdep.h"
32
33 #ifdef HAVE_CONFIG_H
34 #include <config.h>
35 #endif
36
37 /* We need this for `regex.h', and perhaps for the Emacs include files. */
38 #include <sys/types.h>
39
40 /* This is for other GNU distributions with internationalized messages. */
41 #if HAVE_LIBINTL_H || defined (_LIBC)
42 # include <libintl.h>
43 #else
44 # define gettext(msgid) (msgid)
45 #endif
46
47 #ifndef gettext_noop
48 /* This define is so xgettext can find the internationalizable
49 strings. */
50 #define gettext_noop(String) String
51 #endif
52
53 /* The `emacs' switch turns on certain matching commands
54 that make sense only in Emacs. */
55 #ifdef emacs
56
57 #include "lisp.h"
58 #include "buffer.h"
59 #include "syntax.h"
60
61 #else /* not emacs */
62
63 /* If we are not linking with Emacs proper,
64 we can't use the relocating allocator
65 even if config.h says that we can. */
66 #undef REL_ALLOC
67
68 #if defined (STDC_HEADERS) || defined (_LIBC)
69 #include <stdlib.h>
70 #else
71 char *malloc ();
72 char *realloc ();
73 #endif
74
75 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
76 If nothing else has been done, use the method below. */
77 #ifdef INHIBIT_STRING_HEADER
78 #if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
79 #if !defined (bzero) && !defined (bcopy)
80 #undef INHIBIT_STRING_HEADER
81 #endif
82 #endif
83 #endif
84
85 /* This is the normal way of making sure we have a bcopy and a bzero.
86 This is used in most programs--a few other programs avoid this
87 by defining INHIBIT_STRING_HEADER. */
88 #ifndef INHIBIT_STRING_HEADER
89 #if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
90 #include <string.h>
91 #ifndef bcmp
92 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
93 #endif
94 #ifndef bcopy
95 #define bcopy(s, d, n) memcpy ((d), (s), (n))
96 #endif
97 #ifndef bzero
98 #define bzero(s, n) memset ((s), 0, (n))
99 #endif
100 #else
101 #include <strings.h>
102 #endif
103 #endif
104
105 /* Define the syntax stuff for \<, \>, etc. */
106
107 /* This must be nonzero for the wordchar and notwordchar pattern
108 commands in re_match_2. */
109 #ifndef Sword
110 #define Sword 1
111 #endif
112
113 #ifdef SWITCH_ENUM_BUG
114 #define SWITCH_ENUM_CAST(x) ((int)(x))
115 #else
116 #define SWITCH_ENUM_CAST(x) (x)
117 #endif
118
119 #ifdef SYNTAX_TABLE
120
121 extern char *re_syntax_table;
122
123 #else /* not SYNTAX_TABLE */
124
125 /* How many characters in the character set. */
126 #define CHAR_SET_SIZE 256
127
128 static char re_syntax_table[CHAR_SET_SIZE];
129
130 static void
init_syntax_once()131 init_syntax_once ()
132 {
133 register int c;
134 static int done = 0;
135
136 if (done)
137 return;
138
139 bzero (re_syntax_table, sizeof re_syntax_table);
140
141 for (c = 'a'; c <= 'z'; c++)
142 re_syntax_table[c] = Sword;
143
144 for (c = 'A'; c <= 'Z'; c++)
145 re_syntax_table[c] = Sword;
146
147 for (c = '0'; c <= '9'; c++)
148 re_syntax_table[c] = Sword;
149
150 re_syntax_table['_'] = Sword;
151
152 done = 1;
153 }
154
155 #endif /* not SYNTAX_TABLE */
156
157 #define SYNTAX(c) re_syntax_table[c]
158
159 #endif /* not emacs */
160
161 /* Get the interface, including the syntax bits. */
162 #include "regex.h"
163
164 /* isalpha etc. are used for the character classes. */
165 #include <ctype.h>
166
167 /* Jim Meyering writes:
168
169 "... Some ctype macros are valid only for character codes that
170 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
171 using /bin/cc or gcc but without giving an ansi option). So, all
172 ctype uses should be through macros like ISPRINT... If
173 STDC_HEADERS is defined, then autoconf has verified that the ctype
174 macros don't need to be guarded with references to isascii. ...
175 Defining IN_CTYPE_DOMAIN to 1 should let any compiler worth its salt
176 eliminate the && through constant folding." */
177
178 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
179 #define IN_CTYPE_DOMAIN(c) 1
180 #else
181 #define IN_CTYPE_DOMAIN(c) isascii(c)
182 #endif
183
184 #ifdef isblank
185 #define ISBLANK(c) (IN_CTYPE_DOMAIN (c) && isblank (c))
186 #else
187 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
188 #endif
189 #ifdef isgraph
190 #define ISGRAPH(c) (IN_CTYPE_DOMAIN (c) && isgraph (c))
191 #else
192 #define ISGRAPH(c) (IN_CTYPE_DOMAIN (c) && isprint (c) && !isspace (c))
193 #endif
194
195 #define ISPRINT(c) (IN_CTYPE_DOMAIN (c) && isprint (c))
196 #define ISDIGIT(c) (IN_CTYPE_DOMAIN (c) && isdigit (c))
197 #define ISALNUM(c) (IN_CTYPE_DOMAIN (c) && isalnum (c))
198 #define ISALPHA(c) (IN_CTYPE_DOMAIN (c) && isalpha (c))
199 #define ISCNTRL(c) (IN_CTYPE_DOMAIN (c) && iscntrl (c))
200 #define ISLOWER(c) (IN_CTYPE_DOMAIN (c) && islower (c))
201 #define ISPUNCT(c) (IN_CTYPE_DOMAIN (c) && ispunct (c))
202 #define ISSPACE(c) (IN_CTYPE_DOMAIN (c) && isspace (c))
203 #define ISUPPER(c) (IN_CTYPE_DOMAIN (c) && isupper (c))
204 #define ISXDIGIT(c) (IN_CTYPE_DOMAIN (c) && isxdigit (c))
205
206 #ifndef NULL
207 #define NULL (void *)0
208 #endif
209
210 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
211 since ours (we hope) works properly with all combinations of
212 machines, compilers, `char' and `unsigned char' argument types.
213 (Per Bothner suggested the basic approach.) */
214 #undef SIGN_EXTEND_CHAR
215 #if __STDC__
216 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
217 #else /* not __STDC__ */
218 /* As in Harbison and Steele. */
219 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
220 #endif
221
222 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
223 use `alloca' instead of `malloc'. This is because using malloc in
224 re_search* or re_match* could cause memory leaks when C-g is used in
225 Emacs; also, malloc is slower and causes storage fragmentation. On
226 the other hand, malloc is more portable, and easier to debug.
227
228 Because we sometimes use alloca, some routines have to be macros,
229 not functions -- `alloca'-allocated space disappears at the end of the
230 function it is called in. */
231
232 #ifdef REGEX_MALLOC
233
234 #define REGEX_ALLOCATE malloc
235 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
236 #define REGEX_FREE free
237
238 #else /* not REGEX_MALLOC */
239
240 /* Emacs already defines alloca, sometimes. */
241 #ifndef alloca
242
243 /* Make alloca work the best possible way. */
244 #ifdef __GNUC__
245 #define alloca __builtin_alloca
246 #else /* not __GNUC__ */
247 #if HAVE_ALLOCA_H
248 #include <alloca.h>
249 #else /* not __GNUC__ or HAVE_ALLOCA_H */
250 #if 0 /* It is a bad idea to declare alloca. We always cast the result. */
251 #ifndef _AIX /* Already did AIX, up at the top. */
252 char *alloca ();
253 #endif /* not _AIX */
254 #endif
255 #endif /* not HAVE_ALLOCA_H */
256 #endif /* not __GNUC__ */
257
258 #endif /* not alloca */
259
260 #define REGEX_ALLOCATE alloca
261
262 /* Assumes a `char *destination' variable. */
263 #define REGEX_REALLOCATE(source, osize, nsize) \
264 (destination = (char *) alloca (nsize), \
265 bcopy (source, destination, osize), \
266 destination)
267
268 /* No need to do anything to free, after alloca. */
269 #define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
270
271 #endif /* not REGEX_MALLOC */
272
273 /* Define how to allocate the failure stack. */
274
275 #if defined (REL_ALLOC) && defined (REGEX_MALLOC)
276
277 #define REGEX_ALLOCATE_STACK(size) \
278 r_alloc (&failure_stack_ptr, (size))
279 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
280 r_re_alloc (&failure_stack_ptr, (nsize))
281 #define REGEX_FREE_STACK(ptr) \
282 r_alloc_free (&failure_stack_ptr)
283
284 #else /* not using relocating allocator */
285
286 #ifdef REGEX_MALLOC
287
288 #define REGEX_ALLOCATE_STACK malloc
289 #define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
290 #define REGEX_FREE_STACK free
291
292 #else /* not REGEX_MALLOC */
293
294 #define REGEX_ALLOCATE_STACK alloca
295
296 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
297 REGEX_REALLOCATE (source, osize, nsize)
298 /* No need to explicitly free anything. */
299 #define REGEX_FREE_STACK(arg)
300
301 #endif /* not REGEX_MALLOC */
302 #endif /* not using relocating allocator */
303
304
305 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
306 `string1' or just past its end. This works if PTR is NULL, which is
307 a good thing. */
308 #define FIRST_STRING_P(ptr) \
309 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
310
311 /* (Re)Allocate N items of type T using malloc, or fail. */
312 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
313 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
314 #define RETALLOC_IF(addr, n, t) \
315 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
316 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
317
318 #define BYTEWIDTH 8 /* In bits. */
319
320 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
321
322 #undef MAX
323 #undef MIN
324 #define MAX(a, b) ((a) > (b) ? (a) : (b))
325 #define MIN(a, b) ((a) < (b) ? (a) : (b))
326
327 typedef char boolean;
328 #define false 0
329 #define true 1
330
331 static int re_match_2_internal ();
332
333 /* These are the command codes that appear in compiled regular
334 expressions. Some opcodes are followed by argument bytes. A
335 command code can specify any interpretation whatsoever for its
336 arguments. Zero bytes may appear in the compiled regular expression. */
337
338 typedef enum
339 {
340 no_op = 0,
341
342 /* Succeed right away--no more backtracking. */
343 succeed,
344
345 /* Followed by one byte giving n, then by n literal bytes. */
346 exactn,
347
348 /* Matches any (more or less) character. */
349 anychar,
350
351 /* Matches any one char belonging to specified set. First
352 following byte is number of bitmap bytes. Then come bytes
353 for a bitmap saying which chars are in. Bits in each byte
354 are ordered low-bit-first. A character is in the set if its
355 bit is 1. A character too large to have a bit in the map is
356 automatically not in the set. */
357 charset,
358
359 /* Same parameters as charset, but match any character that is
360 not one of those specified. */
361 charset_not,
362
363 /* Start remembering the text that is matched, for storing in a
364 register. Followed by one byte with the register number, in
365 the range 0 to one less than the pattern buffer's re_nsub
366 field. Then followed by one byte with the number of groups
367 inner to this one. (This last has to be part of the
368 start_memory only because we need it in the on_failure_jump
369 of re_match_2.) */
370 start_memory,
371
372 /* Stop remembering the text that is matched and store it in a
373 memory register. Followed by one byte with the register
374 number, in the range 0 to one less than `re_nsub' in the
375 pattern buffer, and one byte with the number of inner groups,
376 just like `start_memory'. (We need the number of inner
377 groups here because we don't have any easy way of finding the
378 corresponding start_memory when we're at a stop_memory.) */
379 stop_memory,
380
381 /* Match a duplicate of something remembered. Followed by one
382 byte containing the register number. */
383 duplicate,
384
385 /* Fail unless at beginning of line. */
386 begline,
387
388 /* Fail unless at end of line. */
389 endline,
390
391 /* Succeeds if at beginning of buffer (if emacs) or at beginning
392 of string to be matched (if not). */
393 begbuf,
394
395 /* Analogously, for end of buffer/string. */
396 endbuf,
397
398 /* Followed by two byte relative address to which to jump. */
399 jump,
400
401 /* Same as jump, but marks the end of an alternative. */
402 jump_past_alt,
403
404 /* Followed by two-byte relative address of place to resume at
405 in case of failure. */
406 on_failure_jump,
407
408 /* Like on_failure_jump, but pushes a placeholder instead of the
409 current string position when executed. */
410 on_failure_keep_string_jump,
411
412 /* Throw away latest failure point and then jump to following
413 two-byte relative address. */
414 pop_failure_jump,
415
416 /* Change to pop_failure_jump if know won't have to backtrack to
417 match; otherwise change to jump. This is used to jump
418 back to the beginning of a repeat. If what follows this jump
419 clearly won't match what the repeat does, such that we can be
420 sure that there is no use backtracking out of repetitions
421 already matched, then we change it to a pop_failure_jump.
422 Followed by two-byte address. */
423 maybe_pop_jump,
424
425 /* Jump to following two-byte address, and push a dummy failure
426 point. This failure point will be thrown away if an attempt
427 is made to use it for a failure. A `+' construct makes this
428 before the first repeat. Also used as an intermediary kind
429 of jump when compiling an alternative. */
430 dummy_failure_jump,
431
432 /* Push a dummy failure point and continue. Used at the end of
433 alternatives. */
434 push_dummy_failure,
435
436 /* Followed by two-byte relative address and two-byte number n.
437 After matching N times, jump to the address upon failure. */
438 succeed_n,
439
440 /* Followed by two-byte relative address, and two-byte number n.
441 Jump to the address N times, then fail. */
442 jump_n,
443
444 /* Set the following two-byte relative address to the
445 subsequent two-byte number. The address *includes* the two
446 bytes of number. */
447 set_number_at,
448
449 wordchar, /* Matches any word-constituent character. */
450 notwordchar, /* Matches any char that is not a word-constituent. */
451
452 wordbeg, /* Succeeds if at word beginning. */
453 wordend, /* Succeeds if at word end. */
454
455 wordbound, /* Succeeds if at a word boundary. */
456 notwordbound /* Succeeds if not at a word boundary. */
457
458 #ifdef emacs
459 ,before_dot, /* Succeeds if before point. */
460 at_dot, /* Succeeds if at point. */
461 after_dot, /* Succeeds if after point. */
462
463 /* Matches any character whose syntax is specified. Followed by
464 a byte which contains a syntax code, e.g., Sword. */
465 syntaxspec,
466
467 /* Matches any character whose syntax is not that specified. */
468 notsyntaxspec
469 #endif /* emacs */
470 } re_opcode_t;
471
472 /* Common operations on the compiled pattern. */
473
474 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
475
476 #define STORE_NUMBER(destination, number) \
477 do { \
478 (destination)[0] = (number) & 0377; \
479 (destination)[1] = (number) >> 8; \
480 } while (0)
481
482 /* Same as STORE_NUMBER, except increment DESTINATION to
483 the byte after where the number is stored. Therefore, DESTINATION
484 must be an lvalue. */
485
486 #define STORE_NUMBER_AND_INCR(destination, number) \
487 do { \
488 STORE_NUMBER (destination, number); \
489 (destination) += 2; \
490 } while (0)
491
492 /* Put into DESTINATION a number stored in two contiguous bytes starting
493 at SOURCE. */
494
495 #define EXTRACT_NUMBER(destination, source) \
496 do { \
497 (destination) = *(source) & 0377; \
498 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
499 } while (0)
500
501 #ifdef DEBUG
502 static void
extract_number(dest,source)503 extract_number (dest, source)
504 int *dest;
505 unsigned char *source;
506 {
507 int temp = SIGN_EXTEND_CHAR (*(source + 1));
508 *dest = *source & 0377;
509 *dest += temp << 8;
510 }
511
512 #ifndef EXTRACT_MACROS /* To debug the macros. */
513 #undef EXTRACT_NUMBER
514 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
515 #endif /* not EXTRACT_MACROS */
516
517 #endif /* DEBUG */
518
519 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
520 SOURCE must be an lvalue. */
521
522 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
523 do { \
524 EXTRACT_NUMBER (destination, source); \
525 (source) += 2; \
526 } while (0)
527
528 #ifdef DEBUG
529 static void
extract_number_and_incr(destination,source)530 extract_number_and_incr (destination, source)
531 int *destination;
532 unsigned char **source;
533 {
534 extract_number (destination, *source);
535 *source += 2;
536 }
537
538 #ifndef EXTRACT_MACROS
539 #undef EXTRACT_NUMBER_AND_INCR
540 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
541 extract_number_and_incr (&dest, &src)
542 #endif /* not EXTRACT_MACROS */
543
544 #endif /* DEBUG */
545
546 /* If DEBUG is defined, Regex prints many voluminous messages about what
547 it is doing (if the variable `debug' is nonzero). If linked with the
548 main program in `iregex.c', you can enter patterns and strings
549 interactively. And if linked with the main program in `main.c' and
550 the other test files, you can run the already-written tests. */
551
552 #ifdef DEBUG
553
554 /* We use standard I/O for debugging. */
555 #include <stdio.h>
556
557 /* It is useful to test things that ``must'' be true when debugging. */
558 #include <assert.h>
559
560 static int debug = 0;
561
562 #define DEBUG_STATEMENT(e) e
563 #define DEBUG_PRINT1(x) if (debug) printf (x)
564 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
565 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
566 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
567 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
568 if (debug) print_partial_compiled_pattern (s, e)
569 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
570 if (debug) print_double_string (w, s1, sz1, s2, sz2)
571
572
573 /* Print the fastmap in human-readable form. */
574
575 void
print_fastmap(fastmap)576 print_fastmap (fastmap)
577 char *fastmap;
578 {
579 unsigned was_a_range = 0;
580 unsigned i = 0;
581
582 while (i < (1 << BYTEWIDTH))
583 {
584 if (fastmap[i++])
585 {
586 was_a_range = 0;
587 putchar (i - 1);
588 while (i < (1 << BYTEWIDTH) && fastmap[i])
589 {
590 was_a_range = 1;
591 i++;
592 }
593 if (was_a_range)
594 {
595 printf ("-");
596 putchar (i - 1);
597 }
598 }
599 }
600 putchar ('\n');
601 }
602
603
604 /* Print a compiled pattern string in human-readable form, starting at
605 the START pointer into it and ending just before the pointer END. */
606
607 void
print_partial_compiled_pattern(start,end)608 print_partial_compiled_pattern (start, end)
609 unsigned char *start;
610 unsigned char *end;
611 {
612 int mcnt, mcnt2;
613 unsigned char *p = start;
614 unsigned char *pend = end;
615
616 if (start == NULL)
617 {
618 printf ("(null)\n");
619 return;
620 }
621
622 /* Loop over pattern commands. */
623 while (p < pend)
624 {
625 printf ("%d:\t", p - start);
626
627 switch ((re_opcode_t) *p++)
628 {
629 case no_op:
630 printf ("/no_op");
631 break;
632
633 case exactn:
634 mcnt = *p++;
635 printf ("/exactn/%d", mcnt);
636 do
637 {
638 putchar ('/');
639 putchar (*p++);
640 }
641 while (--mcnt);
642 break;
643
644 case start_memory:
645 mcnt = *p++;
646 printf ("/start_memory/%d/%d", mcnt, *p++);
647 break;
648
649 case stop_memory:
650 mcnt = *p++;
651 printf ("/stop_memory/%d/%d", mcnt, *p++);
652 break;
653
654 case duplicate:
655 printf ("/duplicate/%d", *p++);
656 break;
657
658 case anychar:
659 printf ("/anychar");
660 break;
661
662 case charset:
663 case charset_not:
664 {
665 register int c, last = -100;
666 register int in_range = 0;
667
668 printf ("/charset [%s",
669 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
670
671 assert (p + *p < pend);
672
673 for (c = 0; c < 256; c++)
674 if (c / 8 < *p
675 && (p[1 + (c/8)] & (1 << (c % 8))))
676 {
677 /* Are we starting a range? */
678 if (last + 1 == c && ! in_range)
679 {
680 putchar ('-');
681 in_range = 1;
682 }
683 /* Have we broken a range? */
684 else if (last + 1 != c && in_range)
685 {
686 putchar (last);
687 in_range = 0;
688 }
689
690 if (! in_range)
691 putchar (c);
692
693 last = c;
694 }
695
696 if (in_range)
697 putchar (last);
698
699 putchar (']');
700
701 p += 1 + *p;
702 }
703 break;
704
705 case begline:
706 printf ("/begline");
707 break;
708
709 case endline:
710 printf ("/endline");
711 break;
712
713 case on_failure_jump:
714 extract_number_and_incr (&mcnt, &p);
715 printf ("/on_failure_jump to %d", p + mcnt - start);
716 break;
717
718 case on_failure_keep_string_jump:
719 extract_number_and_incr (&mcnt, &p);
720 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
721 break;
722
723 case dummy_failure_jump:
724 extract_number_and_incr (&mcnt, &p);
725 printf ("/dummy_failure_jump to %d", p + mcnt - start);
726 break;
727
728 case push_dummy_failure:
729 printf ("/push_dummy_failure");
730 break;
731
732 case maybe_pop_jump:
733 extract_number_and_incr (&mcnt, &p);
734 printf ("/maybe_pop_jump to %d", p + mcnt - start);
735 break;
736
737 case pop_failure_jump:
738 extract_number_and_incr (&mcnt, &p);
739 printf ("/pop_failure_jump to %d", p + mcnt - start);
740 break;
741
742 case jump_past_alt:
743 extract_number_and_incr (&mcnt, &p);
744 printf ("/jump_past_alt to %d", p + mcnt - start);
745 break;
746
747 case jump:
748 extract_number_and_incr (&mcnt, &p);
749 printf ("/jump to %d", p + mcnt - start);
750 break;
751
752 case succeed_n:
753 extract_number_and_incr (&mcnt, &p);
754 extract_number_and_incr (&mcnt2, &p);
755 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
756 break;
757
758 case jump_n:
759 extract_number_and_incr (&mcnt, &p);
760 extract_number_and_incr (&mcnt2, &p);
761 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
762 break;
763
764 case set_number_at:
765 extract_number_and_incr (&mcnt, &p);
766 extract_number_and_incr (&mcnt2, &p);
767 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
768 break;
769
770 case wordbound:
771 printf ("/wordbound");
772 break;
773
774 case notwordbound:
775 printf ("/notwordbound");
776 break;
777
778 case wordbeg:
779 printf ("/wordbeg");
780 break;
781
782 case wordend:
783 printf ("/wordend");
784
785 #ifdef emacs
786 case before_dot:
787 printf ("/before_dot");
788 break;
789
790 case at_dot:
791 printf ("/at_dot");
792 break;
793
794 case after_dot:
795 printf ("/after_dot");
796 break;
797
798 case syntaxspec:
799 printf ("/syntaxspec");
800 mcnt = *p++;
801 printf ("/%d", mcnt);
802 break;
803
804 case notsyntaxspec:
805 printf ("/notsyntaxspec");
806 mcnt = *p++;
807 printf ("/%d", mcnt);
808 break;
809 #endif /* emacs */
810
811 case wordchar:
812 printf ("/wordchar");
813 break;
814
815 case notwordchar:
816 printf ("/notwordchar");
817 break;
818
819 case begbuf:
820 printf ("/begbuf");
821 break;
822
823 case endbuf:
824 printf ("/endbuf");
825 break;
826
827 default:
828 printf ("?%d", *(p-1));
829 }
830
831 putchar ('\n');
832 }
833
834 printf ("%d:\tend of pattern.\n", p - start);
835 }
836
837
838 void
print_compiled_pattern(bufp)839 print_compiled_pattern (bufp)
840 struct re_pattern_buffer *bufp;
841 {
842 unsigned char *buffer = bufp->buffer;
843
844 print_partial_compiled_pattern (buffer, buffer + bufp->used);
845 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
846
847 if (bufp->fastmap_accurate && bufp->fastmap)
848 {
849 printf ("fastmap: ");
850 print_fastmap (bufp->fastmap);
851 }
852
853 printf ("re_nsub: %d\t", bufp->re_nsub);
854 printf ("regs_alloc: %d\t", bufp->regs_allocated);
855 printf ("can_be_null: %d\t", bufp->can_be_null);
856 printf ("newline_anchor: %d\n", bufp->newline_anchor);
857 printf ("no_sub: %d\t", bufp->no_sub);
858 printf ("not_bol: %d\t", bufp->not_bol);
859 printf ("not_eol: %d\t", bufp->not_eol);
860 printf ("syntax: %d\n", bufp->syntax);
861 /* Perhaps we should print the translate table? */
862 }
863
864
865 void
print_double_string(where,string1,size1,string2,size2)866 print_double_string (where, string1, size1, string2, size2)
867 const char *where;
868 const char *string1;
869 const char *string2;
870 int size1;
871 int size2;
872 {
873 unsigned this_char;
874
875 if (where == NULL)
876 printf ("(null)");
877 else
878 {
879 if (FIRST_STRING_P (where))
880 {
881 for (this_char = where - string1; this_char < size1; this_char++)
882 putchar (string1[this_char]);
883
884 where = string2;
885 }
886
887 for (this_char = where - string2; this_char < size2; this_char++)
888 putchar (string2[this_char]);
889 }
890 }
891
892 #else /* not DEBUG */
893
894 #undef assert
895 #define assert(e)
896
897 #define DEBUG_STATEMENT(e)
898 #define DEBUG_PRINT1(x)
899 #define DEBUG_PRINT2(x1, x2)
900 #define DEBUG_PRINT3(x1, x2, x3)
901 #define DEBUG_PRINT4(x1, x2, x3, x4)
902 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
903 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
904
905 #endif /* not DEBUG */
906
907 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
908 also be assigned to arbitrarily: each pattern buffer stores its own
909 syntax, so it can be changed between regex compilations. */
910 /* This has no initializer because initialized variables in Emacs
911 become read-only after dumping. */
912 reg_syntax_t re_syntax_options;
913
914
915 /* Specify the precise syntax of regexps for compilation. This provides
916 for compatibility for various utilities which historically have
917 different, incompatible syntaxes.
918
919 The argument SYNTAX is a bit mask comprised of the various bits
920 defined in regex.h. We return the old syntax. */
921
922 reg_syntax_t
re_set_syntax(syntax)923 re_set_syntax (syntax)
924 reg_syntax_t syntax;
925 {
926 reg_syntax_t ret = re_syntax_options;
927
928 re_syntax_options = syntax;
929 return ret;
930 }
931
932 /* This table gives an error message for each of the error codes listed
933 in regex.h. Obviously the order here has to be same as there.
934 POSIX doesn't require that we do anything for REG_NOERROR,
935 but why not be nice? */
936
937 static const char *re_error_msgid[] =
938 {
939 gettext_noop ("Success"), /* REG_NOERROR */
940 gettext_noop ("No match"), /* REG_NOMATCH */
941 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
942 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
943 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
944 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
945 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
946 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
947 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
948 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
949 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
950 gettext_noop ("Invalid range end"), /* REG_ERANGE */
951 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
952 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
953 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
954 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
955 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
956 };
957
958 /* Avoiding alloca during matching, to placate r_alloc. */
959
960 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
961 searching and matching functions should not call alloca. On some
962 systems, alloca is implemented in terms of malloc, and if we're
963 using the relocating allocator routines, then malloc could cause a
964 relocation, which might (if the strings being searched are in the
965 ralloc heap) shift the data out from underneath the regexp
966 routines.
967
968 Here's another reason to avoid allocation: Emacs
969 processes input from X in a signal handler; processing X input may
970 call malloc; if input arrives while a matching routine is calling
971 malloc, then we're scrod. But Emacs can't just block input while
972 calling matching routines; then we don't notice interrupts when
973 they come in. So, Emacs blocks input around all regexp calls
974 except the matching calls, which it leaves unprotected, in the
975 faith that they will not malloc. */
976
977 /* Normally, this is fine. */
978 #define MATCH_MAY_ALLOCATE
979
980 /* When using GNU C, we are not REALLY using the C alloca, no matter
981 what config.h may say. So don't take precautions for it. */
982 #ifdef __GNUC__
983 #undef C_ALLOCA
984 #endif
985
986 /* The match routines may not allocate if (1) they would do it with malloc
987 and (2) it's not safe for them to use malloc.
988 Note that if REL_ALLOC is defined, matching would not use malloc for the
989 failure stack, but we would still use it for the register vectors;
990 so REL_ALLOC should not affect this. */
991 #if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
992 #undef MATCH_MAY_ALLOCATE
993 #endif
994
995
996 /* Failure stack declarations and macros; both re_compile_fastmap and
997 re_match_2 use a failure stack. These have to be macros because of
998 REGEX_ALLOCATE_STACK. */
999
1000
1001 /* Number of failure points for which to initially allocate space
1002 when matching. If this number is exceeded, we allocate more
1003 space, so it is not a hard limit. */
1004 #ifndef INIT_FAILURE_ALLOC
1005 #define INIT_FAILURE_ALLOC 5
1006 #endif
1007
1008 /* Roughly the maximum number of failure points on the stack. Would be
1009 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1010 This is a variable only so users of regex can assign to it; we never
1011 change it ourselves. */
1012 #if defined (MATCH_MAY_ALLOCATE)
1013 /* 4400 was enough to cause a crash on Alpha OSF/1,
1014 whose default stack limit is 2mb. */
1015 int re_max_failures = 20000;
1016 #else
1017 int re_max_failures = 2000;
1018 #endif
1019
1020 union fail_stack_elt
1021 {
1022 unsigned char *pointer;
1023 int integer;
1024 };
1025
1026 typedef union fail_stack_elt fail_stack_elt_t;
1027
1028 typedef struct
1029 {
1030 fail_stack_elt_t *stack;
1031 unsigned size;
1032 unsigned avail; /* Offset of next open position. */
1033 } fail_stack_type;
1034
1035 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1036 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1037 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1038
1039
1040 /* Define macros to initialize and free the failure stack.
1041 Do `return -2' if the alloc fails. */
1042
1043 #ifdef MATCH_MAY_ALLOCATE
1044 #define INIT_FAIL_STACK() \
1045 do { \
1046 fail_stack.stack = (fail_stack_elt_t *) \
1047 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1048 \
1049 if (fail_stack.stack == NULL) \
1050 return -2; \
1051 \
1052 fail_stack.size = INIT_FAILURE_ALLOC; \
1053 fail_stack.avail = 0; \
1054 } while (0)
1055
1056 #define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1057 #else
1058 #define INIT_FAIL_STACK() \
1059 do { \
1060 fail_stack.avail = 0; \
1061 } while (0)
1062
1063 #define RESET_FAIL_STACK()
1064 #endif
1065
1066
1067 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1068
1069 Return 1 if succeeds, and 0 if either ran out of memory
1070 allocating space for it or it was already too large.
1071
1072 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1073
1074 #define DOUBLE_FAIL_STACK(fail_stack) \
1075 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
1076 ? 0 \
1077 : ((fail_stack).stack = (fail_stack_elt_t *) \
1078 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1079 (fail_stack).size * sizeof (fail_stack_elt_t), \
1080 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1081 \
1082 (fail_stack).stack == NULL \
1083 ? 0 \
1084 : ((fail_stack).size <<= 1, \
1085 1)))
1086
1087
1088 /* Push pointer POINTER on FAIL_STACK.
1089 Return 1 if was able to do so and 0 if ran out of memory allocating
1090 space to do so. */
1091 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1092 ((FAIL_STACK_FULL () \
1093 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1094 ? 0 \
1095 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1096 1))
1097
1098 /* Push a pointer value onto the failure stack.
1099 Assumes the variable `fail_stack'. Probably should only
1100 be called from within `PUSH_FAILURE_POINT'. */
1101 #define PUSH_FAILURE_POINTER(item) \
1102 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1103
1104 /* This pushes an integer-valued item onto the failure stack.
1105 Assumes the variable `fail_stack'. Probably should only
1106 be called from within `PUSH_FAILURE_POINT'. */
1107 #define PUSH_FAILURE_INT(item) \
1108 fail_stack.stack[fail_stack.avail++].integer = (item)
1109
1110 /* Push a fail_stack_elt_t value onto the failure stack.
1111 Assumes the variable `fail_stack'. Probably should only
1112 be called from within `PUSH_FAILURE_POINT'. */
1113 #define PUSH_FAILURE_ELT(item) \
1114 fail_stack.stack[fail_stack.avail++] = (item)
1115
1116 /* These three POP... operations complement the three PUSH... operations.
1117 All assume that `fail_stack' is nonempty. */
1118 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1119 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1120 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1121
1122 /* Used to omit pushing failure point id's when we're not debugging. */
1123 #ifdef DEBUG
1124 #define DEBUG_PUSH PUSH_FAILURE_INT
1125 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1126 #else
1127 #define DEBUG_PUSH(item)
1128 #define DEBUG_POP(item_addr)
1129 #endif
1130
1131
1132 /* Push the information about the state we will need
1133 if we ever fail back to it.
1134
1135 Requires variables fail_stack, regstart, regend, reg_info, and
1136 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1137 declared.
1138
1139 Does `return FAILURE_CODE' if runs out of memory. */
1140
1141 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1142 do { \
1143 char *destination; \
1144 /* Must be int, so when we don't save any registers, the arithmetic \
1145 of 0 + -1 isn't done as unsigned. */ \
1146 int this_reg; \
1147 \
1148 DEBUG_STATEMENT (failure_id++); \
1149 DEBUG_STATEMENT (nfailure_points_pushed++); \
1150 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1151 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1152 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1153 \
1154 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
1155 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1156 \
1157 /* Ensure we have enough space allocated for what we will push. */ \
1158 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1159 { \
1160 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1161 return failure_code; \
1162 \
1163 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1164 (fail_stack).size); \
1165 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1166 } \
1167 \
1168 /* Push the info, starting with the registers. */ \
1169 DEBUG_PRINT1 ("\n"); \
1170 \
1171 if (1) \
1172 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1173 this_reg++) \
1174 { \
1175 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1176 DEBUG_STATEMENT (num_regs_pushed++); \
1177 \
1178 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1179 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1180 \
1181 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1182 PUSH_FAILURE_POINTER (regend[this_reg]); \
1183 \
1184 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1185 DEBUG_PRINT2 (" match_null=%d", \
1186 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1187 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1188 DEBUG_PRINT2 (" matched_something=%d", \
1189 MATCHED_SOMETHING (reg_info[this_reg])); \
1190 DEBUG_PRINT2 (" ever_matched=%d", \
1191 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1192 DEBUG_PRINT1 ("\n"); \
1193 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1194 } \
1195 \
1196 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1197 PUSH_FAILURE_INT (lowest_active_reg); \
1198 \
1199 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1200 PUSH_FAILURE_INT (highest_active_reg); \
1201 \
1202 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1203 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1204 PUSH_FAILURE_POINTER (pattern_place); \
1205 \
1206 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
1207 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1208 size2); \
1209 DEBUG_PRINT1 ("'\n"); \
1210 PUSH_FAILURE_POINTER (string_place); \
1211 \
1212 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1213 DEBUG_PUSH (failure_id); \
1214 } while (0)
1215
1216 /* This is the number of items that are pushed and popped on the stack
1217 for each register. */
1218 #define NUM_REG_ITEMS 3
1219
1220 /* Individual items aside from the registers. */
1221 #ifdef DEBUG
1222 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1223 #else
1224 #define NUM_NONREG_ITEMS 4
1225 #endif
1226
1227 /* We push at most this many items on the stack. */
1228 /* We used to use (num_regs - 1), which is the number of registers
1229 this regexp will save; but that was changed to 5
1230 to avoid stack overflow for a regexp with lots of parens. */
1231 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1232
1233 /* We actually push this many items. */
1234 #define NUM_FAILURE_ITEMS \
1235 (((0 \
1236 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1237 * NUM_REG_ITEMS) \
1238 + NUM_NONREG_ITEMS)
1239
1240 /* How many items can still be added to the stack without overflowing it. */
1241 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1242
1243
1244 /* Pops what PUSH_FAIL_STACK pushes.
1245
1246 We restore into the parameters, all of which should be lvalues:
1247 STR -- the saved data position.
1248 PAT -- the saved pattern position.
1249 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1250 REGSTART, REGEND -- arrays of string positions.
1251 REG_INFO -- array of information about each subexpression.
1252
1253 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1254 `pend', `string1', `size1', `string2', and `size2'. */
1255
1256 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1257 { \
1258 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1259 int this_reg; \
1260 const unsigned char *string_temp; \
1261 \
1262 assert (!FAIL_STACK_EMPTY ()); \
1263 \
1264 /* Remove failure points and point to how many regs pushed. */ \
1265 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1266 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1267 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1268 \
1269 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1270 \
1271 DEBUG_POP (&failure_id); \
1272 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1273 \
1274 /* If the saved string location is NULL, it came from an \
1275 on_failure_keep_string_jump opcode, and we want to throw away the \
1276 saved NULL, thus retaining our current position in the string. */ \
1277 string_temp = POP_FAILURE_POINTER (); \
1278 if (string_temp != NULL) \
1279 str = (const char *) string_temp; \
1280 \
1281 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1282 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1283 DEBUG_PRINT1 ("'\n"); \
1284 \
1285 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1286 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1287 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1288 \
1289 /* Restore register info. */ \
1290 high_reg = (unsigned) POP_FAILURE_INT (); \
1291 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1292 \
1293 low_reg = (unsigned) POP_FAILURE_INT (); \
1294 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1295 \
1296 if (1) \
1297 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1298 { \
1299 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
1300 \
1301 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1302 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
1303 \
1304 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1305 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1306 \
1307 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1308 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1309 } \
1310 else \
1311 { \
1312 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1313 { \
1314 reg_info[this_reg].word.integer = 0; \
1315 regend[this_reg] = 0; \
1316 regstart[this_reg] = 0; \
1317 } \
1318 highest_active_reg = high_reg; \
1319 } \
1320 \
1321 set_regs_matched_done = 0; \
1322 DEBUG_STATEMENT (nfailure_points_popped++); \
1323 } /* POP_FAILURE_POINT */
1324
1325
1326
1327 /* Structure for per-register (a.k.a. per-group) information.
1328 Other register information, such as the
1329 starting and ending positions (which are addresses), and the list of
1330 inner groups (which is a bits list) are maintained in separate
1331 variables.
1332
1333 We are making a (strictly speaking) nonportable assumption here: that
1334 the compiler will pack our bit fields into something that fits into
1335 the type of `word', i.e., is something that fits into one item on the
1336 failure stack. */
1337
1338 typedef union
1339 {
1340 fail_stack_elt_t word;
1341 struct
1342 {
1343 /* This field is one if this group can match the empty string,
1344 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1345 #define MATCH_NULL_UNSET_VALUE 3
1346 unsigned match_null_string_p : 2;
1347 unsigned is_active : 1;
1348 unsigned matched_something : 1;
1349 unsigned ever_matched_something : 1;
1350 } bits;
1351 } register_info_type;
1352
1353 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1354 #define IS_ACTIVE(R) ((R).bits.is_active)
1355 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1356 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1357
1358
1359 /* Call this when have matched a real character; it sets `matched' flags
1360 for the subexpressions which we are currently inside. Also records
1361 that those subexprs have matched. */
1362 #define SET_REGS_MATCHED() \
1363 do \
1364 { \
1365 if (!set_regs_matched_done) \
1366 { \
1367 unsigned r; \
1368 set_regs_matched_done = 1; \
1369 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1370 { \
1371 MATCHED_SOMETHING (reg_info[r]) \
1372 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1373 = 1; \
1374 } \
1375 } \
1376 } \
1377 while (0)
1378
1379 /* Registers are set to a sentinel when they haven't yet matched. */
1380 static char reg_unset_dummy;
1381 #define REG_UNSET_VALUE (®_unset_dummy)
1382 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1383
1384 /* Subroutine declarations and macros for regex_compile. */
1385
1386 static void store_op1 (), store_op2 ();
1387 static void insert_op1 (), insert_op2 ();
1388 static boolean at_begline_loc_p (), at_endline_loc_p ();
1389 static boolean group_in_compile_stack ();
1390 static reg_errcode_t compile_range ();
1391
1392 /* Fetch the next character in the uncompiled pattern---translating it
1393 if necessary. Also cast from a signed character in the constant
1394 string passed to us by the user to an unsigned char that we can use
1395 as an array index (in, e.g., `translate'). */
1396 #ifndef PATFETCH
1397 #define PATFETCH(c) \
1398 do {if (p == pend) return REG_EEND; \
1399 c = (unsigned char) *p++; \
1400 if (translate) c = (unsigned char) translate[c]; \
1401 } while (0)
1402 #endif
1403
1404 /* Fetch the next character in the uncompiled pattern, with no
1405 translation. */
1406 #define PATFETCH_RAW(c) \
1407 do {if (p == pend) return REG_EEND; \
1408 c = (unsigned char) *p++; \
1409 } while (0)
1410
1411 /* Go backwards one character in the pattern. */
1412 #define PATUNFETCH p--
1413
1414
1415 /* If `translate' is non-null, return translate[D], else just D. We
1416 cast the subscript to translate because some data is declared as
1417 `char *', to avoid warnings when a string constant is passed. But
1418 when we use a character as a subscript we must make it unsigned. */
1419 #ifndef TRANSLATE
1420 #define TRANSLATE(d) \
1421 (translate ? (char) translate[(unsigned char) (d)] : (d))
1422 #endif
1423
1424
1425 /* Macros for outputting the compiled pattern into `buffer'. */
1426
1427 /* If the buffer isn't allocated when it comes in, use this. */
1428 #define INIT_BUF_SIZE 32
1429
1430 /* Make sure we have at least N more bytes of space in buffer. */
1431 #define GET_BUFFER_SPACE(n) \
1432 while (b - bufp->buffer + (n) > bufp->allocated) \
1433 EXTEND_BUFFER ()
1434
1435 /* Make sure we have one more byte of buffer space and then add C to it. */
1436 #define BUF_PUSH(c) \
1437 do { \
1438 GET_BUFFER_SPACE (1); \
1439 *b++ = (unsigned char) (c); \
1440 } while (0)
1441
1442
1443 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1444 #define BUF_PUSH_2(c1, c2) \
1445 do { \
1446 GET_BUFFER_SPACE (2); \
1447 *b++ = (unsigned char) (c1); \
1448 *b++ = (unsigned char) (c2); \
1449 } while (0)
1450
1451
1452 /* As with BUF_PUSH_2, except for three bytes. */
1453 #define BUF_PUSH_3(c1, c2, c3) \
1454 do { \
1455 GET_BUFFER_SPACE (3); \
1456 *b++ = (unsigned char) (c1); \
1457 *b++ = (unsigned char) (c2); \
1458 *b++ = (unsigned char) (c3); \
1459 } while (0)
1460
1461
1462 /* Store a jump with opcode OP at LOC to location TO. We store a
1463 relative address offset by the three bytes the jump itself occupies. */
1464 #define STORE_JUMP(op, loc, to) \
1465 store_op1 (op, loc, (to) - (loc) - 3)
1466
1467 /* Likewise, for a two-argument jump. */
1468 #define STORE_JUMP2(op, loc, to, arg) \
1469 store_op2 (op, loc, (to) - (loc) - 3, arg)
1470
1471 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1472 #define INSERT_JUMP(op, loc, to) \
1473 insert_op1 (op, loc, (to) - (loc) - 3, b)
1474
1475 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1476 #define INSERT_JUMP2(op, loc, to, arg) \
1477 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1478
1479
1480 /* This is not an arbitrary limit: the arguments which represent offsets
1481 into the pattern are two bytes long. So if 2^16 bytes turns out to
1482 be too small, many things would have to change. */
1483 #define MAX_BUF_SIZE (1L << 16)
1484
1485
1486 /* Extend the buffer by twice its current size via realloc and
1487 reset the pointers that pointed into the old block to point to the
1488 correct places in the new one. If extending the buffer results in it
1489 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1490 #define EXTEND_BUFFER() \
1491 do { \
1492 unsigned char *old_buffer = bufp->buffer; \
1493 if (bufp->allocated == MAX_BUF_SIZE) \
1494 return REG_ESIZE; \
1495 bufp->allocated <<= 1; \
1496 if (bufp->allocated > MAX_BUF_SIZE) \
1497 bufp->allocated = MAX_BUF_SIZE; \
1498 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1499 if (bufp->buffer == NULL) \
1500 return REG_ESPACE; \
1501 /* If the buffer moved, move all the pointers into it. */ \
1502 if (old_buffer != bufp->buffer) \
1503 { \
1504 b = (b - old_buffer) + bufp->buffer; \
1505 begalt = (begalt - old_buffer) + bufp->buffer; \
1506 if (fixup_alt_jump) \
1507 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1508 if (laststart) \
1509 laststart = (laststart - old_buffer) + bufp->buffer; \
1510 if (pending_exact) \
1511 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1512 } \
1513 } while (0)
1514
1515
1516 /* Since we have one byte reserved for the register number argument to
1517 {start,stop}_memory, the maximum number of groups we can report
1518 things about is what fits in that byte. */
1519 #define MAX_REGNUM 255
1520
1521 /* But patterns can have more than `MAX_REGNUM' registers. We just
1522 ignore the excess. */
1523 typedef unsigned regnum_t;
1524
1525
1526 /* Macros for the compile stack. */
1527
1528 /* Since offsets can go either forwards or backwards, this type needs to
1529 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1530 typedef int pattern_offset_t;
1531
1532 typedef struct
1533 {
1534 pattern_offset_t begalt_offset;
1535 pattern_offset_t fixup_alt_jump;
1536 pattern_offset_t inner_group_offset;
1537 pattern_offset_t laststart_offset;
1538 regnum_t regnum;
1539 } compile_stack_elt_t;
1540
1541
1542 typedef struct
1543 {
1544 compile_stack_elt_t *stack;
1545 unsigned size;
1546 unsigned avail; /* Offset of next open position. */
1547 } compile_stack_type;
1548
1549
1550 #define INIT_COMPILE_STACK_SIZE 32
1551
1552 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1553 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1554
1555 /* The next available element. */
1556 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1557
1558
1559 /* Set the bit for character C in a list. */
1560 #define SET_LIST_BIT(c) \
1561 (b[((unsigned char) (c)) / BYTEWIDTH] \
1562 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1563
1564
1565 /* Get the next unsigned number in the uncompiled pattern. */
1566 #define GET_UNSIGNED_NUMBER(num) \
1567 { if (p != pend) \
1568 { \
1569 PATFETCH (c); \
1570 while (ISDIGIT (c)) \
1571 { \
1572 if (num < 0) \
1573 num = 0; \
1574 num = num * 10 + c - '0'; \
1575 if (p == pend) \
1576 break; \
1577 PATFETCH (c); \
1578 } \
1579 } \
1580 }
1581
1582 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1583
1584 #define IS_CHAR_CLASS(string) \
1585 (STREQ (string, "alpha") || STREQ (string, "upper") \
1586 || STREQ (string, "lower") || STREQ (string, "digit") \
1587 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1588 || STREQ (string, "space") || STREQ (string, "print") \
1589 || STREQ (string, "punct") || STREQ (string, "graph") \
1590 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1591
1592 #ifndef MATCH_MAY_ALLOCATE
1593
1594 /* If we cannot allocate large objects within re_match_2_internal,
1595 we make the fail stack and register vectors global.
1596 The fail stack, we grow to the maximum size when a regexp
1597 is compiled.
1598 The register vectors, we adjust in size each time we
1599 compile a regexp, according to the number of registers it needs. */
1600
1601 static fail_stack_type fail_stack;
1602
1603 /* Size with which the following vectors are currently allocated.
1604 That is so we can make them bigger as needed,
1605 but never make them smaller. */
1606 static int regs_allocated_size;
1607
1608 static const char ** regstart, ** regend;
1609 static const char ** old_regstart, ** old_regend;
1610 static const char **best_regstart, **best_regend;
1611 static register_info_type *reg_info;
1612 static const char **reg_dummy;
1613 static register_info_type *reg_info_dummy;
1614
1615 /* Make the register vectors big enough for NUM_REGS registers,
1616 but don't make them smaller. */
1617
1618 static
regex_grow_registers(num_regs)1619 regex_grow_registers (num_regs)
1620 int num_regs;
1621 {
1622 if (num_regs > regs_allocated_size)
1623 {
1624 RETALLOC_IF (regstart, num_regs, const char *);
1625 RETALLOC_IF (regend, num_regs, const char *);
1626 RETALLOC_IF (old_regstart, num_regs, const char *);
1627 RETALLOC_IF (old_regend, num_regs, const char *);
1628 RETALLOC_IF (best_regstart, num_regs, const char *);
1629 RETALLOC_IF (best_regend, num_regs, const char *);
1630 RETALLOC_IF (reg_info, num_regs, register_info_type);
1631 RETALLOC_IF (reg_dummy, num_regs, const char *);
1632 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1633
1634 regs_allocated_size = num_regs;
1635 }
1636 }
1637
1638 #endif /* not MATCH_MAY_ALLOCATE */
1639
1640 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1641 Returns one of error codes defined in `regex.h', or zero for success.
1642
1643 Assumes the `allocated' (and perhaps `buffer') and `translate'
1644 fields are set in BUFP on entry.
1645
1646 If it succeeds, results are put in BUFP (if it returns an error, the
1647 contents of BUFP are undefined):
1648 `buffer' is the compiled pattern;
1649 `syntax' is set to SYNTAX;
1650 `used' is set to the length of the compiled pattern;
1651 `fastmap_accurate' is zero;
1652 `re_nsub' is the number of subexpressions in PATTERN;
1653 `not_bol' and `not_eol' are zero;
1654
1655 The `fastmap' and `newline_anchor' fields are neither
1656 examined nor set. */
1657
1658 /* Return, freeing storage we allocated. */
1659 #define FREE_STACK_RETURN(value) \
1660 return (free (compile_stack.stack), value)
1661
1662 static reg_errcode_t
regex_compile(pattern,size,syntax,bufp)1663 regex_compile (pattern, size, syntax, bufp)
1664 const char *pattern;
1665 int size;
1666 reg_syntax_t syntax;
1667 struct re_pattern_buffer *bufp;
1668 {
1669 /* We fetch characters from PATTERN here. Even though PATTERN is
1670 `char *' (i.e., signed), we declare these variables as unsigned, so
1671 they can be reliably used as array indices. */
1672 register unsigned char c, c1;
1673
1674 /* A random temporary spot in PATTERN. */
1675 const char *p1;
1676
1677 /* Points to the end of the buffer, where we should append. */
1678 register unsigned char *b;
1679
1680 /* Keeps track of unclosed groups. */
1681 compile_stack_type compile_stack;
1682
1683 /* Points to the current (ending) position in the pattern. */
1684 const char *p = pattern;
1685 const char *pend = pattern + size;
1686
1687 /* How to translate the characters in the pattern. */
1688 RE_TRANSLATE_TYPE translate = bufp->translate;
1689
1690 /* Address of the count-byte of the most recently inserted `exactn'
1691 command. This makes it possible to tell if a new exact-match
1692 character can be added to that command or if the character requires
1693 a new `exactn' command. */
1694 unsigned char *pending_exact = 0;
1695
1696 /* Address of start of the most recently finished expression.
1697 This tells, e.g., postfix * where to find the start of its
1698 operand. Reset at the beginning of groups and alternatives. */
1699 unsigned char *laststart = 0;
1700
1701 /* Address of beginning of regexp, or inside of last group. */
1702 unsigned char *begalt;
1703
1704 /* Place in the uncompiled pattern (i.e., the {) to
1705 which to go back if the interval is invalid. */
1706 const char *beg_interval;
1707
1708 /* Address of the place where a forward jump should go to the end of
1709 the containing expression. Each alternative of an `or' -- except the
1710 last -- ends with a forward jump of this sort. */
1711 unsigned char *fixup_alt_jump = 0;
1712
1713 /* Counts open-groups as they are encountered. Remembered for the
1714 matching close-group on the compile stack, so the same register
1715 number is put in the stop_memory as the start_memory. */
1716 regnum_t regnum = 0;
1717
1718 #ifdef DEBUG
1719 DEBUG_PRINT1 ("\nCompiling pattern: ");
1720 if (debug)
1721 {
1722 unsigned debug_count;
1723
1724 for (debug_count = 0; debug_count < size; debug_count++)
1725 putchar (pattern[debug_count]);
1726 putchar ('\n');
1727 }
1728 #endif /* DEBUG */
1729
1730 /* Initialize the compile stack. */
1731 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1732 if (compile_stack.stack == NULL)
1733 return REG_ESPACE;
1734
1735 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1736 compile_stack.avail = 0;
1737
1738 /* Initialize the pattern buffer. */
1739 bufp->syntax = syntax;
1740 bufp->fastmap_accurate = 0;
1741 bufp->not_bol = bufp->not_eol = 0;
1742
1743 /* Set `used' to zero, so that if we return an error, the pattern
1744 printer (for debugging) will think there's no pattern. We reset it
1745 at the end. */
1746 bufp->used = 0;
1747
1748 /* Always count groups, whether or not bufp->no_sub is set. */
1749 bufp->re_nsub = 0;
1750
1751 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1752 /* Initialize the syntax table. */
1753 init_syntax_once ();
1754 #endif
1755
1756 if (bufp->allocated == 0)
1757 {
1758 if (bufp->buffer)
1759 { /* If zero allocated, but buffer is non-null, try to realloc
1760 enough space. This loses if buffer's address is bogus, but
1761 that is the user's responsibility. */
1762 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1763 }
1764 else
1765 { /* Caller did not allocate a buffer. Do it for them. */
1766 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1767 }
1768 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1769
1770 bufp->allocated = INIT_BUF_SIZE;
1771 }
1772
1773 begalt = b = bufp->buffer;
1774
1775 /* Loop through the uncompiled pattern until we're at the end. */
1776 while (p != pend)
1777 {
1778 PATFETCH (c);
1779
1780 switch (c)
1781 {
1782 case '^':
1783 {
1784 if ( /* If at start of pattern, it's an operator. */
1785 p == pattern + 1
1786 /* If context independent, it's an operator. */
1787 || syntax & RE_CONTEXT_INDEP_ANCHORS
1788 /* Otherwise, depends on what's come before. */
1789 || at_begline_loc_p (pattern, p, syntax))
1790 BUF_PUSH (begline);
1791 else
1792 goto normal_char;
1793 }
1794 break;
1795
1796
1797 case '$':
1798 {
1799 if ( /* If at end of pattern, it's an operator. */
1800 p == pend
1801 /* If context independent, it's an operator. */
1802 || syntax & RE_CONTEXT_INDEP_ANCHORS
1803 /* Otherwise, depends on what's next. */
1804 || at_endline_loc_p (p, pend, syntax))
1805 BUF_PUSH (endline);
1806 else
1807 goto normal_char;
1808 }
1809 break;
1810
1811
1812 case '+':
1813 case '?':
1814 if ((syntax & RE_BK_PLUS_QM)
1815 || (syntax & RE_LIMITED_OPS))
1816 goto normal_char;
1817 handle_plus:
1818 case '*':
1819 /* If there is no previous pattern... */
1820 if (!laststart)
1821 {
1822 if (syntax & RE_CONTEXT_INVALID_OPS)
1823 FREE_STACK_RETURN (REG_BADRPT);
1824 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1825 goto normal_char;
1826 }
1827
1828 {
1829 /* Are we optimizing this jump? */
1830 boolean keep_string_p = false;
1831
1832 /* 1 means zero (many) matches is allowed. */
1833 char zero_times_ok = 0, many_times_ok = 0;
1834
1835 /* If there is a sequence of repetition chars, collapse it
1836 down to just one (the right one). We can't combine
1837 interval operators with these because of, e.g., `a{2}*',
1838 which should only match an even number of `a's. */
1839
1840 for (;;)
1841 {
1842 zero_times_ok |= c != '+';
1843 many_times_ok |= c != '?';
1844
1845 if (p == pend)
1846 break;
1847
1848 PATFETCH (c);
1849
1850 if (c == '*'
1851 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1852 ;
1853
1854 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1855 {
1856 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1857
1858 PATFETCH (c1);
1859 if (!(c1 == '+' || c1 == '?'))
1860 {
1861 PATUNFETCH;
1862 PATUNFETCH;
1863 break;
1864 }
1865
1866 c = c1;
1867 }
1868 else
1869 {
1870 PATUNFETCH;
1871 break;
1872 }
1873
1874 /* If we get here, we found another repeat character. */
1875 }
1876
1877 /* Star, etc. applied to an empty pattern is equivalent
1878 to an empty pattern. */
1879 if (!laststart)
1880 break;
1881
1882 /* Now we know whether or not zero matches is allowed
1883 and also whether or not two or more matches is allowed. */
1884 if (many_times_ok)
1885 { /* More than one repetition is allowed, so put in at the
1886 end a backward relative jump from `b' to before the next
1887 jump we're going to put in below (which jumps from
1888 laststart to after this jump).
1889
1890 But if we are at the `*' in the exact sequence `.*\n',
1891 insert an unconditional jump backwards to the .,
1892 instead of the beginning of the loop. This way we only
1893 push a failure point once, instead of every time
1894 through the loop. */
1895 assert (p - 1 > pattern);
1896
1897 /* Allocate the space for the jump. */
1898 GET_BUFFER_SPACE (3);
1899
1900 /* We know we are not at the first character of the pattern,
1901 because laststart was nonzero. And we've already
1902 incremented `p', by the way, to be the character after
1903 the `*'. Do we have to do something analogous here
1904 for null bytes, because of RE_DOT_NOT_NULL? */
1905 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
1906 && zero_times_ok
1907 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1908 && !(syntax & RE_DOT_NEWLINE))
1909 { /* We have .*\n. */
1910 STORE_JUMP (jump, b, laststart);
1911 keep_string_p = true;
1912 }
1913 else
1914 /* Anything else. */
1915 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1916
1917 /* We've added more stuff to the buffer. */
1918 b += 3;
1919 }
1920
1921 /* On failure, jump from laststart to b + 3, which will be the
1922 end of the buffer after this jump is inserted. */
1923 GET_BUFFER_SPACE (3);
1924 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1925 : on_failure_jump,
1926 laststart, b + 3);
1927 pending_exact = 0;
1928 b += 3;
1929
1930 if (!zero_times_ok)
1931 {
1932 /* At least one repetition is required, so insert a
1933 `dummy_failure_jump' before the initial
1934 `on_failure_jump' instruction of the loop. This
1935 effects a skip over that instruction the first time
1936 we hit that loop. */
1937 GET_BUFFER_SPACE (3);
1938 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1939 b += 3;
1940 }
1941 }
1942 break;
1943
1944
1945 case '.':
1946 laststart = b;
1947 BUF_PUSH (anychar);
1948 break;
1949
1950
1951 case '[':
1952 {
1953 boolean had_char_class = false;
1954
1955 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
1956
1957 /* Ensure that we have enough space to push a charset: the
1958 opcode, the length count, and the bitset; 34 bytes in all. */
1959 GET_BUFFER_SPACE (34);
1960
1961 laststart = b;
1962
1963 /* We test `*p == '^' twice, instead of using an if
1964 statement, so we only need one BUF_PUSH. */
1965 BUF_PUSH (*p == '^' ? charset_not : charset);
1966 if (*p == '^')
1967 p++;
1968
1969 /* Remember the first position in the bracket expression. */
1970 p1 = p;
1971
1972 /* Push the number of bytes in the bitmap. */
1973 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1974
1975 /* Clear the whole map. */
1976 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1977
1978 /* charset_not matches newline according to a syntax bit. */
1979 if ((re_opcode_t) b[-2] == charset_not
1980 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1981 SET_LIST_BIT ('\n');
1982
1983 /* Read in characters and ranges, setting map bits. */
1984 for (;;)
1985 {
1986 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
1987
1988 PATFETCH (c);
1989
1990 /* \ might escape characters inside [...] and [^...]. */
1991 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1992 {
1993 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1994
1995 PATFETCH (c1);
1996 SET_LIST_BIT (c1);
1997 continue;
1998 }
1999
2000 /* Could be the end of the bracket expression. If it's
2001 not (i.e., when the bracket expression is `[]' so
2002 far), the ']' character bit gets set way below. */
2003 if (c == ']' && p != p1 + 1)
2004 break;
2005
2006 /* Look ahead to see if it's a range when the last thing
2007 was a character class. */
2008 if (had_char_class && c == '-' && *p != ']')
2009 FREE_STACK_RETURN (REG_ERANGE);
2010
2011 /* Look ahead to see if it's a range when the last thing
2012 was a character: if this is a hyphen not at the
2013 beginning or the end of a list, then it's the range
2014 operator. */
2015 if (c == '-'
2016 && !(p - 2 >= pattern && p[-2] == '[')
2017 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2018 && *p != ']')
2019 {
2020 reg_errcode_t ret
2021 = compile_range (&p, pend, translate, syntax, b);
2022 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2023 }
2024
2025 else if (p[0] == '-' && p[1] != ']')
2026 { /* This handles ranges made up of characters only. */
2027 reg_errcode_t ret;
2028
2029 /* Move past the `-'. */
2030 PATFETCH (c1);
2031
2032 ret = compile_range (&p, pend, translate, syntax, b);
2033 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2034 }
2035
2036 /* See if we're at the beginning of a possible character
2037 class. */
2038
2039 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2040 { /* Leave room for the null. */
2041 char str[CHAR_CLASS_MAX_LENGTH + 1];
2042
2043 PATFETCH (c);
2044 c1 = 0;
2045
2046 /* If pattern is `[[:'. */
2047 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2048
2049 for (;;)
2050 {
2051 PATFETCH (c);
2052 if (c == ':' || c == ']' || p == pend
2053 || c1 == CHAR_CLASS_MAX_LENGTH)
2054 break;
2055 str[c1++] = c;
2056 }
2057 str[c1] = '\0';
2058
2059 /* If isn't a word bracketed by `[:' and:`]':
2060 undo the ending character, the letters, and leave
2061 the leading `:' and `[' (but set bits for them). */
2062 if (c == ':' && *p == ']')
2063 {
2064 int ch;
2065 boolean is_alnum = STREQ (str, "alnum");
2066 boolean is_alpha = STREQ (str, "alpha");
2067 boolean is_blank = STREQ (str, "blank");
2068 boolean is_cntrl = STREQ (str, "cntrl");
2069 boolean is_digit = STREQ (str, "digit");
2070 boolean is_graph = STREQ (str, "graph");
2071 boolean is_lower = STREQ (str, "lower");
2072 boolean is_print = STREQ (str, "print");
2073 boolean is_punct = STREQ (str, "punct");
2074 boolean is_space = STREQ (str, "space");
2075 boolean is_upper = STREQ (str, "upper");
2076 boolean is_xdigit = STREQ (str, "xdigit");
2077
2078 if (!IS_CHAR_CLASS (str))
2079 FREE_STACK_RETURN (REG_ECTYPE);
2080
2081 /* Throw away the ] at the end of the character
2082 class. */
2083 PATFETCH (c);
2084
2085 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2086
2087 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2088 {
2089 int translated = TRANSLATE (ch);
2090 /* This was split into 3 if's to
2091 avoid an arbitrary limit in some compiler. */
2092 if ( (is_alnum && ISALNUM (ch))
2093 || (is_alpha && ISALPHA (ch))
2094 || (is_blank && ISBLANK (ch))
2095 || (is_cntrl && ISCNTRL (ch)))
2096 SET_LIST_BIT (translated);
2097 if ( (is_digit && ISDIGIT (ch))
2098 || (is_graph && ISGRAPH (ch))
2099 || (is_lower && ISLOWER (ch))
2100 || (is_print && ISPRINT (ch)))
2101 SET_LIST_BIT (translated);
2102 if ( (is_punct && ISPUNCT (ch))
2103 || (is_space && ISSPACE (ch))
2104 || (is_upper && ISUPPER (ch))
2105 || (is_xdigit && ISXDIGIT (ch)))
2106 SET_LIST_BIT (translated);
2107 }
2108 had_char_class = true;
2109 }
2110 else
2111 {
2112 c1++;
2113 while (c1--)
2114 PATUNFETCH;
2115 SET_LIST_BIT ('[');
2116 SET_LIST_BIT (':');
2117 had_char_class = false;
2118 }
2119 }
2120 else
2121 {
2122 had_char_class = false;
2123 SET_LIST_BIT (c);
2124 }
2125 }
2126
2127 /* Discard any (non)matching list bytes that are all 0 at the
2128 end of the map. Decrease the map-length byte too. */
2129 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2130 b[-1]--;
2131 b += b[-1];
2132 }
2133 break;
2134
2135
2136 case '(':
2137 if (syntax & RE_NO_BK_PARENS)
2138 goto handle_open;
2139 else
2140 goto normal_char;
2141
2142
2143 case ')':
2144 if (syntax & RE_NO_BK_PARENS)
2145 goto handle_close;
2146 else
2147 goto normal_char;
2148
2149
2150 case '\n':
2151 if (syntax & RE_NEWLINE_ALT)
2152 goto handle_alt;
2153 else
2154 goto normal_char;
2155
2156
2157 case '|':
2158 if (syntax & RE_NO_BK_VBAR)
2159 goto handle_alt;
2160 else
2161 goto normal_char;
2162
2163
2164 case '{':
2165 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2166 goto handle_interval;
2167 else
2168 goto normal_char;
2169
2170
2171 case '\\':
2172 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2173
2174 /* Do not translate the character after the \, so that we can
2175 distinguish, e.g., \B from \b, even if we normally would
2176 translate, e.g., B to b. */
2177 PATFETCH_RAW (c);
2178
2179 switch (c)
2180 {
2181 case '(':
2182 if (syntax & RE_NO_BK_PARENS)
2183 goto normal_backslash;
2184
2185 handle_open:
2186 bufp->re_nsub++;
2187 regnum++;
2188
2189 if (COMPILE_STACK_FULL)
2190 {
2191 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2192 compile_stack_elt_t);
2193 if (compile_stack.stack == NULL) return REG_ESPACE;
2194
2195 compile_stack.size <<= 1;
2196 }
2197
2198 /* These are the values to restore when we hit end of this
2199 group. They are all relative offsets, so that if the
2200 whole pattern moves because of realloc, they will still
2201 be valid. */
2202 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2203 COMPILE_STACK_TOP.fixup_alt_jump
2204 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2205 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2206 COMPILE_STACK_TOP.regnum = regnum;
2207
2208 /* We will eventually replace the 0 with the number of
2209 groups inner to this one. But do not push a
2210 start_memory for groups beyond the last one we can
2211 represent in the compiled pattern. */
2212 if (regnum <= MAX_REGNUM)
2213 {
2214 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2215 BUF_PUSH_3 (start_memory, regnum, 0);
2216 }
2217
2218 compile_stack.avail++;
2219
2220 fixup_alt_jump = 0;
2221 laststart = 0;
2222 begalt = b;
2223 /* If we've reached MAX_REGNUM groups, then this open
2224 won't actually generate any code, so we'll have to
2225 clear pending_exact explicitly. */
2226 pending_exact = 0;
2227 break;
2228
2229
2230 case ')':
2231 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2232
2233 if (COMPILE_STACK_EMPTY)
2234 {
2235 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2236 goto normal_backslash;
2237 else
2238 FREE_STACK_RETURN (REG_ERPAREN);
2239 }
2240
2241 handle_close:
2242 if (fixup_alt_jump)
2243 { /* Push a dummy failure point at the end of the
2244 alternative for a possible future
2245 `pop_failure_jump' to pop. See comments at
2246 `push_dummy_failure' in `re_match_2'. */
2247 BUF_PUSH (push_dummy_failure);
2248
2249 /* We allocated space for this jump when we assigned
2250 to `fixup_alt_jump', in the `handle_alt' case below. */
2251 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2252 }
2253
2254 /* See similar code for backslashed left paren above. */
2255 if (COMPILE_STACK_EMPTY)
2256 {
2257 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2258 goto normal_char;
2259 else
2260 FREE_STACK_RETURN (REG_ERPAREN);
2261 }
2262
2263 /* Since we just checked for an empty stack above, this
2264 ``can't happen''. */
2265 assert (compile_stack.avail != 0);
2266 {
2267 /* We don't just want to restore into `regnum', because
2268 later groups should continue to be numbered higher,
2269 as in `(ab)c(de)' -- the second group is #2. */
2270 regnum_t this_group_regnum;
2271
2272 compile_stack.avail--;
2273 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2274 fixup_alt_jump
2275 = COMPILE_STACK_TOP.fixup_alt_jump
2276 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2277 : 0;
2278 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2279 this_group_regnum = COMPILE_STACK_TOP.regnum;
2280 /* If we've reached MAX_REGNUM groups, then this open
2281 won't actually generate any code, so we'll have to
2282 clear pending_exact explicitly. */
2283 pending_exact = 0;
2284
2285 /* We're at the end of the group, so now we know how many
2286 groups were inside this one. */
2287 if (this_group_regnum <= MAX_REGNUM)
2288 {
2289 unsigned char *inner_group_loc
2290 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2291
2292 *inner_group_loc = regnum - this_group_regnum;
2293 BUF_PUSH_3 (stop_memory, this_group_regnum,
2294 regnum - this_group_regnum);
2295 }
2296 }
2297 break;
2298
2299
2300 case '|': /* `\|'. */
2301 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2302 goto normal_backslash;
2303 handle_alt:
2304 if (syntax & RE_LIMITED_OPS)
2305 goto normal_char;
2306
2307 /* Insert before the previous alternative a jump which
2308 jumps to this alternative if the former fails. */
2309 GET_BUFFER_SPACE (3);
2310 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2311 pending_exact = 0;
2312 b += 3;
2313
2314 /* The alternative before this one has a jump after it
2315 which gets executed if it gets matched. Adjust that
2316 jump so it will jump to this alternative's analogous
2317 jump (put in below, which in turn will jump to the next
2318 (if any) alternative's such jump, etc.). The last such
2319 jump jumps to the correct final destination. A picture:
2320 _____ _____
2321 | | | |
2322 | v | v
2323 a | b | c
2324
2325 If we are at `b', then fixup_alt_jump right now points to a
2326 three-byte space after `a'. We'll put in the jump, set
2327 fixup_alt_jump to right after `b', and leave behind three
2328 bytes which we'll fill in when we get to after `c'. */
2329
2330 if (fixup_alt_jump)
2331 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2332
2333 /* Mark and leave space for a jump after this alternative,
2334 to be filled in later either by next alternative or
2335 when know we're at the end of a series of alternatives. */
2336 fixup_alt_jump = b;
2337 GET_BUFFER_SPACE (3);
2338 b += 3;
2339
2340 laststart = 0;
2341 begalt = b;
2342 break;
2343
2344
2345 case '{':
2346 /* If \{ is a literal. */
2347 if (!(syntax & RE_INTERVALS)
2348 /* If we're at `\{' and it's not the open-interval
2349 operator. */
2350 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2351 || (p - 2 == pattern && p == pend))
2352 goto normal_backslash;
2353
2354 handle_interval:
2355 {
2356 /* If got here, then the syntax allows intervals. */
2357
2358 /* At least (most) this many matches must be made. */
2359 int lower_bound = -1, upper_bound = -1;
2360
2361 beg_interval = p - 1;
2362
2363 if (p == pend)
2364 {
2365 if (syntax & RE_NO_BK_BRACES)
2366 goto unfetch_interval;
2367 else
2368 FREE_STACK_RETURN (REG_EBRACE);
2369 }
2370
2371 GET_UNSIGNED_NUMBER (lower_bound);
2372
2373 if (c == ',')
2374 {
2375 GET_UNSIGNED_NUMBER (upper_bound);
2376 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2377 }
2378 else
2379 /* Interval such as `{1}' => match exactly once. */
2380 upper_bound = lower_bound;
2381
2382 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2383 || lower_bound > upper_bound)
2384 {
2385 if (syntax & RE_NO_BK_BRACES)
2386 goto unfetch_interval;
2387 else
2388 FREE_STACK_RETURN (REG_BADBR);
2389 }
2390
2391 if (!(syntax & RE_NO_BK_BRACES))
2392 {
2393 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2394
2395 PATFETCH (c);
2396 }
2397
2398 if (c != '}')
2399 {
2400 if (syntax & RE_NO_BK_BRACES)
2401 goto unfetch_interval;
2402 else
2403 FREE_STACK_RETURN (REG_BADBR);
2404 }
2405
2406 /* We just parsed a valid interval. */
2407
2408 /* If it's invalid to have no preceding re. */
2409 if (!laststart)
2410 {
2411 if (syntax & RE_CONTEXT_INVALID_OPS)
2412 FREE_STACK_RETURN (REG_BADRPT);
2413 else if (syntax & RE_CONTEXT_INDEP_OPS)
2414 laststart = b;
2415 else
2416 goto unfetch_interval;
2417 }
2418
2419 /* If the upper bound is zero, don't want to succeed at
2420 all; jump from `laststart' to `b + 3', which will be
2421 the end of the buffer after we insert the jump. */
2422 if (upper_bound == 0)
2423 {
2424 GET_BUFFER_SPACE (3);
2425 INSERT_JUMP (jump, laststart, b + 3);
2426 b += 3;
2427 }
2428
2429 /* Otherwise, we have a nontrivial interval. When
2430 we're all done, the pattern will look like:
2431 set_number_at <jump count> <upper bound>
2432 set_number_at <succeed_n count> <lower bound>
2433 succeed_n <after jump addr> <succeed_n count>
2434 <body of loop>
2435 jump_n <succeed_n addr> <jump count>
2436 (The upper bound and `jump_n' are omitted if
2437 `upper_bound' is 1, though.) */
2438 else
2439 { /* If the upper bound is > 1, we need to insert
2440 more at the end of the loop. */
2441 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2442
2443 GET_BUFFER_SPACE (nbytes);
2444
2445 /* Initialize lower bound of the `succeed_n', even
2446 though it will be set during matching by its
2447 attendant `set_number_at' (inserted next),
2448 because `re_compile_fastmap' needs to know.
2449 Jump to the `jump_n' we might insert below. */
2450 INSERT_JUMP2 (succeed_n, laststart,
2451 b + 5 + (upper_bound > 1) * 5,
2452 lower_bound);
2453 b += 5;
2454
2455 /* Code to initialize the lower bound. Insert
2456 before the `succeed_n'. The `5' is the last two
2457 bytes of this `set_number_at', plus 3 bytes of
2458 the following `succeed_n'. */
2459 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2460 b += 5;
2461
2462 if (upper_bound > 1)
2463 { /* More than one repetition is allowed, so
2464 append a backward jump to the `succeed_n'
2465 that starts this interval.
2466
2467 When we've reached this during matching,
2468 we'll have matched the interval once, so
2469 jump back only `upper_bound - 1' times. */
2470 STORE_JUMP2 (jump_n, b, laststart + 5,
2471 upper_bound - 1);
2472 b += 5;
2473
2474 /* The location we want to set is the second
2475 parameter of the `jump_n'; that is `b-2' as
2476 an absolute address. `laststart' will be
2477 the `set_number_at' we're about to insert;
2478 `laststart+3' the number to set, the source
2479 for the relative address. But we are
2480 inserting into the middle of the pattern --
2481 so everything is getting moved up by 5.
2482 Conclusion: (b - 2) - (laststart + 3) + 5,
2483 i.e., b - laststart.
2484
2485 We insert this at the beginning of the loop
2486 so that if we fail during matching, we'll
2487 reinitialize the bounds. */
2488 insert_op2 (set_number_at, laststart, b - laststart,
2489 upper_bound - 1, b);
2490 b += 5;
2491 }
2492 }
2493 pending_exact = 0;
2494 beg_interval = NULL;
2495 }
2496 break;
2497
2498 unfetch_interval:
2499 /* If an invalid interval, match the characters as literals. */
2500 assert (beg_interval);
2501 p = beg_interval;
2502 beg_interval = NULL;
2503
2504 /* normal_char and normal_backslash need `c'. */
2505 PATFETCH (c);
2506
2507 if (!(syntax & RE_NO_BK_BRACES))
2508 {
2509 if (p > pattern && p[-1] == '\\')
2510 goto normal_backslash;
2511 }
2512 goto normal_char;
2513
2514 #ifdef emacs
2515 /* There is no way to specify the before_dot and after_dot
2516 operators. rms says this is ok. --karl */
2517 case '=':
2518 BUF_PUSH (at_dot);
2519 break;
2520
2521 case 's':
2522 laststart = b;
2523 PATFETCH (c);
2524 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2525 break;
2526
2527 case 'S':
2528 laststart = b;
2529 PATFETCH (c);
2530 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2531 break;
2532 #endif /* emacs */
2533
2534
2535 case 'w':
2536 laststart = b;
2537 BUF_PUSH (wordchar);
2538 break;
2539
2540
2541 case 'W':
2542 laststart = b;
2543 BUF_PUSH (notwordchar);
2544 break;
2545
2546
2547 case '<':
2548 BUF_PUSH (wordbeg);
2549 break;
2550
2551 case '>':
2552 BUF_PUSH (wordend);
2553 break;
2554
2555 case 'b':
2556 BUF_PUSH (wordbound);
2557 break;
2558
2559 case 'B':
2560 BUF_PUSH (notwordbound);
2561 break;
2562
2563 case '`':
2564 BUF_PUSH (begbuf);
2565 break;
2566
2567 case '\'':
2568 BUF_PUSH (endbuf);
2569 break;
2570
2571 case '1': case '2': case '3': case '4': case '5':
2572 case '6': case '7': case '8': case '9':
2573 if (syntax & RE_NO_BK_REFS)
2574 goto normal_char;
2575
2576 c1 = c - '0';
2577
2578 if (c1 > regnum)
2579 FREE_STACK_RETURN (REG_ESUBREG);
2580
2581 /* Can't back reference to a subexpression if inside of it. */
2582 if (group_in_compile_stack (compile_stack, c1))
2583 goto normal_char;
2584
2585 laststart = b;
2586 BUF_PUSH_2 (duplicate, c1);
2587 break;
2588
2589
2590 case '+':
2591 case '?':
2592 if (syntax & RE_BK_PLUS_QM)
2593 goto handle_plus;
2594 else
2595 goto normal_backslash;
2596
2597 default:
2598 normal_backslash:
2599 /* You might think it would be useful for \ to mean
2600 not to translate; but if we don't translate it
2601 it will never match anything. */
2602 c = TRANSLATE (c);
2603 goto normal_char;
2604 }
2605 break;
2606
2607
2608 default:
2609 /* Expects the character in `c'. */
2610 normal_char:
2611 /* If no exactn currently being built. */
2612 if (!pending_exact
2613
2614 /* If last exactn not at current position. */
2615 || pending_exact + *pending_exact + 1 != b
2616
2617 /* We have only one byte following the exactn for the count. */
2618 || *pending_exact == (1 << BYTEWIDTH) - 1
2619
2620 /* If followed by a repetition operator. */
2621 || *p == '*' || *p == '^'
2622 || ((syntax & RE_BK_PLUS_QM)
2623 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2624 : (*p == '+' || *p == '?'))
2625 || ((syntax & RE_INTERVALS)
2626 && ((syntax & RE_NO_BK_BRACES)
2627 ? *p == '{'
2628 : (p[0] == '\\' && p[1] == '{'))))
2629 {
2630 /* Start building a new exactn. */
2631
2632 laststart = b;
2633
2634 BUF_PUSH_2 (exactn, 0);
2635 pending_exact = b - 1;
2636 }
2637
2638 BUF_PUSH (c);
2639 (*pending_exact)++;
2640 break;
2641 } /* switch (c) */
2642 } /* while p != pend */
2643
2644
2645 /* Through the pattern now. */
2646
2647 if (fixup_alt_jump)
2648 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2649
2650 if (!COMPILE_STACK_EMPTY)
2651 FREE_STACK_RETURN (REG_EPAREN);
2652
2653 /* If we don't want backtracking, force success
2654 the first time we reach the end of the compiled pattern. */
2655 if (syntax & RE_NO_POSIX_BACKTRACKING)
2656 BUF_PUSH (succeed);
2657
2658 free (compile_stack.stack);
2659
2660 /* We have succeeded; set the length of the buffer. */
2661 bufp->used = b - bufp->buffer;
2662
2663 #ifdef DEBUG
2664 if (debug)
2665 {
2666 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2667 print_compiled_pattern (bufp);
2668 }
2669 #endif /* DEBUG */
2670
2671 #ifndef MATCH_MAY_ALLOCATE
2672 /* Initialize the failure stack to the largest possible stack. This
2673 isn't necessary unless we're trying to avoid calling alloca in
2674 the search and match routines. */
2675 {
2676 int num_regs = bufp->re_nsub + 1;
2677
2678 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2679 is strictly greater than re_max_failures, the largest possible stack
2680 is 2 * re_max_failures failure points. */
2681 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2682 {
2683 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2684
2685 #ifdef emacs
2686 if (! fail_stack.stack)
2687 fail_stack.stack
2688 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2689 * sizeof (fail_stack_elt_t));
2690 else
2691 fail_stack.stack
2692 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2693 (fail_stack.size
2694 * sizeof (fail_stack_elt_t)));
2695 #else /* not emacs */
2696 if (! fail_stack.stack)
2697 fail_stack.stack
2698 = (fail_stack_elt_t *) malloc (fail_stack.size
2699 * sizeof (fail_stack_elt_t));
2700 else
2701 fail_stack.stack
2702 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2703 (fail_stack.size
2704 * sizeof (fail_stack_elt_t)));
2705 #endif /* not emacs */
2706 }
2707
2708 regex_grow_registers (num_regs);
2709 }
2710 #endif /* not MATCH_MAY_ALLOCATE */
2711
2712 return REG_NOERROR;
2713 } /* regex_compile */
2714
2715 /* Subroutines for `regex_compile'. */
2716
2717 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2718
2719 static void
store_op1(op,loc,arg)2720 store_op1 (op, loc, arg)
2721 re_opcode_t op;
2722 unsigned char *loc;
2723 int arg;
2724 {
2725 *loc = (unsigned char) op;
2726 STORE_NUMBER (loc + 1, arg);
2727 }
2728
2729
2730 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2731
2732 static void
store_op2(op,loc,arg1,arg2)2733 store_op2 (op, loc, arg1, arg2)
2734 re_opcode_t op;
2735 unsigned char *loc;
2736 int arg1, arg2;
2737 {
2738 *loc = (unsigned char) op;
2739 STORE_NUMBER (loc + 1, arg1);
2740 STORE_NUMBER (loc + 3, arg2);
2741 }
2742
2743
2744 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2745 for OP followed by two-byte integer parameter ARG. */
2746
2747 static void
insert_op1(op,loc,arg,end)2748 insert_op1 (op, loc, arg, end)
2749 re_opcode_t op;
2750 unsigned char *loc;
2751 int arg;
2752 unsigned char *end;
2753 {
2754 register unsigned char *pfrom = end;
2755 register unsigned char *pto = end + 3;
2756
2757 while (pfrom != loc)
2758 *--pto = *--pfrom;
2759
2760 store_op1 (op, loc, arg);
2761 }
2762
2763
2764 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2765
2766 static void
insert_op2(op,loc,arg1,arg2,end)2767 insert_op2 (op, loc, arg1, arg2, end)
2768 re_opcode_t op;
2769 unsigned char *loc;
2770 int arg1, arg2;
2771 unsigned char *end;
2772 {
2773 register unsigned char *pfrom = end;
2774 register unsigned char *pto = end + 5;
2775
2776 while (pfrom != loc)
2777 *--pto = *--pfrom;
2778
2779 store_op2 (op, loc, arg1, arg2);
2780 }
2781
2782
2783 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2784 after an alternative or a begin-subexpression. We assume there is at
2785 least one character before the ^. */
2786
2787 static boolean
at_begline_loc_p(pattern,p,syntax)2788 at_begline_loc_p (pattern, p, syntax)
2789 const char *pattern, *p;
2790 reg_syntax_t syntax;
2791 {
2792 const char *prev = p - 2;
2793 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2794
2795 return
2796 /* After a subexpression? */
2797 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2798 /* After an alternative? */
2799 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2800 }
2801
2802
2803 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2804 at least one character after the $, i.e., `P < PEND'. */
2805
2806 static boolean
at_endline_loc_p(p,pend,syntax)2807 at_endline_loc_p (p, pend, syntax)
2808 const char *p, *pend;
2809 int syntax;
2810 {
2811 const char *next = p;
2812 boolean next_backslash = *next == '\\';
2813 const char *next_next = p + 1 < pend ? p + 1 : 0;
2814
2815 return
2816 /* Before a subexpression? */
2817 (syntax & RE_NO_BK_PARENS ? *next == ')'
2818 : next_backslash && next_next && *next_next == ')')
2819 /* Before an alternative? */
2820 || (syntax & RE_NO_BK_VBAR ? *next == '|'
2821 : next_backslash && next_next && *next_next == '|');
2822 }
2823
2824
2825 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2826 false if it's not. */
2827
2828 static boolean
group_in_compile_stack(compile_stack,regnum)2829 group_in_compile_stack (compile_stack, regnum)
2830 compile_stack_type compile_stack;
2831 regnum_t regnum;
2832 {
2833 int this_element;
2834
2835 for (this_element = compile_stack.avail - 1;
2836 this_element >= 0;
2837 this_element--)
2838 if (compile_stack.stack[this_element].regnum == regnum)
2839 return true;
2840
2841 return false;
2842 }
2843
2844
2845 /* Read the ending character of a range (in a bracket expression) from the
2846 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2847 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2848 Then we set the translation of all bits between the starting and
2849 ending characters (inclusive) in the compiled pattern B.
2850
2851 Return an error code.
2852
2853 We use these short variable names so we can use the same macros as
2854 `regex_compile' itself. */
2855
2856 static reg_errcode_t
compile_range(p_ptr,pend,translate,syntax,b)2857 compile_range (p_ptr, pend, translate, syntax, b)
2858 const char **p_ptr, *pend;
2859 RE_TRANSLATE_TYPE translate;
2860 reg_syntax_t syntax;
2861 unsigned char *b;
2862 {
2863 unsigned this_char;
2864
2865 const char *p = *p_ptr;
2866 int range_start, range_end;
2867
2868 if (p == pend)
2869 return REG_ERANGE;
2870
2871 /* Even though the pattern is a signed `char *', we need to fetch
2872 with unsigned char *'s; if the high bit of the pattern character
2873 is set, the range endpoints will be negative if we fetch using a
2874 signed char *.
2875
2876 We also want to fetch the endpoints without translating them; the
2877 appropriate translation is done in the bit-setting loop below. */
2878 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
2879 range_start = ((const unsigned char *) p)[-2];
2880 range_end = ((const unsigned char *) p)[0];
2881
2882 /* Have to increment the pointer into the pattern string, so the
2883 caller isn't still at the ending character. */
2884 (*p_ptr)++;
2885
2886 /* If the start is after the end, the range is empty. */
2887 if (range_start > range_end)
2888 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2889
2890 /* Here we see why `this_char' has to be larger than an `unsigned
2891 char' -- the range is inclusive, so if `range_end' == 0xff
2892 (assuming 8-bit characters), we would otherwise go into an infinite
2893 loop, since all characters <= 0xff. */
2894 for (this_char = range_start; this_char <= range_end; this_char++)
2895 {
2896 SET_LIST_BIT (TRANSLATE (this_char));
2897 }
2898
2899 return REG_NOERROR;
2900 }
2901
2902 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2903 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2904 characters can start a string that matches the pattern. This fastmap
2905 is used by re_search to skip quickly over impossible starting points.
2906
2907 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2908 area as BUFP->fastmap.
2909
2910 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2911 the pattern buffer.
2912
2913 Returns 0 if we succeed, -2 if an internal error. */
2914
2915 int
re_compile_fastmap(bufp)2916 re_compile_fastmap (bufp)
2917 struct re_pattern_buffer *bufp;
2918 {
2919 int j, k;
2920 #ifdef MATCH_MAY_ALLOCATE
2921 fail_stack_type fail_stack;
2922 #endif
2923 #ifndef REGEX_MALLOC
2924 char *destination;
2925 #endif
2926 /* We don't push any register information onto the failure stack. */
2927 unsigned num_regs = 0;
2928
2929 register char *fastmap = bufp->fastmap;
2930 unsigned char *pattern = bufp->buffer;
2931 unsigned long size = bufp->used;
2932 unsigned char *p = pattern;
2933 register unsigned char *pend = pattern + size;
2934
2935 /* This holds the pointer to the failure stack, when
2936 it is allocated relocatably. */
2937 #ifdef REL_ALLOC
2938 fail_stack_elt_t *failure_stack_ptr;
2939 #endif
2940
2941 /* Assume that each path through the pattern can be null until
2942 proven otherwise. We set this false at the bottom of switch
2943 statement, to which we get only if a particular path doesn't
2944 match the empty string. */
2945 boolean path_can_be_null = true;
2946
2947 /* We aren't doing a `succeed_n' to begin with. */
2948 boolean succeed_n_p = false;
2949
2950 assert (fastmap != NULL && p != NULL);
2951
2952 INIT_FAIL_STACK ();
2953 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
2954 bufp->fastmap_accurate = 1; /* It will be when we're done. */
2955 bufp->can_be_null = 0;
2956
2957 while (1)
2958 {
2959 if (p == pend || *p == succeed)
2960 {
2961 /* We have reached the (effective) end of pattern. */
2962 if (!FAIL_STACK_EMPTY ())
2963 {
2964 bufp->can_be_null |= path_can_be_null;
2965
2966 /* Reset for next path. */
2967 path_can_be_null = true;
2968
2969 p = fail_stack.stack[--fail_stack.avail].pointer;
2970
2971 continue;
2972 }
2973 else
2974 break;
2975 }
2976
2977 /* We should never be about to go beyond the end of the pattern. */
2978 assert (p < pend);
2979
2980 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
2981 {
2982
2983 /* I guess the idea here is to simply not bother with a fastmap
2984 if a backreference is used, since it's too hard to figure out
2985 the fastmap for the corresponding group. Setting
2986 `can_be_null' stops `re_search_2' from using the fastmap, so
2987 that is all we do. */
2988 case duplicate:
2989 bufp->can_be_null = 1;
2990 goto done;
2991
2992
2993 /* Following are the cases which match a character. These end
2994 with `break'. */
2995
2996 case exactn:
2997 fastmap[p[1]] = 1;
2998 break;
2999
3000
3001 case charset:
3002 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3003 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3004 fastmap[j] = 1;
3005 break;
3006
3007
3008 case charset_not:
3009 /* Chars beyond end of map must be allowed. */
3010 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3011 fastmap[j] = 1;
3012
3013 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3014 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3015 fastmap[j] = 1;
3016 break;
3017
3018
3019 case wordchar:
3020 for (j = 0; j < (1 << BYTEWIDTH); j++)
3021 if (SYNTAX (j) == Sword)
3022 fastmap[j] = 1;
3023 break;
3024
3025
3026 case notwordchar:
3027 for (j = 0; j < (1 << BYTEWIDTH); j++)
3028 if (SYNTAX (j) != Sword)
3029 fastmap[j] = 1;
3030 break;
3031
3032
3033 case anychar:
3034 {
3035 int fastmap_newline = fastmap['\n'];
3036
3037 /* `.' matches anything ... */
3038 for (j = 0; j < (1 << BYTEWIDTH); j++)
3039 fastmap[j] = 1;
3040
3041 /* ... except perhaps newline. */
3042 if (!(bufp->syntax & RE_DOT_NEWLINE))
3043 fastmap['\n'] = fastmap_newline;
3044
3045 /* Return if we have already set `can_be_null'; if we have,
3046 then the fastmap is irrelevant. Something's wrong here. */
3047 else if (bufp->can_be_null)
3048 goto done;
3049
3050 /* Otherwise, have to check alternative paths. */
3051 break;
3052 }
3053
3054 #ifdef emacs
3055 case syntaxspec:
3056 k = *p++;
3057 for (j = 0; j < (1 << BYTEWIDTH); j++)
3058 if (SYNTAX (j) == (enum syntaxcode) k)
3059 fastmap[j] = 1;
3060 break;
3061
3062
3063 case notsyntaxspec:
3064 k = *p++;
3065 for (j = 0; j < (1 << BYTEWIDTH); j++)
3066 if (SYNTAX (j) != (enum syntaxcode) k)
3067 fastmap[j] = 1;
3068 break;
3069
3070
3071 /* All cases after this match the empty string. These end with
3072 `continue'. */
3073
3074
3075 case before_dot:
3076 case at_dot:
3077 case after_dot:
3078 continue;
3079 #endif /* emacs */
3080
3081
3082 case no_op:
3083 case begline:
3084 case endline:
3085 case begbuf:
3086 case endbuf:
3087 case wordbound:
3088 case notwordbound:
3089 case wordbeg:
3090 case wordend:
3091 case push_dummy_failure:
3092 continue;
3093
3094
3095 case jump_n:
3096 case pop_failure_jump:
3097 case maybe_pop_jump:
3098 case jump:
3099 case jump_past_alt:
3100 case dummy_failure_jump:
3101 EXTRACT_NUMBER_AND_INCR (j, p);
3102 p += j;
3103 if (j > 0)
3104 continue;
3105
3106 /* Jump backward implies we just went through the body of a
3107 loop and matched nothing. Opcode jumped to should be
3108 `on_failure_jump' or `succeed_n'. Just treat it like an
3109 ordinary jump. For a * loop, it has pushed its failure
3110 point already; if so, discard that as redundant. */
3111 if ((re_opcode_t) *p != on_failure_jump
3112 && (re_opcode_t) *p != succeed_n)
3113 continue;
3114
3115 p++;
3116 EXTRACT_NUMBER_AND_INCR (j, p);
3117 p += j;
3118
3119 /* If what's on the stack is where we are now, pop it. */
3120 if (!FAIL_STACK_EMPTY ()
3121 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3122 fail_stack.avail--;
3123
3124 continue;
3125
3126
3127 case on_failure_jump:
3128 case on_failure_keep_string_jump:
3129 handle_on_failure_jump:
3130 EXTRACT_NUMBER_AND_INCR (j, p);
3131
3132 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3133 end of the pattern. We don't want to push such a point,
3134 since when we restore it above, entering the switch will
3135 increment `p' past the end of the pattern. We don't need
3136 to push such a point since we obviously won't find any more
3137 fastmap entries beyond `pend'. Such a pattern can match
3138 the null string, though. */
3139 if (p + j < pend)
3140 {
3141 if (!PUSH_PATTERN_OP (p + j, fail_stack))
3142 {
3143 RESET_FAIL_STACK ();
3144 return -2;
3145 }
3146 }
3147 else
3148 bufp->can_be_null = 1;
3149
3150 if (succeed_n_p)
3151 {
3152 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3153 succeed_n_p = false;
3154 }
3155
3156 continue;
3157
3158
3159 case succeed_n:
3160 /* Get to the number of times to succeed. */
3161 p += 2;
3162
3163 /* Increment p past the n for when k != 0. */
3164 EXTRACT_NUMBER_AND_INCR (k, p);
3165 if (k == 0)
3166 {
3167 p -= 4;
3168 succeed_n_p = true; /* Spaghetti code alert. */
3169 goto handle_on_failure_jump;
3170 }
3171 continue;
3172
3173
3174 case set_number_at:
3175 p += 4;
3176 continue;
3177
3178
3179 case start_memory:
3180 case stop_memory:
3181 p += 2;
3182 continue;
3183
3184
3185 default:
3186 abort (); /* We have listed all the cases. */
3187 } /* switch *p++ */
3188
3189 /* Getting here means we have found the possible starting
3190 characters for one path of the pattern -- and that the empty
3191 string does not match. We need not follow this path further.
3192 Instead, look at the next alternative (remembered on the
3193 stack), or quit if no more. The test at the top of the loop
3194 does these things. */
3195 path_can_be_null = false;
3196 p = pend;
3197 } /* while p */
3198
3199 /* Set `can_be_null' for the last path (also the first path, if the
3200 pattern is empty). */
3201 bufp->can_be_null |= path_can_be_null;
3202
3203 done:
3204 RESET_FAIL_STACK ();
3205 return 0;
3206 } /* re_compile_fastmap */
3207
3208 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3209 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3210 this memory for recording register information. STARTS and ENDS
3211 must be allocated using the malloc library routine, and must each
3212 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3213
3214 If NUM_REGS == 0, then subsequent matches should allocate their own
3215 register data.
3216
3217 Unless this function is called, the first search or match using
3218 PATTERN_BUFFER will allocate its own register data, without
3219 freeing the old data. */
3220
3221 void
re_set_registers(bufp,regs,num_regs,starts,ends)3222 re_set_registers (bufp, regs, num_regs, starts, ends)
3223 struct re_pattern_buffer *bufp;
3224 struct re_registers *regs;
3225 unsigned num_regs;
3226 regoff_t *starts, *ends;
3227 {
3228 if (num_regs)
3229 {
3230 bufp->regs_allocated = REGS_REALLOCATE;
3231 regs->num_regs = num_regs;
3232 regs->start = starts;
3233 regs->end = ends;
3234 }
3235 else
3236 {
3237 bufp->regs_allocated = REGS_UNALLOCATED;
3238 regs->num_regs = 0;
3239 regs->start = regs->end = (regoff_t *) 0;
3240 }
3241 }
3242
3243 /* Searching routines. */
3244
3245 /* Like re_search_2, below, but only one string is specified, and
3246 doesn't let you say where to stop matching. */
3247
3248 int
re_search(bufp,string,size,startpos,range,regs)3249 re_search (bufp, string, size, startpos, range, regs)
3250 struct re_pattern_buffer *bufp;
3251 const char *string;
3252 int size, startpos, range;
3253 struct re_registers *regs;
3254 {
3255 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3256 regs, size);
3257 }
3258
3259
3260 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3261 virtual concatenation of STRING1 and STRING2, starting first at index
3262 STARTPOS, then at STARTPOS + 1, and so on.
3263
3264 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3265
3266 RANGE is how far to scan while trying to match. RANGE = 0 means try
3267 only at STARTPOS; in general, the last start tried is STARTPOS +
3268 RANGE.
3269
3270 In REGS, return the indices of the virtual concatenation of STRING1
3271 and STRING2 that matched the entire BUFP->buffer and its contained
3272 subexpressions.
3273
3274 Do not consider matching one past the index STOP in the virtual
3275 concatenation of STRING1 and STRING2.
3276
3277 We return either the position in the strings at which the match was
3278 found, -1 if no match, or -2 if error (such as failure
3279 stack overflow). */
3280
3281 int
re_search_2(bufp,string1,size1,string2,size2,startpos,range,regs,stop)3282 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3283 struct re_pattern_buffer *bufp;
3284 const char *string1, *string2;
3285 int size1, size2;
3286 int startpos;
3287 int range;
3288 struct re_registers *regs;
3289 int stop;
3290 {
3291 int val;
3292 register char *fastmap = bufp->fastmap;
3293 register RE_TRANSLATE_TYPE translate = bufp->translate;
3294 int total_size = size1 + size2;
3295 int endpos = startpos + range;
3296 int anchored_start = 0;
3297
3298 /* Check for out-of-range STARTPOS. */
3299 if (startpos < 0 || startpos > total_size)
3300 return -1;
3301
3302 /* Fix up RANGE if it might eventually take us outside
3303 the virtual concatenation of STRING1 and STRING2.
3304 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3305 if (endpos < 0)
3306 range = 0 - startpos;
3307 else if (endpos > total_size)
3308 range = total_size - startpos;
3309
3310 /* If the search isn't to be a backwards one, don't waste time in a
3311 search for a pattern that must be anchored. */
3312 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3313 {
3314 if (startpos > 0)
3315 return -1;
3316 else
3317 range = 1;
3318 }
3319
3320 #ifdef emacs
3321 /* In a forward search for something that starts with \=.
3322 don't keep searching past point. */
3323 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3324 {
3325 range = PT - startpos;
3326 if (range <= 0)
3327 return -1;
3328 }
3329 #endif /* emacs */
3330
3331 /* Update the fastmap now if not correct already. */
3332 if (fastmap && !bufp->fastmap_accurate)
3333 if (re_compile_fastmap (bufp) == -2)
3334 return -2;
3335
3336 /* See whether the pattern is anchored. */
3337 if (bufp->buffer[0] == begline)
3338 anchored_start = 1;
3339
3340 /* Loop through the string, looking for a place to start matching. */
3341 for (;;)
3342 {
3343 /* If the pattern is anchored,
3344 skip quickly past places we cannot match.
3345 We don't bother to treat startpos == 0 specially
3346 because that case doesn't repeat. */
3347 if (anchored_start && startpos > 0)
3348 {
3349 if (! (bufp->newline_anchor
3350 && ((startpos <= size1 ? string1[startpos - 1]
3351 : string2[startpos - size1 - 1])
3352 == '\n')))
3353 goto advance;
3354 }
3355
3356 /* If a fastmap is supplied, skip quickly over characters that
3357 cannot be the start of a match. If the pattern can match the
3358 null string, however, we don't need to skip characters; we want
3359 the first null string. */
3360 if (fastmap && startpos < total_size && !bufp->can_be_null)
3361 {
3362 if (range > 0) /* Searching forwards. */
3363 {
3364 register const char *d;
3365 register int lim = 0;
3366 int irange = range;
3367
3368 if (startpos < size1 && startpos + range >= size1)
3369 lim = range - (size1 - startpos);
3370
3371 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3372
3373 /* Written out as an if-else to avoid testing `translate'
3374 inside the loop. */
3375 if (translate)
3376 while (range > lim
3377 && !fastmap[(unsigned char)
3378 translate[(unsigned char) *d++]])
3379 range--;
3380 else
3381 while (range > lim && !fastmap[(unsigned char) *d++])
3382 range--;
3383
3384 startpos += irange - range;
3385 }
3386 else /* Searching backwards. */
3387 {
3388 register char c = (size1 == 0 || startpos >= size1
3389 ? string2[startpos - size1]
3390 : string1[startpos]);
3391
3392 if (!fastmap[(unsigned char) TRANSLATE (c)])
3393 goto advance;
3394 }
3395 }
3396
3397 /* If can't match the null string, and that's all we have left, fail. */
3398 if (range >= 0 && startpos == total_size && fastmap
3399 && !bufp->can_be_null)
3400 return -1;
3401
3402 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3403 startpos, regs, stop);
3404 #ifndef REGEX_MALLOC
3405 #ifdef C_ALLOCA
3406 alloca (0);
3407 #endif
3408 #endif
3409
3410 if (val >= 0)
3411 return startpos;
3412
3413 if (val == -2)
3414 return -2;
3415
3416 advance:
3417 if (!range)
3418 break;
3419 else if (range > 0)
3420 {
3421 range--;
3422 startpos++;
3423 }
3424 else
3425 {
3426 range++;
3427 startpos--;
3428 }
3429 }
3430 return -1;
3431 } /* re_search_2 */
3432
3433 /* Declarations and macros for re_match_2. */
3434
3435 static int bcmp_translate ();
3436 static boolean alt_match_null_string_p (),
3437 common_op_match_null_string_p (),
3438 group_match_null_string_p ();
3439
3440 /* This converts PTR, a pointer into one of the search strings `string1'
3441 and `string2' into an offset from the beginning of that string. */
3442 #define POINTER_TO_OFFSET(ptr) \
3443 (FIRST_STRING_P (ptr) \
3444 ? ((regoff_t) ((ptr) - string1)) \
3445 : ((regoff_t) ((ptr) - string2 + size1)))
3446
3447 /* Macros for dealing with the split strings in re_match_2. */
3448
3449 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3450
3451 /* Call before fetching a character with *d. This switches over to
3452 string2 if necessary. */
3453 #define PREFETCH() \
3454 while (d == dend) \
3455 { \
3456 /* End of string2 => fail. */ \
3457 if (dend == end_match_2) \
3458 goto fail; \
3459 /* End of string1 => advance to string2. */ \
3460 d = string2; \
3461 dend = end_match_2; \
3462 }
3463
3464
3465 /* Test if at very beginning or at very end of the virtual concatenation
3466 of `string1' and `string2'. If only one string, it's `string2'. */
3467 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3468 #define AT_STRINGS_END(d) ((d) == end2)
3469
3470
3471 /* Test if D points to a character which is word-constituent. We have
3472 two special cases to check for: if past the end of string1, look at
3473 the first character in string2; and if before the beginning of
3474 string2, look at the last character in string1. */
3475 #define WORDCHAR_P(d) \
3476 (SYNTAX ((d) == end1 ? *string2 \
3477 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3478 == Sword)
3479
3480 /* Disabled due to a compiler bug -- see comment at case wordbound */
3481 #if 0
3482 /* Test if the character before D and the one at D differ with respect
3483 to being word-constituent. */
3484 #define AT_WORD_BOUNDARY(d) \
3485 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3486 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3487 #endif
3488
3489 /* Free everything we malloc. */
3490 #ifdef MATCH_MAY_ALLOCATE
3491 #define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
3492 #define FREE_VARIABLES() \
3493 do { \
3494 REGEX_FREE_STACK (fail_stack.stack); \
3495 FREE_VAR (regstart); \
3496 FREE_VAR (regend); \
3497 FREE_VAR (old_regstart); \
3498 FREE_VAR (old_regend); \
3499 FREE_VAR (best_regstart); \
3500 FREE_VAR (best_regend); \
3501 FREE_VAR (reg_info); \
3502 FREE_VAR (reg_dummy); \
3503 FREE_VAR (reg_info_dummy); \
3504 } while (0)
3505 #else
3506 #define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3507 #endif /* not MATCH_MAY_ALLOCATE */
3508
3509 /* These values must meet several constraints. They must not be valid
3510 register values; since we have a limit of 255 registers (because
3511 we use only one byte in the pattern for the register number), we can
3512 use numbers larger than 255. They must differ by 1, because of
3513 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3514 be larger than the value for the highest register, so we do not try
3515 to actually save any registers when none are active. */
3516 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3517 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3518
3519 /* Matching routines. */
3520
3521 #ifndef emacs /* Emacs never uses this. */
3522 /* re_match is like re_match_2 except it takes only a single string. */
3523
3524 int
re_match(bufp,string,size,pos,regs)3525 re_match (bufp, string, size, pos, regs)
3526 struct re_pattern_buffer *bufp;
3527 const char *string;
3528 int size, pos;
3529 struct re_registers *regs;
3530 {
3531 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3532 pos, regs, size);
3533 alloca (0);
3534 return result;
3535 }
3536 #endif /* not emacs */
3537
3538
3539 /* re_match_2 matches the compiled pattern in BUFP against the
3540 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3541 and SIZE2, respectively). We start matching at POS, and stop
3542 matching at STOP.
3543
3544 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3545 store offsets for the substring each group matched in REGS. See the
3546 documentation for exactly how many groups we fill.
3547
3548 We return -1 if no match, -2 if an internal error (such as the
3549 failure stack overflowing). Otherwise, we return the length of the
3550 matched substring. */
3551
3552 int
re_match_2(bufp,string1,size1,string2,size2,pos,regs,stop)3553 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3554 struct re_pattern_buffer *bufp;
3555 const char *string1, *string2;
3556 int size1, size2;
3557 int pos;
3558 struct re_registers *regs;
3559 int stop;
3560 {
3561 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3562 pos, regs, stop);
3563 alloca (0);
3564 return result;
3565 }
3566
3567 /* This is a separate function so that we can force an alloca cleanup
3568 afterwards. */
3569 static int
re_match_2_internal(bufp,string1,size1,string2,size2,pos,regs,stop)3570 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3571 struct re_pattern_buffer *bufp;
3572 const char *string1, *string2;
3573 int size1, size2;
3574 int pos;
3575 struct re_registers *regs;
3576 int stop;
3577 {
3578 /* General temporaries. */
3579 int mcnt;
3580 unsigned char *p1;
3581
3582 /* Just past the end of the corresponding string. */
3583 const char *end1, *end2;
3584
3585 /* Pointers into string1 and string2, just past the last characters in
3586 each to consider matching. */
3587 const char *end_match_1, *end_match_2;
3588
3589 /* Where we are in the data, and the end of the current string. */
3590 const char *d, *dend;
3591
3592 /* Where we are in the pattern, and the end of the pattern. */
3593 unsigned char *p = bufp->buffer;
3594 register unsigned char *pend = p + bufp->used;
3595
3596 /* Mark the opcode just after a start_memory, so we can test for an
3597 empty subpattern when we get to the stop_memory. */
3598 unsigned char *just_past_start_mem = 0;
3599
3600 /* We use this to map every character in the string. */
3601 RE_TRANSLATE_TYPE translate = bufp->translate;
3602
3603 /* Failure point stack. Each place that can handle a failure further
3604 down the line pushes a failure point on this stack. It consists of
3605 restart, regend, and reg_info for all registers corresponding to
3606 the subexpressions we're currently inside, plus the number of such
3607 registers, and, finally, two char *'s. The first char * is where
3608 to resume scanning the pattern; the second one is where to resume
3609 scanning the strings. If the latter is zero, the failure point is
3610 a ``dummy''; if a failure happens and the failure point is a dummy,
3611 it gets discarded and the next next one is tried. */
3612 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3613 fail_stack_type fail_stack;
3614 #endif
3615 #ifdef DEBUG
3616 static unsigned failure_id = 0;
3617 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3618 #endif
3619
3620 /* This holds the pointer to the failure stack, when
3621 it is allocated relocatably. */
3622 #ifdef REL_ALLOC
3623 fail_stack_elt_t *failure_stack_ptr;
3624 #endif
3625
3626 /* We fill all the registers internally, independent of what we
3627 return, for use in backreferences. The number here includes
3628 an element for register zero. */
3629 unsigned num_regs = bufp->re_nsub + 1;
3630
3631 /* The currently active registers. */
3632 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3633 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3634
3635 /* Information on the contents of registers. These are pointers into
3636 the input strings; they record just what was matched (on this
3637 attempt) by a subexpression part of the pattern, that is, the
3638 regnum-th regstart pointer points to where in the pattern we began
3639 matching and the regnum-th regend points to right after where we
3640 stopped matching the regnum-th subexpression. (The zeroth register
3641 keeps track of what the whole pattern matches.) */
3642 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3643 const char **regstart, **regend;
3644 #endif
3645
3646 /* If a group that's operated upon by a repetition operator fails to
3647 match anything, then the register for its start will need to be
3648 restored because it will have been set to wherever in the string we
3649 are when we last see its open-group operator. Similarly for a
3650 register's end. */
3651 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3652 const char **old_regstart, **old_regend;
3653 #endif
3654
3655 /* The is_active field of reg_info helps us keep track of which (possibly
3656 nested) subexpressions we are currently in. The matched_something
3657 field of reg_info[reg_num] helps us tell whether or not we have
3658 matched any of the pattern so far this time through the reg_num-th
3659 subexpression. These two fields get reset each time through any
3660 loop their register is in. */
3661 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3662 register_info_type *reg_info;
3663 #endif
3664
3665 /* The following record the register info as found in the above
3666 variables when we find a match better than any we've seen before.
3667 This happens as we backtrack through the failure points, which in
3668 turn happens only if we have not yet matched the entire string. */
3669 unsigned best_regs_set = false;
3670 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3671 const char **best_regstart, **best_regend;
3672 #endif
3673
3674 /* Logically, this is `best_regend[0]'. But we don't want to have to
3675 allocate space for that if we're not allocating space for anything
3676 else (see below). Also, we never need info about register 0 for
3677 any of the other register vectors, and it seems rather a kludge to
3678 treat `best_regend' differently than the rest. So we keep track of
3679 the end of the best match so far in a separate variable. We
3680 initialize this to NULL so that when we backtrack the first time
3681 and need to test it, it's not garbage. */
3682 const char *match_end = NULL;
3683
3684 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3685 int set_regs_matched_done = 0;
3686
3687 /* Used when we pop values we don't care about. */
3688 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3689 const char **reg_dummy;
3690 register_info_type *reg_info_dummy;
3691 #endif
3692
3693 #ifdef DEBUG
3694 /* Counts the total number of registers pushed. */
3695 unsigned num_regs_pushed = 0;
3696 #endif
3697
3698 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3699
3700 INIT_FAIL_STACK ();
3701
3702 #ifdef MATCH_MAY_ALLOCATE
3703 /* Do not bother to initialize all the register variables if there are
3704 no groups in the pattern, as it takes a fair amount of time. If
3705 there are groups, we include space for register 0 (the whole
3706 pattern), even though we never use it, since it simplifies the
3707 array indexing. We should fix this. */
3708 if (bufp->re_nsub)
3709 {
3710 regstart = REGEX_TALLOC (num_regs, const char *);
3711 regend = REGEX_TALLOC (num_regs, const char *);
3712 old_regstart = REGEX_TALLOC (num_regs, const char *);
3713 old_regend = REGEX_TALLOC (num_regs, const char *);
3714 best_regstart = REGEX_TALLOC (num_regs, const char *);
3715 best_regend = REGEX_TALLOC (num_regs, const char *);
3716 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3717 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3718 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3719
3720 if (!(regstart && regend && old_regstart && old_regend && reg_info
3721 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3722 {
3723 FREE_VARIABLES ();
3724 return -2;
3725 }
3726 }
3727 else
3728 {
3729 /* We must initialize all our variables to NULL, so that
3730 `FREE_VARIABLES' doesn't try to free them. */
3731 regstart = regend = old_regstart = old_regend = best_regstart
3732 = best_regend = reg_dummy = NULL;
3733 reg_info = reg_info_dummy = (register_info_type *) NULL;
3734 }
3735 #endif /* MATCH_MAY_ALLOCATE */
3736
3737 /* The starting position is bogus. */
3738 if (pos < 0 || pos > size1 + size2)
3739 {
3740 FREE_VARIABLES ();
3741 return -1;
3742 }
3743
3744 /* Initialize subexpression text positions to -1 to mark ones that no
3745 start_memory/stop_memory has been seen for. Also initialize the
3746 register information struct. */
3747 for (mcnt = 1; mcnt < num_regs; mcnt++)
3748 {
3749 regstart[mcnt] = regend[mcnt]
3750 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3751
3752 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3753 IS_ACTIVE (reg_info[mcnt]) = 0;
3754 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3755 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3756 }
3757
3758 /* We move `string1' into `string2' if the latter's empty -- but not if
3759 `string1' is null. */
3760 if (size2 == 0 && string1 != NULL)
3761 {
3762 string2 = string1;
3763 size2 = size1;
3764 string1 = 0;
3765 size1 = 0;
3766 }
3767 end1 = string1 + size1;
3768 end2 = string2 + size2;
3769
3770 /* Compute where to stop matching, within the two strings. */
3771 if (stop <= size1)
3772 {
3773 end_match_1 = string1 + stop;
3774 end_match_2 = string2;
3775 }
3776 else
3777 {
3778 end_match_1 = end1;
3779 end_match_2 = string2 + stop - size1;
3780 }
3781
3782 /* `p' scans through the pattern as `d' scans through the data.
3783 `dend' is the end of the input string that `d' points within. `d'
3784 is advanced into the following input string whenever necessary, but
3785 this happens before fetching; therefore, at the beginning of the
3786 loop, `d' can be pointing at the end of a string, but it cannot
3787 equal `string2'. */
3788 if (size1 > 0 && pos <= size1)
3789 {
3790 d = string1 + pos;
3791 dend = end_match_1;
3792 }
3793 else
3794 {
3795 d = string2 + pos - size1;
3796 dend = end_match_2;
3797 }
3798
3799 DEBUG_PRINT1 ("The compiled pattern is: ");
3800 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3801 DEBUG_PRINT1 ("The string to match is: `");
3802 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3803 DEBUG_PRINT1 ("'\n");
3804
3805 /* This loops over pattern commands. It exits by returning from the
3806 function if the match is complete, or it drops through if the match
3807 fails at this starting point in the input data. */
3808 for (;;)
3809 {
3810 DEBUG_PRINT2 ("\n0x%x: ", p);
3811
3812 if (p == pend)
3813 { /* End of pattern means we might have succeeded. */
3814 DEBUG_PRINT1 ("end of pattern ... ");
3815
3816 /* If we haven't matched the entire string, and we want the
3817 longest match, try backtracking. */
3818 if (d != end_match_2)
3819 {
3820 /* 1 if this match ends in the same string (string1 or string2)
3821 as the best previous match. */
3822 boolean same_str_p = (FIRST_STRING_P (match_end)
3823 == MATCHING_IN_FIRST_STRING);
3824 /* 1 if this match is the best seen so far. */
3825 boolean best_match_p;
3826
3827 /* AIX compiler got confused when this was combined
3828 with the previous declaration. */
3829 if (same_str_p)
3830 best_match_p = d > match_end;
3831 else
3832 best_match_p = !MATCHING_IN_FIRST_STRING;
3833
3834 DEBUG_PRINT1 ("backtracking.\n");
3835
3836 if (!FAIL_STACK_EMPTY ())
3837 { /* More failure points to try. */
3838
3839 /* If exceeds best match so far, save it. */
3840 if (!best_regs_set || best_match_p)
3841 {
3842 best_regs_set = true;
3843 match_end = d;
3844
3845 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3846
3847 for (mcnt = 1; mcnt < num_regs; mcnt++)
3848 {
3849 best_regstart[mcnt] = regstart[mcnt];
3850 best_regend[mcnt] = regend[mcnt];
3851 }
3852 }
3853 goto fail;
3854 }
3855
3856 /* If no failure points, don't restore garbage. And if
3857 last match is real best match, don't restore second
3858 best one. */
3859 else if (best_regs_set && !best_match_p)
3860 {
3861 restore_best_regs:
3862 /* Restore best match. It may happen that `dend ==
3863 end_match_1' while the restored d is in string2.
3864 For example, the pattern `x.*y.*z' against the
3865 strings `x-' and `y-z-', if the two strings are
3866 not consecutive in memory. */
3867 DEBUG_PRINT1 ("Restoring best registers.\n");
3868
3869 d = match_end;
3870 dend = ((d >= string1 && d <= end1)
3871 ? end_match_1 : end_match_2);
3872
3873 for (mcnt = 1; mcnt < num_regs; mcnt++)
3874 {
3875 regstart[mcnt] = best_regstart[mcnt];
3876 regend[mcnt] = best_regend[mcnt];
3877 }
3878 }
3879 } /* d != end_match_2 */
3880
3881 succeed_label:
3882 DEBUG_PRINT1 ("Accepting match.\n");
3883
3884 /* If caller wants register contents data back, do it. */
3885 if (regs && !bufp->no_sub)
3886 {
3887 /* Have the register data arrays been allocated? */
3888 if (bufp->regs_allocated == REGS_UNALLOCATED)
3889 { /* No. So allocate them with malloc. We need one
3890 extra element beyond `num_regs' for the `-1' marker
3891 GNU code uses. */
3892 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3893 regs->start = TALLOC (regs->num_regs, regoff_t);
3894 regs->end = TALLOC (regs->num_regs, regoff_t);
3895 if (regs->start == NULL || regs->end == NULL)
3896 {
3897 FREE_VARIABLES ();
3898 return -2;
3899 }
3900 bufp->regs_allocated = REGS_REALLOCATE;
3901 }
3902 else if (bufp->regs_allocated == REGS_REALLOCATE)
3903 { /* Yes. If we need more elements than were already
3904 allocated, reallocate them. If we need fewer, just
3905 leave it alone. */
3906 if (regs->num_regs < num_regs + 1)
3907 {
3908 regs->num_regs = num_regs + 1;
3909 RETALLOC (regs->start, regs->num_regs, regoff_t);
3910 RETALLOC (regs->end, regs->num_regs, regoff_t);
3911 if (regs->start == NULL || regs->end == NULL)
3912 {
3913 FREE_VARIABLES ();
3914 return -2;
3915 }
3916 }
3917 }
3918 else
3919 {
3920 /* These braces fend off a "empty body in an else-statement"
3921 warning under GCC when assert expands to nothing. */
3922 assert (bufp->regs_allocated == REGS_FIXED);
3923 }
3924
3925 /* Convert the pointer data in `regstart' and `regend' to
3926 indices. Register zero has to be set differently,
3927 since we haven't kept track of any info for it. */
3928 if (regs->num_regs > 0)
3929 {
3930 regs->start[0] = pos;
3931 regs->end[0] = (MATCHING_IN_FIRST_STRING
3932 ? ((regoff_t) (d - string1))
3933 : ((regoff_t) (d - string2 + size1)));
3934 }
3935
3936 /* Go through the first `min (num_regs, regs->num_regs)'
3937 registers, since that is all we initialized. */
3938 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
3939 {
3940 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3941 regs->start[mcnt] = regs->end[mcnt] = -1;
3942 else
3943 {
3944 regs->start[mcnt]
3945 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
3946 regs->end[mcnt]
3947 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
3948 }
3949 }
3950
3951 /* If the regs structure we return has more elements than
3952 were in the pattern, set the extra elements to -1. If
3953 we (re)allocated the registers, this is the case,
3954 because we always allocate enough to have at least one
3955 -1 at the end. */
3956 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3957 regs->start[mcnt] = regs->end[mcnt] = -1;
3958 } /* regs && !bufp->no_sub */
3959
3960 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3961 nfailure_points_pushed, nfailure_points_popped,
3962 nfailure_points_pushed - nfailure_points_popped);
3963 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
3964
3965 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3966 ? string1
3967 : string2 - size1);
3968
3969 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
3970
3971 FREE_VARIABLES ();
3972 return mcnt;
3973 }
3974
3975 /* Otherwise match next pattern command. */
3976 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3977 {
3978 /* Ignore these. Used to ignore the n of succeed_n's which
3979 currently have n == 0. */
3980 case no_op:
3981 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3982 break;
3983
3984 case succeed:
3985 DEBUG_PRINT1 ("EXECUTING succeed.\n");
3986 goto succeed_label;
3987
3988 /* Match the next n pattern characters exactly. The following
3989 byte in the pattern defines n, and the n bytes after that
3990 are the characters to match. */
3991 case exactn:
3992 mcnt = *p++;
3993 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
3994
3995 /* This is written out as an if-else so we don't waste time
3996 testing `translate' inside the loop. */
3997 if (translate)
3998 {
3999 do
4000 {
4001 PREFETCH ();
4002 if ((unsigned char) translate[(unsigned char) *d++]
4003 != (unsigned char) *p++)
4004 goto fail;
4005 }
4006 while (--mcnt);
4007 }
4008 else
4009 {
4010 do
4011 {
4012 PREFETCH ();
4013 if (*d++ != (char) *p++) goto fail;
4014 }
4015 while (--mcnt);
4016 }
4017 SET_REGS_MATCHED ();
4018 break;
4019
4020
4021 /* Match any character except possibly a newline or a null. */
4022 case anychar:
4023 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4024
4025 PREFETCH ();
4026
4027 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4028 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4029 goto fail;
4030
4031 SET_REGS_MATCHED ();
4032 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4033 d++;
4034 break;
4035
4036
4037 case charset:
4038 case charset_not:
4039 {
4040 register unsigned char c;
4041 boolean not = (re_opcode_t) *(p - 1) == charset_not;
4042
4043 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4044
4045 PREFETCH ();
4046 c = TRANSLATE (*d); /* The character to match. */
4047
4048 /* Cast to `unsigned' instead of `unsigned char' in case the
4049 bit list is a full 32 bytes long. */
4050 if (c < (unsigned) (*p * BYTEWIDTH)
4051 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4052 not = !not;
4053
4054 p += 1 + *p;
4055
4056 if (!not) goto fail;
4057
4058 SET_REGS_MATCHED ();
4059 d++;
4060 break;
4061 }
4062
4063
4064 /* The beginning of a group is represented by start_memory.
4065 The arguments are the register number in the next byte, and the
4066 number of groups inner to this one in the next. The text
4067 matched within the group is recorded (in the internal
4068 registers data structure) under the register number. */
4069 case start_memory:
4070 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4071
4072 /* Find out if this group can match the empty string. */
4073 p1 = p; /* To send to group_match_null_string_p. */
4074
4075 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4076 REG_MATCH_NULL_STRING_P (reg_info[*p])
4077 = group_match_null_string_p (&p1, pend, reg_info);
4078
4079 /* Save the position in the string where we were the last time
4080 we were at this open-group operator in case the group is
4081 operated upon by a repetition operator, e.g., with `(a*)*b'
4082 against `ab'; then we want to ignore where we are now in
4083 the string in case this attempt to match fails. */
4084 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4085 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4086 : regstart[*p];
4087 DEBUG_PRINT2 (" old_regstart: %d\n",
4088 POINTER_TO_OFFSET (old_regstart[*p]));
4089
4090 regstart[*p] = d;
4091 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4092
4093 IS_ACTIVE (reg_info[*p]) = 1;
4094 MATCHED_SOMETHING (reg_info[*p]) = 0;
4095
4096 /* Clear this whenever we change the register activity status. */
4097 set_regs_matched_done = 0;
4098
4099 /* This is the new highest active register. */
4100 highest_active_reg = *p;
4101
4102 /* If nothing was active before, this is the new lowest active
4103 register. */
4104 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4105 lowest_active_reg = *p;
4106
4107 /* Move past the register number and inner group count. */
4108 p += 2;
4109 just_past_start_mem = p;
4110
4111 break;
4112
4113
4114 /* The stop_memory opcode represents the end of a group. Its
4115 arguments are the same as start_memory's: the register
4116 number, and the number of inner groups. */
4117 case stop_memory:
4118 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4119
4120 /* We need to save the string position the last time we were at
4121 this close-group operator in case the group is operated
4122 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4123 against `aba'; then we want to ignore where we are now in
4124 the string in case this attempt to match fails. */
4125 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4126 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4127 : regend[*p];
4128 DEBUG_PRINT2 (" old_regend: %d\n",
4129 POINTER_TO_OFFSET (old_regend[*p]));
4130
4131 regend[*p] = d;
4132 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4133
4134 /* This register isn't active anymore. */
4135 IS_ACTIVE (reg_info[*p]) = 0;
4136
4137 /* Clear this whenever we change the register activity status. */
4138 set_regs_matched_done = 0;
4139
4140 /* If this was the only register active, nothing is active
4141 anymore. */
4142 if (lowest_active_reg == highest_active_reg)
4143 {
4144 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4145 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4146 }
4147 else
4148 { /* We must scan for the new highest active register, since
4149 it isn't necessarily one less than now: consider
4150 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4151 new highest active register is 1. */
4152 unsigned char r = *p - 1;
4153 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4154 r--;
4155
4156 /* If we end up at register zero, that means that we saved
4157 the registers as the result of an `on_failure_jump', not
4158 a `start_memory', and we jumped to past the innermost
4159 `stop_memory'. For example, in ((.)*) we save
4160 registers 1 and 2 as a result of the *, but when we pop
4161 back to the second ), we are at the stop_memory 1.
4162 Thus, nothing is active. */
4163 if (r == 0)
4164 {
4165 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4166 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4167 }
4168 else
4169 highest_active_reg = r;
4170 }
4171
4172 /* If just failed to match something this time around with a
4173 group that's operated on by a repetition operator, try to
4174 force exit from the ``loop'', and restore the register
4175 information for this group that we had before trying this
4176 last match. */
4177 if ((!MATCHED_SOMETHING (reg_info[*p])
4178 || just_past_start_mem == p - 1)
4179 && (p + 2) < pend)
4180 {
4181 boolean is_a_jump_n = false;
4182
4183 p1 = p + 2;
4184 mcnt = 0;
4185 switch ((re_opcode_t) *p1++)
4186 {
4187 case jump_n:
4188 is_a_jump_n = true;
4189 case pop_failure_jump:
4190 case maybe_pop_jump:
4191 case jump:
4192 case dummy_failure_jump:
4193 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4194 if (is_a_jump_n)
4195 p1 += 2;
4196 break;
4197
4198 default:
4199 /* do nothing */ ;
4200 }
4201 p1 += mcnt;
4202
4203 /* If the next operation is a jump backwards in the pattern
4204 to an on_failure_jump right before the start_memory
4205 corresponding to this stop_memory, exit from the loop
4206 by forcing a failure after pushing on the stack the
4207 on_failure_jump's jump in the pattern, and d. */
4208 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4209 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4210 {
4211 /* If this group ever matched anything, then restore
4212 what its registers were before trying this last
4213 failed match, e.g., with `(a*)*b' against `ab' for
4214 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4215 against `aba' for regend[3].
4216
4217 Also restore the registers for inner groups for,
4218 e.g., `((a*)(b*))*' against `aba' (register 3 would
4219 otherwise get trashed). */
4220
4221 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4222 {
4223 unsigned r;
4224
4225 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4226
4227 /* Restore this and inner groups' (if any) registers. */
4228 for (r = *p; r < *p + *(p + 1); r++)
4229 {
4230 regstart[r] = old_regstart[r];
4231
4232 /* xx why this test? */
4233 if (old_regend[r] >= regstart[r])
4234 regend[r] = old_regend[r];
4235 }
4236 }
4237 p1++;
4238 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4239 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4240
4241 goto fail;
4242 }
4243 }
4244
4245 /* Move past the register number and the inner group count. */
4246 p += 2;
4247 break;
4248
4249
4250 /* \<digit> has been turned into a `duplicate' command which is
4251 followed by the numeric value of <digit> as the register number. */
4252 case duplicate:
4253 {
4254 register const char *d2, *dend2;
4255 int regno = *p++; /* Get which register to match against. */
4256 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4257
4258 /* Can't back reference a group which we've never matched. */
4259 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4260 goto fail;
4261
4262 /* Where in input to try to start matching. */
4263 d2 = regstart[regno];
4264
4265 /* Where to stop matching; if both the place to start and
4266 the place to stop matching are in the same string, then
4267 set to the place to stop, otherwise, for now have to use
4268 the end of the first string. */
4269
4270 dend2 = ((FIRST_STRING_P (regstart[regno])
4271 == FIRST_STRING_P (regend[regno]))
4272 ? regend[regno] : end_match_1);
4273 for (;;)
4274 {
4275 /* If necessary, advance to next segment in register
4276 contents. */
4277 while (d2 == dend2)
4278 {
4279 if (dend2 == end_match_2) break;
4280 if (dend2 == regend[regno]) break;
4281
4282 /* End of string1 => advance to string2. */
4283 d2 = string2;
4284 dend2 = regend[regno];
4285 }
4286 /* At end of register contents => success */
4287 if (d2 == dend2) break;
4288
4289 /* If necessary, advance to next segment in data. */
4290 PREFETCH ();
4291
4292 /* How many characters left in this segment to match. */
4293 mcnt = dend - d;
4294
4295 /* Want how many consecutive characters we can match in
4296 one shot, so, if necessary, adjust the count. */
4297 if (mcnt > dend2 - d2)
4298 mcnt = dend2 - d2;
4299
4300 /* Compare that many; failure if mismatch, else move
4301 past them. */
4302 if (translate
4303 ? bcmp_translate (d, d2, mcnt, translate)
4304 : bcmp (d, d2, mcnt))
4305 goto fail;
4306 d += mcnt, d2 += mcnt;
4307
4308 /* Do this because we've match some characters. */
4309 SET_REGS_MATCHED ();
4310 }
4311 }
4312 break;
4313
4314
4315 /* begline matches the empty string at the beginning of the string
4316 (unless `not_bol' is set in `bufp'), and, if
4317 `newline_anchor' is set, after newlines. */
4318 case begline:
4319 DEBUG_PRINT1 ("EXECUTING begline.\n");
4320
4321 if (AT_STRINGS_BEG (d))
4322 {
4323 if (!bufp->not_bol) break;
4324 }
4325 else if (d[-1] == '\n' && bufp->newline_anchor)
4326 {
4327 break;
4328 }
4329 /* In all other cases, we fail. */
4330 goto fail;
4331
4332
4333 /* endline is the dual of begline. */
4334 case endline:
4335 DEBUG_PRINT1 ("EXECUTING endline.\n");
4336
4337 if (AT_STRINGS_END (d))
4338 {
4339 if (!bufp->not_eol) break;
4340 }
4341
4342 /* We have to ``prefetch'' the next character. */
4343 else if ((d == end1 ? *string2 : *d) == '\n'
4344 && bufp->newline_anchor)
4345 {
4346 break;
4347 }
4348 goto fail;
4349
4350
4351 /* Match at the very beginning of the data. */
4352 case begbuf:
4353 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4354 if (AT_STRINGS_BEG (d))
4355 break;
4356 goto fail;
4357
4358
4359 /* Match at the very end of the data. */
4360 case endbuf:
4361 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4362 if (AT_STRINGS_END (d))
4363 break;
4364 goto fail;
4365
4366
4367 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4368 pushes NULL as the value for the string on the stack. Then
4369 `pop_failure_point' will keep the current value for the
4370 string, instead of restoring it. To see why, consider
4371 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4372 then the . fails against the \n. But the next thing we want
4373 to do is match the \n against the \n; if we restored the
4374 string value, we would be back at the foo.
4375
4376 Because this is used only in specific cases, we don't need to
4377 check all the things that `on_failure_jump' does, to make
4378 sure the right things get saved on the stack. Hence we don't
4379 share its code. The only reason to push anything on the
4380 stack at all is that otherwise we would have to change
4381 `anychar's code to do something besides goto fail in this
4382 case; that seems worse than this. */
4383 case on_failure_keep_string_jump:
4384 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4385
4386 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4387 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4388
4389 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4390 break;
4391
4392
4393 /* Uses of on_failure_jump:
4394
4395 Each alternative starts with an on_failure_jump that points
4396 to the beginning of the next alternative. Each alternative
4397 except the last ends with a jump that in effect jumps past
4398 the rest of the alternatives. (They really jump to the
4399 ending jump of the following alternative, because tensioning
4400 these jumps is a hassle.)
4401
4402 Repeats start with an on_failure_jump that points past both
4403 the repetition text and either the following jump or
4404 pop_failure_jump back to this on_failure_jump. */
4405 case on_failure_jump:
4406 on_failure:
4407 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4408
4409 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4410 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4411
4412 /* If this on_failure_jump comes right before a group (i.e.,
4413 the original * applied to a group), save the information
4414 for that group and all inner ones, so that if we fail back
4415 to this point, the group's information will be correct.
4416 For example, in \(a*\)*\1, we need the preceding group,
4417 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4418
4419 /* We can't use `p' to check ahead because we push
4420 a failure point to `p + mcnt' after we do this. */
4421 p1 = p;
4422
4423 /* We need to skip no_op's before we look for the
4424 start_memory in case this on_failure_jump is happening as
4425 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4426 against aba. */
4427 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4428 p1++;
4429
4430 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4431 {
4432 /* We have a new highest active register now. This will
4433 get reset at the start_memory we are about to get to,
4434 but we will have saved all the registers relevant to
4435 this repetition op, as described above. */
4436 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4437 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4438 lowest_active_reg = *(p1 + 1);
4439 }
4440
4441 DEBUG_PRINT1 (":\n");
4442 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4443 break;
4444
4445
4446 /* A smart repeat ends with `maybe_pop_jump'.
4447 We change it to either `pop_failure_jump' or `jump'. */
4448 case maybe_pop_jump:
4449 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4450 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4451 {
4452 register unsigned char *p2 = p;
4453
4454 /* Compare the beginning of the repeat with what in the
4455 pattern follows its end. If we can establish that there
4456 is nothing that they would both match, i.e., that we
4457 would have to backtrack because of (as in, e.g., `a*a')
4458 then we can change to pop_failure_jump, because we'll
4459 never have to backtrack.
4460
4461 This is not true in the case of alternatives: in
4462 `(a|ab)*' we do need to backtrack to the `ab' alternative
4463 (e.g., if the string was `ab'). But instead of trying to
4464 detect that here, the alternative has put on a dummy
4465 failure point which is what we will end up popping. */
4466
4467 /* Skip over open/close-group commands.
4468 If what follows this loop is a ...+ construct,
4469 look at what begins its body, since we will have to
4470 match at least one of that. */
4471 while (1)
4472 {
4473 if (p2 + 2 < pend
4474 && ((re_opcode_t) *p2 == stop_memory
4475 || (re_opcode_t) *p2 == start_memory))
4476 p2 += 3;
4477 else if (p2 + 6 < pend
4478 && (re_opcode_t) *p2 == dummy_failure_jump)
4479 p2 += 6;
4480 else
4481 break;
4482 }
4483
4484 p1 = p + mcnt;
4485 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4486 to the `maybe_finalize_jump' of this case. Examine what
4487 follows. */
4488
4489 /* If we're at the end of the pattern, we can change. */
4490 if (p2 == pend)
4491 {
4492 /* Consider what happens when matching ":\(.*\)"
4493 against ":/". I don't really understand this code
4494 yet. */
4495 p[-3] = (unsigned char) pop_failure_jump;
4496 DEBUG_PRINT1
4497 (" End of pattern: change to `pop_failure_jump'.\n");
4498 }
4499
4500 else if ((re_opcode_t) *p2 == exactn
4501 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4502 {
4503 register unsigned char c
4504 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4505
4506 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4507 {
4508 p[-3] = (unsigned char) pop_failure_jump;
4509 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4510 c, p1[5]);
4511 }
4512
4513 else if ((re_opcode_t) p1[3] == charset
4514 || (re_opcode_t) p1[3] == charset_not)
4515 {
4516 int not = (re_opcode_t) p1[3] == charset_not;
4517
4518 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4519 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4520 not = !not;
4521
4522 /* `not' is equal to 1 if c would match, which means
4523 that we can't change to pop_failure_jump. */
4524 if (!not)
4525 {
4526 p[-3] = (unsigned char) pop_failure_jump;
4527 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4528 }
4529 }
4530 }
4531 else if ((re_opcode_t) *p2 == charset)
4532 {
4533 #ifdef DEBUG
4534 register unsigned char c
4535 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4536 #endif
4537
4538 if ((re_opcode_t) p1[3] == exactn
4539 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
4540 && (p2[2 + p1[5] / BYTEWIDTH]
4541 & (1 << (p1[5] % BYTEWIDTH)))))
4542 {
4543 p[-3] = (unsigned char) pop_failure_jump;
4544 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4545 c, p1[5]);
4546 }
4547
4548 else if ((re_opcode_t) p1[3] == charset_not)
4549 {
4550 int idx;
4551 /* We win if the charset_not inside the loop
4552 lists every character listed in the charset after. */
4553 for (idx = 0; idx < (int) p2[1]; idx++)
4554 if (! (p2[2 + idx] == 0
4555 || (idx < (int) p1[4]
4556 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4557 break;
4558
4559 if (idx == p2[1])
4560 {
4561 p[-3] = (unsigned char) pop_failure_jump;
4562 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4563 }
4564 }
4565 else if ((re_opcode_t) p1[3] == charset)
4566 {
4567 int idx;
4568 /* We win if the charset inside the loop
4569 has no overlap with the one after the loop. */
4570 for (idx = 0;
4571 idx < (int) p2[1] && idx < (int) p1[4];
4572 idx++)
4573 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4574 break;
4575
4576 if (idx == p2[1] || idx == p1[4])
4577 {
4578 p[-3] = (unsigned char) pop_failure_jump;
4579 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4580 }
4581 }
4582 }
4583 }
4584 p -= 2; /* Point at relative address again. */
4585 if ((re_opcode_t) p[-1] != pop_failure_jump)
4586 {
4587 p[-1] = (unsigned char) jump;
4588 DEBUG_PRINT1 (" Match => jump.\n");
4589 goto unconditional_jump;
4590 }
4591 /* Note fall through. */
4592
4593
4594 /* The end of a simple repeat has a pop_failure_jump back to
4595 its matching on_failure_jump, where the latter will push a
4596 failure point. The pop_failure_jump takes off failure
4597 points put on by this pop_failure_jump's matching
4598 on_failure_jump; we got through the pattern to here from the
4599 matching on_failure_jump, so didn't fail. */
4600 case pop_failure_jump:
4601 {
4602 /* We need to pass separate storage for the lowest and
4603 highest registers, even though we don't care about the
4604 actual values. Otherwise, we will restore only one
4605 register from the stack, since lowest will == highest in
4606 `pop_failure_point'. */
4607 unsigned dummy_low_reg, dummy_high_reg;
4608 unsigned char *pdummy;
4609 const char *sdummy;
4610
4611 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4612 POP_FAILURE_POINT (sdummy, pdummy,
4613 dummy_low_reg, dummy_high_reg,
4614 reg_dummy, reg_dummy, reg_info_dummy);
4615 }
4616 /* Note fall through. */
4617
4618
4619 /* Unconditionally jump (without popping any failure points). */
4620 case jump:
4621 unconditional_jump:
4622 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4623 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4624 p += mcnt; /* Do the jump. */
4625 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4626 break;
4627
4628
4629 /* We need this opcode so we can detect where alternatives end
4630 in `group_match_null_string_p' et al. */
4631 case jump_past_alt:
4632 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4633 goto unconditional_jump;
4634
4635
4636 /* Normally, the on_failure_jump pushes a failure point, which
4637 then gets popped at pop_failure_jump. We will end up at
4638 pop_failure_jump, also, and with a pattern of, say, `a+', we
4639 are skipping over the on_failure_jump, so we have to push
4640 something meaningless for pop_failure_jump to pop. */
4641 case dummy_failure_jump:
4642 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4643 /* It doesn't matter what we push for the string here. What
4644 the code at `fail' tests is the value for the pattern. */
4645 PUSH_FAILURE_POINT (0, 0, -2);
4646 goto unconditional_jump;
4647
4648
4649 /* At the end of an alternative, we need to push a dummy failure
4650 point in case we are followed by a `pop_failure_jump', because
4651 we don't want the failure point for the alternative to be
4652 popped. For example, matching `(a|ab)*' against `aab'
4653 requires that we match the `ab' alternative. */
4654 case push_dummy_failure:
4655 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4656 /* See comments just above at `dummy_failure_jump' about the
4657 two zeroes. */
4658 PUSH_FAILURE_POINT (0, 0, -2);
4659 break;
4660
4661 /* Have to succeed matching what follows at least n times.
4662 After that, handle like `on_failure_jump'. */
4663 case succeed_n:
4664 EXTRACT_NUMBER (mcnt, p + 2);
4665 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4666
4667 assert (mcnt >= 0);
4668 /* Originally, this is how many times we HAVE to succeed. */
4669 if (mcnt > 0)
4670 {
4671 mcnt--;
4672 p += 2;
4673 STORE_NUMBER_AND_INCR (p, mcnt);
4674 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
4675 }
4676 else if (mcnt == 0)
4677 {
4678 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4679 p[2] = (unsigned char) no_op;
4680 p[3] = (unsigned char) no_op;
4681 goto on_failure;
4682 }
4683 break;
4684
4685 case jump_n:
4686 EXTRACT_NUMBER (mcnt, p + 2);
4687 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4688
4689 /* Originally, this is how many times we CAN jump. */
4690 if (mcnt)
4691 {
4692 mcnt--;
4693 STORE_NUMBER (p + 2, mcnt);
4694 goto unconditional_jump;
4695 }
4696 /* If don't have to jump any more, skip over the rest of command. */
4697 else
4698 p += 4;
4699 break;
4700
4701 case set_number_at:
4702 {
4703 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4704
4705 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4706 p1 = p + mcnt;
4707 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4708 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4709 STORE_NUMBER (p1, mcnt);
4710 break;
4711 }
4712
4713 #if 0
4714 /* The DEC Alpha C compiler 3.x generates incorrect code for the
4715 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4716 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4717 macro and introducing temporary variables works around the bug. */
4718
4719 case wordbound:
4720 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4721 if (AT_WORD_BOUNDARY (d))
4722 break;
4723 goto fail;
4724
4725 case notwordbound:
4726 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4727 if (AT_WORD_BOUNDARY (d))
4728 goto fail;
4729 break;
4730 #else
4731 case wordbound:
4732 {
4733 boolean prevchar, thischar;
4734
4735 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4736 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4737 break;
4738
4739 prevchar = WORDCHAR_P (d - 1);
4740 thischar = WORDCHAR_P (d);
4741 if (prevchar != thischar)
4742 break;
4743 goto fail;
4744 }
4745
4746 case notwordbound:
4747 {
4748 boolean prevchar, thischar;
4749
4750 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4751 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4752 goto fail;
4753
4754 prevchar = WORDCHAR_P (d - 1);
4755 thischar = WORDCHAR_P (d);
4756 if (prevchar != thischar)
4757 goto fail;
4758 break;
4759 }
4760 #endif
4761
4762 case wordbeg:
4763 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4764 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4765 break;
4766 goto fail;
4767
4768 case wordend:
4769 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4770 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4771 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
4772 break;
4773 goto fail;
4774
4775 #ifdef emacs
4776 case before_dot:
4777 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4778 if (PTR_CHAR_POS ((unsigned char *) d) >= PT)
4779 goto fail;
4780 break;
4781
4782 case at_dot:
4783 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4784 if (PTR_CHAR_POS ((unsigned char *) d) != PT)
4785 goto fail;
4786 break;
4787
4788 case after_dot:
4789 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4790 if (PTR_CHAR_POS ((unsigned char *) d) <= PT)
4791 goto fail;
4792 break;
4793
4794 case syntaxspec:
4795 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4796 mcnt = *p++;
4797 goto matchsyntax;
4798
4799 case wordchar:
4800 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4801 mcnt = (int) Sword;
4802 matchsyntax:
4803 PREFETCH ();
4804 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4805 d++;
4806 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
4807 goto fail;
4808 SET_REGS_MATCHED ();
4809 break;
4810
4811 case notsyntaxspec:
4812 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4813 mcnt = *p++;
4814 goto matchnotsyntax;
4815
4816 case notwordchar:
4817 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4818 mcnt = (int) Sword;
4819 matchnotsyntax:
4820 PREFETCH ();
4821 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4822 d++;
4823 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
4824 goto fail;
4825 SET_REGS_MATCHED ();
4826 break;
4827
4828 #else /* not emacs */
4829 case wordchar:
4830 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4831 PREFETCH ();
4832 if (!WORDCHAR_P (d))
4833 goto fail;
4834 SET_REGS_MATCHED ();
4835 d++;
4836 break;
4837
4838 case notwordchar:
4839 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4840 PREFETCH ();
4841 if (WORDCHAR_P (d))
4842 goto fail;
4843 SET_REGS_MATCHED ();
4844 d++;
4845 break;
4846 #endif /* not emacs */
4847
4848 default:
4849 abort ();
4850 }
4851 continue; /* Successfully executed one pattern command; keep going. */
4852
4853
4854 /* We goto here if a matching operation fails. */
4855 fail:
4856 if (!FAIL_STACK_EMPTY ())
4857 { /* A restart point is known. Restore to that state. */
4858 DEBUG_PRINT1 ("\nFAIL:\n");
4859 POP_FAILURE_POINT (d, p,
4860 lowest_active_reg, highest_active_reg,
4861 regstart, regend, reg_info);
4862
4863 /* If this failure point is a dummy, try the next one. */
4864 if (!p)
4865 goto fail;
4866
4867 /* If we failed to the end of the pattern, don't examine *p. */
4868 assert (p <= pend);
4869 if (p < pend)
4870 {
4871 boolean is_a_jump_n = false;
4872
4873 /* If failed to a backwards jump that's part of a repetition
4874 loop, need to pop this failure point and use the next one. */
4875 switch ((re_opcode_t) *p)
4876 {
4877 case jump_n:
4878 is_a_jump_n = true;
4879 case maybe_pop_jump:
4880 case pop_failure_jump:
4881 case jump:
4882 p1 = p + 1;
4883 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4884 p1 += mcnt;
4885
4886 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4887 || (!is_a_jump_n
4888 && (re_opcode_t) *p1 == on_failure_jump))
4889 goto fail;
4890 break;
4891 default:
4892 /* do nothing */ ;
4893 }
4894 }
4895
4896 if (d >= string1 && d <= end1)
4897 dend = end_match_1;
4898 }
4899 else
4900 break; /* Matching at this starting point really fails. */
4901 } /* for (;;) */
4902
4903 if (best_regs_set)
4904 goto restore_best_regs;
4905
4906 FREE_VARIABLES ();
4907
4908 return -1; /* Failure to match. */
4909 } /* re_match_2 */
4910
4911 /* Subroutine definitions for re_match_2. */
4912
4913
4914 /* We are passed P pointing to a register number after a start_memory.
4915
4916 Return true if the pattern up to the corresponding stop_memory can
4917 match the empty string, and false otherwise.
4918
4919 If we find the matching stop_memory, sets P to point to one past its number.
4920 Otherwise, sets P to an undefined byte less than or equal to END.
4921
4922 We don't handle duplicates properly (yet). */
4923
4924 static boolean
group_match_null_string_p(p,end,reg_info)4925 group_match_null_string_p (p, end, reg_info)
4926 unsigned char **p, *end;
4927 register_info_type *reg_info;
4928 {
4929 int mcnt;
4930 /* Point to after the args to the start_memory. */
4931 unsigned char *p1 = *p + 2;
4932
4933 while (p1 < end)
4934 {
4935 /* Skip over opcodes that can match nothing, and return true or
4936 false, as appropriate, when we get to one that can't, or to the
4937 matching stop_memory. */
4938
4939 switch ((re_opcode_t) *p1)
4940 {
4941 /* Could be either a loop or a series of alternatives. */
4942 case on_failure_jump:
4943 p1++;
4944 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4945
4946 /* If the next operation is not a jump backwards in the
4947 pattern. */
4948
4949 if (mcnt >= 0)
4950 {
4951 /* Go through the on_failure_jumps of the alternatives,
4952 seeing if any of the alternatives cannot match nothing.
4953 The last alternative starts with only a jump,
4954 whereas the rest start with on_failure_jump and end
4955 with a jump, e.g., here is the pattern for `a|b|c':
4956
4957 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4958 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4959 /exactn/1/c
4960
4961 So, we have to first go through the first (n-1)
4962 alternatives and then deal with the last one separately. */
4963
4964
4965 /* Deal with the first (n-1) alternatives, which start
4966 with an on_failure_jump (see above) that jumps to right
4967 past a jump_past_alt. */
4968
4969 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4970 {
4971 /* `mcnt' holds how many bytes long the alternative
4972 is, including the ending `jump_past_alt' and
4973 its number. */
4974
4975 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
4976 reg_info))
4977 return false;
4978
4979 /* Move to right after this alternative, including the
4980 jump_past_alt. */
4981 p1 += mcnt;
4982
4983 /* Break if it's the beginning of an n-th alternative
4984 that doesn't begin with an on_failure_jump. */
4985 if ((re_opcode_t) *p1 != on_failure_jump)
4986 break;
4987
4988 /* Still have to check that it's not an n-th
4989 alternative that starts with an on_failure_jump. */
4990 p1++;
4991 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4992 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4993 {
4994 /* Get to the beginning of the n-th alternative. */
4995 p1 -= 3;
4996 break;
4997 }
4998 }
4999
5000 /* Deal with the last alternative: go back and get number
5001 of the `jump_past_alt' just before it. `mcnt' contains
5002 the length of the alternative. */
5003 EXTRACT_NUMBER (mcnt, p1 - 2);
5004
5005 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5006 return false;
5007
5008 p1 += mcnt; /* Get past the n-th alternative. */
5009 } /* if mcnt > 0 */
5010 break;
5011
5012
5013 case stop_memory:
5014 assert (p1[1] == **p);
5015 *p = p1 + 2;
5016 return true;
5017
5018
5019 default:
5020 if (!common_op_match_null_string_p (&p1, end, reg_info))
5021 return false;
5022 }
5023 } /* while p1 < end */
5024
5025 return false;
5026 } /* group_match_null_string_p */
5027
5028
5029 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5030 It expects P to be the first byte of a single alternative and END one
5031 byte past the last. The alternative can contain groups. */
5032
5033 static boolean
alt_match_null_string_p(p,end,reg_info)5034 alt_match_null_string_p (p, end, reg_info)
5035 unsigned char *p, *end;
5036 register_info_type *reg_info;
5037 {
5038 int mcnt;
5039 unsigned char *p1 = p;
5040
5041 while (p1 < end)
5042 {
5043 /* Skip over opcodes that can match nothing, and break when we get
5044 to one that can't. */
5045
5046 switch ((re_opcode_t) *p1)
5047 {
5048 /* It's a loop. */
5049 case on_failure_jump:
5050 p1++;
5051 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5052 p1 += mcnt;
5053 break;
5054
5055 default:
5056 if (!common_op_match_null_string_p (&p1, end, reg_info))
5057 return false;
5058 }
5059 } /* while p1 < end */
5060
5061 return true;
5062 } /* alt_match_null_string_p */
5063
5064
5065 /* Deals with the ops common to group_match_null_string_p and
5066 alt_match_null_string_p.
5067
5068 Sets P to one after the op and its arguments, if any. */
5069
5070 static boolean
common_op_match_null_string_p(p,end,reg_info)5071 common_op_match_null_string_p (p, end, reg_info)
5072 unsigned char **p, *end;
5073 register_info_type *reg_info;
5074 {
5075 int mcnt;
5076 boolean ret;
5077 int reg_no;
5078 unsigned char *p1 = *p;
5079
5080 switch ((re_opcode_t) *p1++)
5081 {
5082 case no_op:
5083 case begline:
5084 case endline:
5085 case begbuf:
5086 case endbuf:
5087 case wordbeg:
5088 case wordend:
5089 case wordbound:
5090 case notwordbound:
5091 #ifdef emacs
5092 case before_dot:
5093 case at_dot:
5094 case after_dot:
5095 #endif
5096 break;
5097
5098 case start_memory:
5099 reg_no = *p1;
5100 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5101 ret = group_match_null_string_p (&p1, end, reg_info);
5102
5103 /* Have to set this here in case we're checking a group which
5104 contains a group and a back reference to it. */
5105
5106 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5107 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5108
5109 if (!ret)
5110 return false;
5111 break;
5112
5113 /* If this is an optimized succeed_n for zero times, make the jump. */
5114 case jump:
5115 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5116 if (mcnt >= 0)
5117 p1 += mcnt;
5118 else
5119 return false;
5120 break;
5121
5122 case succeed_n:
5123 /* Get to the number of times to succeed. */
5124 p1 += 2;
5125 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5126
5127 if (mcnt == 0)
5128 {
5129 p1 -= 4;
5130 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5131 p1 += mcnt;
5132 }
5133 else
5134 return false;
5135 break;
5136
5137 case duplicate:
5138 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5139 return false;
5140 break;
5141
5142 case set_number_at:
5143 p1 += 4;
5144
5145 default:
5146 /* All other opcodes mean we cannot match the empty string. */
5147 return false;
5148 }
5149
5150 *p = p1;
5151 return true;
5152 } /* common_op_match_null_string_p */
5153
5154
5155 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5156 bytes; nonzero otherwise. */
5157
5158 static int
bcmp_translate(s1,s2,len,translate)5159 bcmp_translate (s1, s2, len, translate)
5160 unsigned char *s1, *s2;
5161 register int len;
5162 RE_TRANSLATE_TYPE translate;
5163 {
5164 register unsigned char *p1 = s1, *p2 = s2;
5165 while (len)
5166 {
5167 if (translate[*p1++] != translate[*p2++]) return 1;
5168 len--;
5169 }
5170 return 0;
5171 }
5172
5173 /* Entry points for GNU code. */
5174
5175 /* re_compile_pattern is the GNU regular expression compiler: it
5176 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5177 Returns 0 if the pattern was valid, otherwise an error string.
5178
5179 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5180 are set in BUFP on entry.
5181
5182 We call regex_compile to do the actual compilation. */
5183
5184 const char *
re_compile_pattern(pattern,length,bufp)5185 re_compile_pattern (pattern, length, bufp)
5186 const char *pattern;
5187 int length;
5188 struct re_pattern_buffer *bufp;
5189 {
5190 reg_errcode_t ret;
5191
5192 /* GNU code is written to assume at least RE_NREGS registers will be set
5193 (and at least one extra will be -1). */
5194 bufp->regs_allocated = REGS_UNALLOCATED;
5195
5196 /* And GNU code determines whether or not to get register information
5197 by passing null for the REGS argument to re_match, etc., not by
5198 setting no_sub. */
5199 bufp->no_sub = 0;
5200
5201 /* Match anchors at newline. */
5202 bufp->newline_anchor = 1;
5203
5204 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5205
5206 if (!ret)
5207 return NULL;
5208 return gettext (re_error_msgid[(int) ret]);
5209 }
5210
5211 /* Entry points compatible with 4.2 BSD regex library. We don't define
5212 them unless specifically requested. */
5213
5214 #if defined (_REGEX_RE_COMP) || defined (_LIBC)
5215
5216 /* BSD has one and only one pattern buffer. */
5217 static struct re_pattern_buffer re_comp_buf;
5218
5219 char *
5220 #ifdef _LIBC
5221 /* Make these definitions weak in libc, so POSIX programs can redefine
5222 these names if they don't use our functions, and still use
5223 regcomp/regexec below without link errors. */
5224 weak_function
5225 #endif
re_comp(s)5226 re_comp (s)
5227 const char *s;
5228 {
5229 reg_errcode_t ret;
5230
5231 if (!s)
5232 {
5233 if (!re_comp_buf.buffer)
5234 return gettext ("No previous regular expression");
5235 return 0;
5236 }
5237
5238 if (!re_comp_buf.buffer)
5239 {
5240 re_comp_buf.buffer = (unsigned char *) malloc (200);
5241 if (re_comp_buf.buffer == NULL)
5242 return gettext (re_error_msgid[(int) REG_ESPACE]);
5243 re_comp_buf.allocated = 200;
5244
5245 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5246 if (re_comp_buf.fastmap == NULL)
5247 return gettext (re_error_msgid[(int) REG_ESPACE]);
5248 }
5249
5250 /* Since `re_exec' always passes NULL for the `regs' argument, we
5251 don't need to initialize the pattern buffer fields which affect it. */
5252
5253 /* Match anchors at newlines. */
5254 re_comp_buf.newline_anchor = 1;
5255
5256 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5257
5258 if (!ret)
5259 return NULL;
5260
5261 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5262 return (char *) gettext (re_error_msgid[(int) ret]);
5263 }
5264
5265
5266 int
5267 #ifdef _LIBC
5268 weak_function
5269 #endif
re_exec(s)5270 re_exec (s)
5271 const char *s;
5272 {
5273 const int len = strlen (s);
5274 return
5275 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5276 }
5277 #endif /* _REGEX_RE_COMP */
5278
5279 /* POSIX.2 functions. Don't define these for Emacs. */
5280
5281 #ifndef emacs
5282
5283 /* regcomp takes a regular expression as a string and compiles it.
5284
5285 PREG is a regex_t *. We do not expect any fields to be initialized,
5286 since POSIX says we shouldn't. Thus, we set
5287
5288 `buffer' to the compiled pattern;
5289 `used' to the length of the compiled pattern;
5290 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5291 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5292 RE_SYNTAX_POSIX_BASIC;
5293 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5294 `fastmap' and `fastmap_accurate' to zero;
5295 `re_nsub' to the number of subexpressions in PATTERN.
5296
5297 PATTERN is the address of the pattern string.
5298
5299 CFLAGS is a series of bits which affect compilation.
5300
5301 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5302 use POSIX basic syntax.
5303
5304 If REG_NEWLINE is set, then . and [^...] don't match newline.
5305 Also, regexec will try a match beginning after every newline.
5306
5307 If REG_ICASE is set, then we considers upper- and lowercase
5308 versions of letters to be equivalent when matching.
5309
5310 If REG_NOSUB is set, then when PREG is passed to regexec, that
5311 routine will report only success or failure, and nothing about the
5312 registers.
5313
5314 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5315 the return codes and their meanings.) */
5316
5317 int
regcomp(preg,pattern,cflags)5318 regcomp (preg, pattern, cflags)
5319 regex_t *preg;
5320 const char *pattern;
5321 int cflags;
5322 {
5323 reg_errcode_t ret;
5324 unsigned syntax
5325 = (cflags & REG_EXTENDED) ?
5326 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5327
5328 /* regex_compile will allocate the space for the compiled pattern. */
5329 preg->buffer = 0;
5330 preg->allocated = 0;
5331 preg->used = 0;
5332
5333 /* Don't bother to use a fastmap when searching. This simplifies the
5334 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5335 characters after newlines into the fastmap. This way, we just try
5336 every character. */
5337 preg->fastmap = 0;
5338
5339 if (cflags & REG_ICASE)
5340 {
5341 unsigned i;
5342
5343 preg->translate
5344 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5345 * sizeof (*(RE_TRANSLATE_TYPE)0));
5346 if (preg->translate == NULL)
5347 return (int) REG_ESPACE;
5348
5349 /* Map uppercase characters to corresponding lowercase ones. */
5350 for (i = 0; i < CHAR_SET_SIZE; i++)
5351 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5352 }
5353 else
5354 preg->translate = NULL;
5355
5356 /* If REG_NEWLINE is set, newlines are treated differently. */
5357 if (cflags & REG_NEWLINE)
5358 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5359 syntax &= ~RE_DOT_NEWLINE;
5360 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5361 /* It also changes the matching behavior. */
5362 preg->newline_anchor = 1;
5363 }
5364 else
5365 preg->newline_anchor = 0;
5366
5367 preg->no_sub = !!(cflags & REG_NOSUB);
5368
5369 /* POSIX says a null character in the pattern terminates it, so we
5370 can use strlen here in compiling the pattern. */
5371 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5372
5373 /* POSIX doesn't distinguish between an unmatched open-group and an
5374 unmatched close-group: both are REG_EPAREN. */
5375 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5376
5377 return (int) ret;
5378 }
5379
5380
5381 /* regexec searches for a given pattern, specified by PREG, in the
5382 string STRING.
5383
5384 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5385 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5386 least NMATCH elements, and we set them to the offsets of the
5387 corresponding matched substrings.
5388
5389 EFLAGS specifies `execution flags' which affect matching: if
5390 REG_NOTBOL is set, then ^ does not match at the beginning of the
5391 string; if REG_NOTEOL is set, then $ does not match at the end.
5392
5393 We return 0 if we find a match and REG_NOMATCH if not. */
5394
5395 int
regexec(preg,string,nmatch,pmatch,eflags)5396 regexec (preg, string, nmatch, pmatch, eflags)
5397 const regex_t *preg;
5398 const char *string;
5399 size_t nmatch;
5400 regmatch_t pmatch[];
5401 int eflags;
5402 {
5403 int ret;
5404 struct re_registers regs;
5405 regex_t private_preg;
5406 int len = strlen (string);
5407 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5408
5409 private_preg = *preg;
5410
5411 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5412 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5413
5414 /* The user has told us exactly how many registers to return
5415 information about, via `nmatch'. We have to pass that on to the
5416 matching routines. */
5417 private_preg.regs_allocated = REGS_FIXED;
5418
5419 if (want_reg_info)
5420 {
5421 regs.num_regs = nmatch;
5422 regs.start = TALLOC (nmatch, regoff_t);
5423 regs.end = TALLOC (nmatch, regoff_t);
5424 if (regs.start == NULL || regs.end == NULL)
5425 return (int) REG_NOMATCH;
5426 }
5427
5428 /* Perform the searching operation. */
5429 ret = re_search (&private_preg, string, len,
5430 /* start: */ 0, /* range: */ len,
5431 want_reg_info ? ®s : (struct re_registers *) 0);
5432
5433 /* Copy the register information to the POSIX structure. */
5434 if (want_reg_info)
5435 {
5436 if (ret >= 0)
5437 {
5438 unsigned r;
5439
5440 for (r = 0; r < nmatch; r++)
5441 {
5442 pmatch[r].rm_so = regs.start[r];
5443 pmatch[r].rm_eo = regs.end[r];
5444 }
5445 }
5446
5447 /* If we needed the temporary register info, free the space now. */
5448 free (regs.start);
5449 free (regs.end);
5450 }
5451
5452 /* We want zero return to mean success, unlike `re_search'. */
5453 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5454 }
5455
5456
5457 /* Returns a message corresponding to an error code, ERRCODE, returned
5458 from either regcomp or regexec. We don't use PREG here. */
5459
5460 size_t
regerror(errcode,preg,errbuf,errbuf_size)5461 regerror (errcode, preg, errbuf, errbuf_size)
5462 int errcode;
5463 const regex_t *preg;
5464 char *errbuf;
5465 size_t errbuf_size;
5466 {
5467 const char *msg;
5468 size_t msg_size;
5469
5470 if (errcode < 0
5471 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5472 /* Only error codes returned by the rest of the code should be passed
5473 to this routine. If we are given anything else, or if other regex
5474 code generates an invalid error code, then the program has a bug.
5475 Dump core so we can fix it. */
5476 abort ();
5477
5478 msg = gettext (re_error_msgid[errcode]);
5479
5480 msg_size = strlen (msg) + 1; /* Includes the null. */
5481
5482 if (errbuf_size != 0)
5483 {
5484 if (msg_size > errbuf_size)
5485 {
5486 strncpy (errbuf, msg, errbuf_size - 1);
5487 errbuf[errbuf_size - 1] = 0;
5488 }
5489 else
5490 strcpy (errbuf, msg);
5491 }
5492
5493 return msg_size;
5494 }
5495
5496
5497 /* Free dynamically allocated space used by PREG. */
5498
5499 void
regfree(preg)5500 regfree (preg)
5501 regex_t *preg;
5502 {
5503 if (preg->buffer != NULL)
5504 free (preg->buffer);
5505 preg->buffer = NULL;
5506
5507 preg->allocated = 0;
5508 preg->used = 0;
5509
5510 if (preg->fastmap != NULL)
5511 free (preg->fastmap);
5512 preg->fastmap = NULL;
5513 preg->fastmap_accurate = 0;
5514
5515 if (preg->translate != NULL)
5516 free (preg->translate);
5517 preg->translate = NULL;
5518 }
5519
5520 #endif /* not emacs */
5521