• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Extended regular expression matching and search library, version
2    0.12.  (Implements POSIX draft P10003.2/D11.2, except for
3    internationalization features.)
4 
5    Copyright (C) 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 2, or (at your option)
10    any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
20    USA.	 */
21 
22 /* AIX requires this to be the first thing in the file. */
23 #if defined (_AIX) && !defined (REGEX_MALLOC)
24   #pragma alloca
25 #endif
26 
27 #undef	_GNU_SOURCE
28 #define _GNU_SOURCE
29 
30 #include "cs_config.h"
31 #include "util/osdep.h"
32 
33 #ifdef HAVE_CONFIG_H
34 #include <config.h>
35 #endif
36 
37 /* We need this for `regex.h', and perhaps for the Emacs include files.	 */
38 #include <sys/types.h>
39 
40 /* This is for other GNU distributions with internationalized messages.	 */
41 #if HAVE_LIBINTL_H || defined (_LIBC)
42 # include <libintl.h>
43 #else
44 # define gettext(msgid) (msgid)
45 #endif
46 
47 #ifndef gettext_noop
48 /* This define is so xgettext can find the internationalizable
49    strings.  */
50 #define gettext_noop(String) String
51 #endif
52 
53 /* The `emacs' switch turns on certain matching commands
54    that make sense only in Emacs. */
55 #ifdef emacs
56 
57 #include "lisp.h"
58 #include "buffer.h"
59 #include "syntax.h"
60 
61 #else  /* not emacs */
62 
63 /* If we are not linking with Emacs proper,
64    we can't use the relocating allocator
65    even if config.h says that we can.  */
66 #undef REL_ALLOC
67 
68 #if defined (STDC_HEADERS) || defined (_LIBC)
69 #include <stdlib.h>
70 #else
71 char *malloc ();
72 char *realloc ();
73 #endif
74 
75 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
76    If nothing else has been done, use the method below.	 */
77 #ifdef INHIBIT_STRING_HEADER
78 #if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
79 #if !defined (bzero) && !defined (bcopy)
80 #undef INHIBIT_STRING_HEADER
81 #endif
82 #endif
83 #endif
84 
85 /* This is the normal way of making sure we have a bcopy and a bzero.
86    This is used in most programs--a few other programs avoid this
87    by defining INHIBIT_STRING_HEADER.  */
88 #ifndef INHIBIT_STRING_HEADER
89 #if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
90 #include <string.h>
91 #ifndef bcmp
92 #define bcmp(s1, s2, n)	memcmp ((s1), (s2), (n))
93 #endif
94 #ifndef bcopy
95 #define bcopy(s, d, n)	memcpy ((d), (s), (n))
96 #endif
97 #ifndef bzero
98 #define bzero(s, n)	memset ((s), 0, (n))
99 #endif
100 #else
101 #include <strings.h>
102 #endif
103 #endif
104 
105 /* Define the syntax stuff for \<, \>, etc.  */
106 
107 /* This must be nonzero for the wordchar and notwordchar pattern
108    commands in re_match_2.  */
109 #ifndef Sword
110 #define Sword 1
111 #endif
112 
113 #ifdef SWITCH_ENUM_BUG
114 #define SWITCH_ENUM_CAST(x) ((int)(x))
115 #else
116 #define SWITCH_ENUM_CAST(x) (x)
117 #endif
118 
119 #ifdef SYNTAX_TABLE
120 
121 extern char *re_syntax_table;
122 
123 #else /* not SYNTAX_TABLE */
124 
125 /* How many characters in the character set.  */
126 #define CHAR_SET_SIZE 256
127 
128 static char re_syntax_table[CHAR_SET_SIZE];
129 
130 static void
init_syntax_once()131 init_syntax_once ()
132 {
133    register int c;
134    static int done = 0;
135 
136    if (done)
137      return;
138 
139    bzero (re_syntax_table, sizeof re_syntax_table);
140 
141    for (c = 'a'; c <= 'z'; c++)
142      re_syntax_table[c] = Sword;
143 
144    for (c = 'A'; c <= 'Z'; c++)
145      re_syntax_table[c] = Sword;
146 
147    for (c = '0'; c <= '9'; c++)
148      re_syntax_table[c] = Sword;
149 
150    re_syntax_table['_'] = Sword;
151 
152    done = 1;
153 }
154 
155 #endif /* not SYNTAX_TABLE */
156 
157 #define SYNTAX(c) re_syntax_table[c]
158 
159 #endif /* not emacs */
160 
161 /* Get the interface, including the syntax bits.  */
162 #include "regex.h"
163 
164 /* isalpha etc. are used for the character classes.  */
165 #include <ctype.h>
166 
167 /* Jim Meyering writes:
168 
169    "... Some ctype macros are valid only for character codes that
170    isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
171    using /bin/cc or gcc but without giving an ansi option).  So, all
172    ctype uses should be through macros like ISPRINT...	If
173    STDC_HEADERS is defined, then autoconf has verified that the ctype
174    macros don't need to be guarded with references to isascii. ...
175    Defining IN_CTYPE_DOMAIN to 1 should let any compiler worth its salt
176    eliminate the && through constant folding."	*/
177 
178 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
179 #define IN_CTYPE_DOMAIN(c) 1
180 #else
181 #define IN_CTYPE_DOMAIN(c) isascii(c)
182 #endif
183 
184 #ifdef isblank
185 #define ISBLANK(c) (IN_CTYPE_DOMAIN (c) && isblank (c))
186 #else
187 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
188 #endif
189 #ifdef isgraph
190 #define ISGRAPH(c) (IN_CTYPE_DOMAIN (c) && isgraph (c))
191 #else
192 #define ISGRAPH(c) (IN_CTYPE_DOMAIN (c) && isprint (c) && !isspace (c))
193 #endif
194 
195 #define ISPRINT(c) (IN_CTYPE_DOMAIN (c) && isprint (c))
196 #define ISDIGIT(c) (IN_CTYPE_DOMAIN (c) && isdigit (c))
197 #define ISALNUM(c) (IN_CTYPE_DOMAIN (c) && isalnum (c))
198 #define ISALPHA(c) (IN_CTYPE_DOMAIN (c) && isalpha (c))
199 #define ISCNTRL(c) (IN_CTYPE_DOMAIN (c) && iscntrl (c))
200 #define ISLOWER(c) (IN_CTYPE_DOMAIN (c) && islower (c))
201 #define ISPUNCT(c) (IN_CTYPE_DOMAIN (c) && ispunct (c))
202 #define ISSPACE(c) (IN_CTYPE_DOMAIN (c) && isspace (c))
203 #define ISUPPER(c) (IN_CTYPE_DOMAIN (c) && isupper (c))
204 #define ISXDIGIT(c) (IN_CTYPE_DOMAIN (c) && isxdigit (c))
205 
206 #ifndef NULL
207 #define NULL (void *)0
208 #endif
209 
210 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
211    since ours (we hope) works properly with all combinations of
212    machines, compilers, `char' and `unsigned char' argument types.
213    (Per Bothner suggested the basic approach.)	*/
214 #undef SIGN_EXTEND_CHAR
215 #if __STDC__
216 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
217 #else  /* not __STDC__ */
218 /* As in Harbison and Steele.  */
219 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
220 #endif
221 
222 /* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
223    use `alloca' instead of `malloc'.  This is because using malloc in
224    re_search* or re_match* could cause memory leaks when C-g is used in
225    Emacs; also, malloc is slower and causes storage fragmentation.  On
226    the other hand, malloc is more portable, and easier to debug.
227 
228    Because we sometimes use alloca, some routines have to be macros,
229    not functions -- `alloca'-allocated space disappears at the end of the
230    function it is called in.  */
231 
232 #ifdef REGEX_MALLOC
233 
234 #define REGEX_ALLOCATE malloc
235 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
236 #define REGEX_FREE free
237 
238 #else /* not REGEX_MALLOC  */
239 
240 /* Emacs already defines alloca, sometimes.  */
241 #ifndef alloca
242 
243 /* Make alloca work the best possible way.  */
244 #ifdef __GNUC__
245 #define alloca __builtin_alloca
246 #else /* not __GNUC__ */
247 #if HAVE_ALLOCA_H
248 #include <alloca.h>
249 #else /* not __GNUC__ or HAVE_ALLOCA_H */
250 #if 0 /* It is a bad idea to declare alloca.  We always cast the result.  */
251 #ifndef _AIX /* Already did AIX, up at the top.	 */
252 char *alloca ();
253 #endif /* not _AIX */
254 #endif
255 #endif /* not HAVE_ALLOCA_H */
256 #endif /* not __GNUC__ */
257 
258 #endif /* not alloca */
259 
260 #define REGEX_ALLOCATE alloca
261 
262 /* Assumes a `char *destination' variable.  */
263 #define REGEX_REALLOCATE(source, osize, nsize)				\
264   (destination = (char *) alloca (nsize),				\
265    bcopy (source, destination, osize),					\
266    destination)
267 
268 /* No need to do anything to free, after alloca.  */
269 #define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */
270 
271 #endif /* not REGEX_MALLOC */
272 
273 /* Define how to allocate the failure stack.  */
274 
275 #if defined (REL_ALLOC) && defined (REGEX_MALLOC)
276 
277 #define REGEX_ALLOCATE_STACK(size)				\
278   r_alloc (&failure_stack_ptr, (size))
279 #define REGEX_REALLOCATE_STACK(source, osize, nsize)		\
280   r_re_alloc (&failure_stack_ptr, (nsize))
281 #define REGEX_FREE_STACK(ptr)					\
282   r_alloc_free (&failure_stack_ptr)
283 
284 #else /* not using relocating allocator */
285 
286 #ifdef REGEX_MALLOC
287 
288 #define REGEX_ALLOCATE_STACK malloc
289 #define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
290 #define REGEX_FREE_STACK free
291 
292 #else /* not REGEX_MALLOC */
293 
294 #define REGEX_ALLOCATE_STACK alloca
295 
296 #define REGEX_REALLOCATE_STACK(source, osize, nsize)			\
297    REGEX_REALLOCATE (source, osize, nsize)
298 /* No need to explicitly free anything.	 */
299 #define REGEX_FREE_STACK(arg)
300 
301 #endif /* not REGEX_MALLOC */
302 #endif /* not using relocating allocator */
303 
304 
305 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
306    `string1' or just past its end.  This works if PTR is NULL, which is
307    a good thing.  */
308 #define FIRST_STRING_P(ptr)					\
309   (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
310 
311 /* (Re)Allocate N items of type T using malloc, or fail.  */
312 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
313 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
314 #define RETALLOC_IF(addr, n, t) \
315   if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
316 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
317 
318 #define BYTEWIDTH 8 /* In bits.	 */
319 
320 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
321 
322 #undef MAX
323 #undef MIN
324 #define MAX(a, b) ((a) > (b) ? (a) : (b))
325 #define MIN(a, b) ((a) < (b) ? (a) : (b))
326 
327 typedef char boolean;
328 #define false 0
329 #define true 1
330 
331 static int re_match_2_internal ();
332 
333 /* These are the command codes that appear in compiled regular
334    expressions.	 Some opcodes are followed by argument bytes.  A
335    command code can specify any interpretation whatsoever for its
336    arguments.  Zero bytes may appear in the compiled regular expression.  */
337 
338 typedef enum
339 {
340   no_op = 0,
341 
342   /* Succeed right away--no more backtracking.	*/
343   succeed,
344 
345 	/* Followed by one byte giving n, then by n literal bytes.  */
346   exactn,
347 
348 	/* Matches any (more or less) character.  */
349   anychar,
350 
351 	/* Matches any one char belonging to specified set.  First
352 	   following byte is number of bitmap bytes.  Then come bytes
353 	   for a bitmap saying which chars are in.  Bits in each byte
354 	   are ordered low-bit-first.  A character is in the set if its
355 	   bit is 1.  A character too large to have a bit in the map is
356 	   automatically not in the set.  */
357   charset,
358 
359 	/* Same parameters as charset, but match any character that is
360 	   not one of those specified.	*/
361   charset_not,
362 
363 	/* Start remembering the text that is matched, for storing in a
364 	   register.  Followed by one byte with the register number, in
365 	   the range 0 to one less than the pattern buffer's re_nsub
366 	   field.  Then followed by one byte with the number of groups
367 	   inner to this one.  (This last has to be part of the
368 	   start_memory only because we need it in the on_failure_jump
369 	   of re_match_2.)  */
370   start_memory,
371 
372 	/* Stop remembering the text that is matched and store it in a
373 	   memory register.  Followed by one byte with the register
374 	   number, in the range 0 to one less than `re_nsub' in the
375 	   pattern buffer, and one byte with the number of inner groups,
376 	   just like `start_memory'.  (We need the number of inner
377 	   groups here because we don't have any easy way of finding the
378 	   corresponding start_memory when we're at a stop_memory.)  */
379   stop_memory,
380 
381 	/* Match a duplicate of something remembered. Followed by one
382 	   byte containing the register number.	 */
383   duplicate,
384 
385 	/* Fail unless at beginning of line.  */
386   begline,
387 
388 	/* Fail unless at end of line.	*/
389   endline,
390 
391 	/* Succeeds if at beginning of buffer (if emacs) or at beginning
392 	   of string to be matched (if not).  */
393   begbuf,
394 
395 	/* Analogously, for end of buffer/string.  */
396   endbuf,
397 
398 	/* Followed by two byte relative address to which to jump.  */
399   jump,
400 
401 	/* Same as jump, but marks the end of an alternative.  */
402   jump_past_alt,
403 
404 	/* Followed by two-byte relative address of place to resume at
405 	   in case of failure.	*/
406   on_failure_jump,
407 
408 	/* Like on_failure_jump, but pushes a placeholder instead of the
409 	   current string position when executed.  */
410   on_failure_keep_string_jump,
411 
412 	/* Throw away latest failure point and then jump to following
413 	   two-byte relative address.  */
414   pop_failure_jump,
415 
416 	/* Change to pop_failure_jump if know won't have to backtrack to
417 	   match; otherwise change to jump.  This is used to jump
418 	   back to the beginning of a repeat.  If what follows this jump
419 	   clearly won't match what the repeat does, such that we can be
420 	   sure that there is no use backtracking out of repetitions
421 	   already matched, then we change it to a pop_failure_jump.
422 	   Followed by two-byte address.  */
423   maybe_pop_jump,
424 
425 	/* Jump to following two-byte address, and push a dummy failure
426 	   point. This failure point will be thrown away if an attempt
427 	   is made to use it for a failure.  A `+' construct makes this
428 	   before the first repeat.  Also used as an intermediary kind
429 	   of jump when compiling an alternative.  */
430   dummy_failure_jump,
431 
432 	/* Push a dummy failure point and continue.  Used at the end of
433 	   alternatives.  */
434   push_dummy_failure,
435 
436 	/* Followed by two-byte relative address and two-byte number n.
437 	   After matching N times, jump to the address upon failure.  */
438   succeed_n,
439 
440 	/* Followed by two-byte relative address, and two-byte number n.
441 	   Jump to the address N times, then fail.  */
442   jump_n,
443 
444 	/* Set the following two-byte relative address to the
445 	   subsequent two-byte number.	The address *includes* the two
446 	   bytes of number.  */
447   set_number_at,
448 
449   wordchar,	/* Matches any word-constituent character.  */
450   notwordchar,	/* Matches any char that is not a word-constituent.  */
451 
452   wordbeg,	/* Succeeds if at word beginning.  */
453   wordend,	/* Succeeds if at word end.  */
454 
455   wordbound,	/* Succeeds if at a word boundary.  */
456   notwordbound	/* Succeeds if not at a word boundary.	*/
457 
458 #ifdef emacs
459   ,before_dot,	/* Succeeds if before point.  */
460   at_dot,	/* Succeeds if at point.  */
461   after_dot,	/* Succeeds if after point.  */
462 
463 	/* Matches any character whose syntax is specified.  Followed by
464 	   a byte which contains a syntax code, e.g., Sword.  */
465   syntaxspec,
466 
467 	/* Matches any character whose syntax is not that specified.  */
468   notsyntaxspec
469 #endif /* emacs */
470 } re_opcode_t;
471 
472 /* Common operations on the compiled pattern.  */
473 
474 /* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
475 
476 #define STORE_NUMBER(destination, number)				\
477   do {									\
478     (destination)[0] = (number) & 0377;					\
479     (destination)[1] = (number) >> 8;					\
480   } while (0)
481 
482 /* Same as STORE_NUMBER, except increment DESTINATION to
483    the byte after where the number is stored.  Therefore, DESTINATION
484    must be an lvalue.  */
485 
486 #define STORE_NUMBER_AND_INCR(destination, number)			\
487   do {									\
488     STORE_NUMBER (destination, number);					\
489     (destination) += 2;							\
490   } while (0)
491 
492 /* Put into DESTINATION a number stored in two contiguous bytes starting
493    at SOURCE.  */
494 
495 #define EXTRACT_NUMBER(destination, source)				\
496   do {									\
497     (destination) = *(source) & 0377;					\
498     (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;		\
499   } while (0)
500 
501 #ifdef DEBUG
502 static void
extract_number(dest,source)503 extract_number (dest, source)
504     int *dest;
505     unsigned char *source;
506 {
507   int temp = SIGN_EXTEND_CHAR (*(source + 1));
508   *dest = *source & 0377;
509   *dest += temp << 8;
510 }
511 
512 #ifndef EXTRACT_MACROS /* To debug the macros.	*/
513 #undef EXTRACT_NUMBER
514 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
515 #endif /* not EXTRACT_MACROS */
516 
517 #endif /* DEBUG */
518 
519 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
520    SOURCE must be an lvalue.  */
521 
522 #define EXTRACT_NUMBER_AND_INCR(destination, source)			\
523   do {									\
524     EXTRACT_NUMBER (destination, source);				\
525     (source) += 2;							\
526   } while (0)
527 
528 #ifdef DEBUG
529 static void
extract_number_and_incr(destination,source)530 extract_number_and_incr (destination, source)
531     int *destination;
532     unsigned char **source;
533 {
534   extract_number (destination, *source);
535   *source += 2;
536 }
537 
538 #ifndef EXTRACT_MACROS
539 #undef EXTRACT_NUMBER_AND_INCR
540 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
541   extract_number_and_incr (&dest, &src)
542 #endif /* not EXTRACT_MACROS */
543 
544 #endif /* DEBUG */
545 
546 /* If DEBUG is defined, Regex prints many voluminous messages about what
547    it is doing (if the variable `debug' is nonzero).  If linked with the
548    main program in `iregex.c', you can enter patterns and strings
549    interactively.  And if linked with the main program in `main.c' and
550    the other test files, you can run the already-written tests.	 */
551 
552 #ifdef DEBUG
553 
554 /* We use standard I/O for debugging.  */
555 #include <stdio.h>
556 
557 /* It is useful to test things that ``must'' be true when debugging.  */
558 #include <assert.h>
559 
560 static int debug = 0;
561 
562 #define DEBUG_STATEMENT(e) e
563 #define DEBUG_PRINT1(x) if (debug) printf (x)
564 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
565 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
566 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
567 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)				\
568   if (debug) print_partial_compiled_pattern (s, e)
569 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)			\
570   if (debug) print_double_string (w, s1, sz1, s2, sz2)
571 
572 
573 /* Print the fastmap in human-readable form.  */
574 
575 void
print_fastmap(fastmap)576 print_fastmap (fastmap)
577     char *fastmap;
578 {
579   unsigned was_a_range = 0;
580   unsigned i = 0;
581 
582   while (i < (1 << BYTEWIDTH))
583     {
584       if (fastmap[i++])
585 	{
586 	  was_a_range = 0;
587 	  putchar (i - 1);
588 	  while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
589 	    {
590 	      was_a_range = 1;
591 	      i++;
592 	    }
593 	  if (was_a_range)
594 	    {
595 	      printf ("-");
596 	      putchar (i - 1);
597 	    }
598 	}
599     }
600   putchar ('\n');
601 }
602 
603 
604 /* Print a compiled pattern string in human-readable form, starting at
605    the START pointer into it and ending just before the pointer END.  */
606 
607 void
print_partial_compiled_pattern(start,end)608 print_partial_compiled_pattern (start, end)
609     unsigned char *start;
610     unsigned char *end;
611 {
612   int mcnt, mcnt2;
613   unsigned char *p = start;
614   unsigned char *pend = end;
615 
616   if (start == NULL)
617     {
618       printf ("(null)\n");
619       return;
620     }
621 
622   /* Loop over pattern commands.  */
623   while (p < pend)
624     {
625       printf ("%d:\t", p - start);
626 
627       switch ((re_opcode_t) *p++)
628 	{
629 	case no_op:
630 	  printf ("/no_op");
631 	  break;
632 
633 	case exactn:
634 	  mcnt = *p++;
635 	  printf ("/exactn/%d", mcnt);
636 	  do
637 	    {
638 	      putchar ('/');
639 	      putchar (*p++);
640 	    }
641 	  while (--mcnt);
642 	  break;
643 
644 	case start_memory:
645 	  mcnt = *p++;
646 	  printf ("/start_memory/%d/%d", mcnt, *p++);
647 	  break;
648 
649 	case stop_memory:
650 	  mcnt = *p++;
651 	  printf ("/stop_memory/%d/%d", mcnt, *p++);
652 	  break;
653 
654 	case duplicate:
655 	  printf ("/duplicate/%d", *p++);
656 	  break;
657 
658 	case anychar:
659 	  printf ("/anychar");
660 	  break;
661 
662 	case charset:
663 	case charset_not:
664 	  {
665 	    register int c, last = -100;
666 	    register int in_range = 0;
667 
668 	    printf ("/charset [%s",
669 		    (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
670 
671 	    assert (p + *p < pend);
672 
673 	    for (c = 0; c < 256; c++)
674 	      if (c / 8 < *p
675 		  && (p[1 + (c/8)] & (1 << (c % 8))))
676 		{
677 		  /* Are we starting a range?  */
678 		  if (last + 1 == c && ! in_range)
679 		    {
680 		      putchar ('-');
681 		      in_range = 1;
682 		    }
683 		  /* Have we broken a range?  */
684 		  else if (last + 1 != c && in_range)
685 	      {
686 		      putchar (last);
687 		      in_range = 0;
688 		    }
689 
690 		  if (! in_range)
691 		    putchar (c);
692 
693 		  last = c;
694 	      }
695 
696 	    if (in_range)
697 	      putchar (last);
698 
699 	    putchar (']');
700 
701 	    p += 1 + *p;
702 	  }
703 	  break;
704 
705 	case begline:
706 	  printf ("/begline");
707 	  break;
708 
709 	case endline:
710 	  printf ("/endline");
711 	  break;
712 
713 	case on_failure_jump:
714 	  extract_number_and_incr (&mcnt, &p);
715 	  printf ("/on_failure_jump to %d", p + mcnt - start);
716 	  break;
717 
718 	case on_failure_keep_string_jump:
719 	  extract_number_and_incr (&mcnt, &p);
720 	  printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
721 	  break;
722 
723 	case dummy_failure_jump:
724 	  extract_number_and_incr (&mcnt, &p);
725 	  printf ("/dummy_failure_jump to %d", p + mcnt - start);
726 	  break;
727 
728 	case push_dummy_failure:
729 	  printf ("/push_dummy_failure");
730 	  break;
731 
732 	case maybe_pop_jump:
733 	  extract_number_and_incr (&mcnt, &p);
734 	  printf ("/maybe_pop_jump to %d", p + mcnt - start);
735 	  break;
736 
737 	case pop_failure_jump:
738 	  extract_number_and_incr (&mcnt, &p);
739 	  printf ("/pop_failure_jump to %d", p + mcnt - start);
740 	  break;
741 
742 	case jump_past_alt:
743 	  extract_number_and_incr (&mcnt, &p);
744 	  printf ("/jump_past_alt to %d", p + mcnt - start);
745 	  break;
746 
747 	case jump:
748 	  extract_number_and_incr (&mcnt, &p);
749 	  printf ("/jump to %d", p + mcnt - start);
750 	  break;
751 
752 	case succeed_n:
753 	  extract_number_and_incr (&mcnt, &p);
754 	  extract_number_and_incr (&mcnt2, &p);
755 	  printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
756 	  break;
757 
758 	case jump_n:
759 	  extract_number_and_incr (&mcnt, &p);
760 	  extract_number_and_incr (&mcnt2, &p);
761 	  printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
762 	  break;
763 
764 	case set_number_at:
765 	  extract_number_and_incr (&mcnt, &p);
766 	  extract_number_and_incr (&mcnt2, &p);
767 	  printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
768 	  break;
769 
770 	case wordbound:
771 	  printf ("/wordbound");
772 	  break;
773 
774 	case notwordbound:
775 	  printf ("/notwordbound");
776 	  break;
777 
778 	case wordbeg:
779 	  printf ("/wordbeg");
780 	  break;
781 
782 	case wordend:
783 	  printf ("/wordend");
784 
785 #ifdef emacs
786 	case before_dot:
787 	  printf ("/before_dot");
788 	  break;
789 
790 	case at_dot:
791 	  printf ("/at_dot");
792 	  break;
793 
794 	case after_dot:
795 	  printf ("/after_dot");
796 	  break;
797 
798 	case syntaxspec:
799 	  printf ("/syntaxspec");
800 	  mcnt = *p++;
801 	  printf ("/%d", mcnt);
802 	  break;
803 
804 	case notsyntaxspec:
805 	  printf ("/notsyntaxspec");
806 	  mcnt = *p++;
807 	  printf ("/%d", mcnt);
808 	  break;
809 #endif /* emacs */
810 
811 	case wordchar:
812 	  printf ("/wordchar");
813 	  break;
814 
815 	case notwordchar:
816 	  printf ("/notwordchar");
817 	  break;
818 
819 	case begbuf:
820 	  printf ("/begbuf");
821 	  break;
822 
823 	case endbuf:
824 	  printf ("/endbuf");
825 	  break;
826 
827 	default:
828 	  printf ("?%d", *(p-1));
829 	}
830 
831       putchar ('\n');
832     }
833 
834   printf ("%d:\tend of pattern.\n", p - start);
835 }
836 
837 
838 void
print_compiled_pattern(bufp)839 print_compiled_pattern (bufp)
840     struct re_pattern_buffer *bufp;
841 {
842   unsigned char *buffer = bufp->buffer;
843 
844   print_partial_compiled_pattern (buffer, buffer + bufp->used);
845   printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
846 
847   if (bufp->fastmap_accurate && bufp->fastmap)
848     {
849       printf ("fastmap: ");
850       print_fastmap (bufp->fastmap);
851     }
852 
853   printf ("re_nsub: %d\t", bufp->re_nsub);
854   printf ("regs_alloc: %d\t", bufp->regs_allocated);
855   printf ("can_be_null: %d\t", bufp->can_be_null);
856   printf ("newline_anchor: %d\n", bufp->newline_anchor);
857   printf ("no_sub: %d\t", bufp->no_sub);
858   printf ("not_bol: %d\t", bufp->not_bol);
859   printf ("not_eol: %d\t", bufp->not_eol);
860   printf ("syntax: %d\n", bufp->syntax);
861   /* Perhaps we should print the translate table?  */
862 }
863 
864 
865 void
print_double_string(where,string1,size1,string2,size2)866 print_double_string (where, string1, size1, string2, size2)
867     const char *where;
868     const char *string1;
869     const char *string2;
870     int size1;
871     int size2;
872 {
873   unsigned this_char;
874 
875   if (where == NULL)
876     printf ("(null)");
877   else
878     {
879       if (FIRST_STRING_P (where))
880 	{
881 	  for (this_char = where - string1; this_char < size1; this_char++)
882 	    putchar (string1[this_char]);
883 
884 	  where = string2;
885 	}
886 
887       for (this_char = where - string2; this_char < size2; this_char++)
888 	putchar (string2[this_char]);
889     }
890 }
891 
892 #else /* not DEBUG */
893 
894 #undef assert
895 #define assert(e)
896 
897 #define DEBUG_STATEMENT(e)
898 #define DEBUG_PRINT1(x)
899 #define DEBUG_PRINT2(x1, x2)
900 #define DEBUG_PRINT3(x1, x2, x3)
901 #define DEBUG_PRINT4(x1, x2, x3, x4)
902 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
903 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
904 
905 #endif /* not DEBUG */
906 
907 /* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
908    also be assigned to arbitrarily: each pattern buffer stores its own
909    syntax, so it can be changed between regex compilations.  */
910 /* This has no initializer because initialized variables in Emacs
911    become read-only after dumping.  */
912 reg_syntax_t re_syntax_options;
913 
914 
915 /* Specify the precise syntax of regexps for compilation.  This provides
916    for compatibility for various utilities which historically have
917    different, incompatible syntaxes.
918 
919    The argument SYNTAX is a bit mask comprised of the various bits
920    defined in regex.h.	We return the old syntax.  */
921 
922 reg_syntax_t
re_set_syntax(syntax)923 re_set_syntax (syntax)
924     reg_syntax_t syntax;
925 {
926   reg_syntax_t ret = re_syntax_options;
927 
928   re_syntax_options = syntax;
929   return ret;
930 }
931 
932 /* This table gives an error message for each of the error codes listed
933    in regex.h.	Obviously the order here has to be same as there.
934    POSIX doesn't require that we do anything for REG_NOERROR,
935    but why not be nice?	 */
936 
937 static const char *re_error_msgid[] =
938   {
939     gettext_noop ("Success"),	/* REG_NOERROR */
940     gettext_noop ("No match"),	/* REG_NOMATCH */
941     gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
942     gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
943     gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
944     gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
945     gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
946     gettext_noop ("Unmatched [ or [^"),	/* REG_EBRACK */
947     gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
948     gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
949     gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
950     gettext_noop ("Invalid range end"),	/* REG_ERANGE */
951     gettext_noop ("Memory exhausted"), /* REG_ESPACE */
952     gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
953     gettext_noop ("Premature end of regular expression"), /* REG_EEND */
954     gettext_noop ("Regular expression too big"), /* REG_ESIZE */
955     gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
956   };
957 
958 /* Avoiding alloca during matching, to placate r_alloc.	 */
959 
960 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
961    searching and matching functions should not call alloca.  On some
962    systems, alloca is implemented in terms of malloc, and if we're
963    using the relocating allocator routines, then malloc could cause a
964    relocation, which might (if the strings being searched are in the
965    ralloc heap) shift the data out from underneath the regexp
966    routines.
967 
968    Here's another reason to avoid allocation: Emacs
969    processes input from X in a signal handler; processing X input may
970    call malloc; if input arrives while a matching routine is calling
971    malloc, then we're scrod.  But Emacs can't just block input while
972    calling matching routines; then we don't notice interrupts when
973    they come in.  So, Emacs blocks input around all regexp calls
974    except the matching calls, which it leaves unprotected, in the
975    faith that they will not malloc.  */
976 
977 /* Normally, this is fine.  */
978 #define MATCH_MAY_ALLOCATE
979 
980 /* When using GNU C, we are not REALLY using the C alloca, no matter
981    what config.h may say.  So don't take precautions for it.  */
982 #ifdef __GNUC__
983 #undef C_ALLOCA
984 #endif
985 
986 /* The match routines may not allocate if (1) they would do it with malloc
987    and (2) it's not safe for them to use malloc.
988    Note that if REL_ALLOC is defined, matching would not use malloc for the
989    failure stack, but we would still use it for the register vectors;
990    so REL_ALLOC should not affect this.	 */
991 #if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
992 #undef MATCH_MAY_ALLOCATE
993 #endif
994 
995 
996 /* Failure stack declarations and macros; both re_compile_fastmap and
997    re_match_2 use a failure stack.  These have to be macros because of
998    REGEX_ALLOCATE_STACK.  */
999 
1000 
1001 /* Number of failure points for which to initially allocate space
1002    when matching.  If this number is exceeded, we allocate more
1003    space, so it is not a hard limit.  */
1004 #ifndef INIT_FAILURE_ALLOC
1005 #define INIT_FAILURE_ALLOC 5
1006 #endif
1007 
1008 /* Roughly the maximum number of failure points on the stack.  Would be
1009    exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1010    This is a variable only so users of regex can assign to it; we never
1011    change it ourselves.	 */
1012 #if defined (MATCH_MAY_ALLOCATE)
1013 /* 4400 was enough to cause a crash on Alpha OSF/1,
1014    whose default stack limit is 2mb.  */
1015 int re_max_failures = 20000;
1016 #else
1017 int re_max_failures = 2000;
1018 #endif
1019 
1020 union fail_stack_elt
1021 {
1022   unsigned char *pointer;
1023   int integer;
1024 };
1025 
1026 typedef union fail_stack_elt fail_stack_elt_t;
1027 
1028 typedef struct
1029 {
1030   fail_stack_elt_t *stack;
1031   unsigned size;
1032   unsigned avail;			/* Offset of next open position.  */
1033 } fail_stack_type;
1034 
1035 #define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
1036 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1037 #define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
1038 
1039 
1040 /* Define macros to initialize and free the failure stack.
1041    Do `return -2' if the alloc fails.  */
1042 
1043 #ifdef MATCH_MAY_ALLOCATE
1044 #define INIT_FAIL_STACK()						\
1045   do {									\
1046     fail_stack.stack = (fail_stack_elt_t *)				\
1047       REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t));	\
1048 									\
1049     if (fail_stack.stack == NULL)					\
1050       return -2;							\
1051 									\
1052     fail_stack.size = INIT_FAILURE_ALLOC;				\
1053     fail_stack.avail = 0;						\
1054   } while (0)
1055 
1056 #define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
1057 #else
1058 #define INIT_FAIL_STACK()						\
1059   do {									\
1060     fail_stack.avail = 0;						\
1061   } while (0)
1062 
1063 #define RESET_FAIL_STACK()
1064 #endif
1065 
1066 
1067 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1068 
1069    Return 1 if succeeds, and 0 if either ran out of memory
1070    allocating space for it or it was already too large.
1071 
1072    REGEX_REALLOCATE_STACK requires `destination' be declared.	*/
1073 
1074 #define DOUBLE_FAIL_STACK(fail_stack)					\
1075   ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS		\
1076    ? 0									\
1077    : ((fail_stack).stack = (fail_stack_elt_t *)				\
1078 	REGEX_REALLOCATE_STACK ((fail_stack).stack,			\
1079 	  (fail_stack).size * sizeof (fail_stack_elt_t),		\
1080 	  ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)),	\
1081 									\
1082       (fail_stack).stack == NULL					\
1083       ? 0								\
1084       : ((fail_stack).size <<= 1,					\
1085 	 1)))
1086 
1087 
1088 /* Push pointer POINTER on FAIL_STACK.
1089    Return 1 if was able to do so and 0 if ran out of memory allocating
1090    space to do so.  */
1091 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK)				\
1092   ((FAIL_STACK_FULL ()							\
1093     && !DOUBLE_FAIL_STACK (FAIL_STACK))					\
1094    ? 0									\
1095    : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,	\
1096       1))
1097 
1098 /* Push a pointer value onto the failure stack.
1099    Assumes the variable `fail_stack'.  Probably should only
1100    be called from within `PUSH_FAILURE_POINT'.	*/
1101 #define PUSH_FAILURE_POINTER(item)					\
1102   fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1103 
1104 /* This pushes an integer-valued item onto the failure stack.
1105    Assumes the variable `fail_stack'.  Probably should only
1106    be called from within `PUSH_FAILURE_POINT'.	*/
1107 #define PUSH_FAILURE_INT(item)					\
1108   fail_stack.stack[fail_stack.avail++].integer = (item)
1109 
1110 /* Push a fail_stack_elt_t value onto the failure stack.
1111    Assumes the variable `fail_stack'.  Probably should only
1112    be called from within `PUSH_FAILURE_POINT'.	*/
1113 #define PUSH_FAILURE_ELT(item)					\
1114   fail_stack.stack[fail_stack.avail++] =  (item)
1115 
1116 /* These three POP... operations complement the three PUSH... operations.
1117    All assume that `fail_stack' is nonempty.  */
1118 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1119 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1120 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1121 
1122 /* Used to omit pushing failure point id's when we're not debugging.  */
1123 #ifdef DEBUG
1124 #define DEBUG_PUSH PUSH_FAILURE_INT
1125 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1126 #else
1127 #define DEBUG_PUSH(item)
1128 #define DEBUG_POP(item_addr)
1129 #endif
1130 
1131 
1132 /* Push the information about the state we will need
1133    if we ever fail back to it.
1134 
1135    Requires variables fail_stack, regstart, regend, reg_info, and
1136    num_regs be declared.  DOUBLE_FAIL_STACK requires `destination' be
1137    declared.
1138 
1139    Does `return FAILURE_CODE' if runs out of memory.  */
1140 
1141 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)	\
1142   do {									\
1143     char *destination;							\
1144     /* Must be int, so when we don't save any registers, the arithmetic	\
1145        of 0 + -1 isn't done as unsigned.  */				\
1146     int this_reg;							\
1147 									\
1148     DEBUG_STATEMENT (failure_id++);					\
1149     DEBUG_STATEMENT (nfailure_points_pushed++);				\
1150     DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);		\
1151     DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
1152     DEBUG_PRINT2 ("			size: %d\n", (fail_stack).size);\
1153 									\
1154     DEBUG_PRINT2 ("  slots needed: %d\n", NUM_FAILURE_ITEMS);		\
1155     DEBUG_PRINT2 ("	available: %d\n", REMAINING_AVAIL_SLOTS);	\
1156 									\
1157     /* Ensure we have enough space allocated for what we will push.  */	\
1158     while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)			\
1159       {									\
1160 	if (!DOUBLE_FAIL_STACK (fail_stack))				\
1161 	  return failure_code;						\
1162 									\
1163 	DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",		\
1164 		       (fail_stack).size);				\
1165 	DEBUG_PRINT2 ("	 slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1166       }									\
1167 									\
1168     /* Push the info, starting with the registers.  */			\
1169     DEBUG_PRINT1 ("\n");						\
1170 									\
1171     if (1)								\
1172       for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1173 	   this_reg++)							\
1174 	{								\
1175 	  DEBUG_PRINT2 ("  Pushing reg: %d\n", this_reg);		\
1176 	  DEBUG_STATEMENT (num_regs_pushed++);				\
1177 									\
1178 	  DEBUG_PRINT2 ("    start: 0x%x\n", regstart[this_reg]);	\
1179 	  PUSH_FAILURE_POINTER (regstart[this_reg]);			\
1180 									\
1181 	  DEBUG_PRINT2 ("    end: 0x%x\n", regend[this_reg]);		\
1182 	  PUSH_FAILURE_POINTER (regend[this_reg]);			\
1183 									\
1184 	  DEBUG_PRINT2 ("    info: 0x%x\n      ", reg_info[this_reg]);	\
1185 	  DEBUG_PRINT2 (" match_null=%d",				\
1186 			REG_MATCH_NULL_STRING_P (reg_info[this_reg]));	\
1187 	  DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));	\
1188 	  DEBUG_PRINT2 (" matched_something=%d",			\
1189 			MATCHED_SOMETHING (reg_info[this_reg]));	\
1190 	  DEBUG_PRINT2 (" ever_matched=%d",				\
1191 			EVER_MATCHED_SOMETHING (reg_info[this_reg]));	\
1192 	  DEBUG_PRINT1 ("\n");						\
1193 	  PUSH_FAILURE_ELT (reg_info[this_reg].word);			\
1194 	}								\
1195 									\
1196     DEBUG_PRINT2 ("  Pushing  low active reg: %d\n", lowest_active_reg);\
1197     PUSH_FAILURE_INT (lowest_active_reg);				\
1198 									\
1199     DEBUG_PRINT2 ("  Pushing high active reg: %d\n", highest_active_reg);\
1200     PUSH_FAILURE_INT (highest_active_reg);				\
1201 									\
1202     DEBUG_PRINT2 ("  Pushing pattern 0x%x: ", pattern_place);		\
1203     DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);		\
1204     PUSH_FAILURE_POINTER (pattern_place);				\
1205 									\
1206     DEBUG_PRINT2 ("  Pushing string 0x%x: `", string_place);		\
1207     DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,	\
1208 				 size2);				\
1209     DEBUG_PRINT1 ("'\n");						\
1210     PUSH_FAILURE_POINTER (string_place);				\
1211 									\
1212     DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);		\
1213     DEBUG_PUSH (failure_id);						\
1214   } while (0)
1215 
1216 /* This is the number of items that are pushed and popped on the stack
1217    for each register.  */
1218 #define NUM_REG_ITEMS  3
1219 
1220 /* Individual items aside from the registers.  */
1221 #ifdef DEBUG
1222 #define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
1223 #else
1224 #define NUM_NONREG_ITEMS 4
1225 #endif
1226 
1227 /* We push at most this many items on the stack.  */
1228 /* We used to use (num_regs - 1), which is the number of registers
1229    this regexp will save; but that was changed to 5
1230    to avoid stack overflow for a regexp with lots of parens.  */
1231 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1232 
1233 /* We actually push this many items.  */
1234 #define NUM_FAILURE_ITEMS				\
1235   (((0							\
1236      ? 0 : highest_active_reg - lowest_active_reg + 1)	\
1237     * NUM_REG_ITEMS)					\
1238    + NUM_NONREG_ITEMS)
1239 
1240 /* How many items can still be added to the stack without overflowing it.  */
1241 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1242 
1243 
1244 /* Pops what PUSH_FAIL_STACK pushes.
1245 
1246    We restore into the parameters, all of which should be lvalues:
1247      STR -- the saved data position.
1248      PAT -- the saved pattern position.
1249      LOW_REG, HIGH_REG -- the highest and lowest active registers.
1250      REGSTART, REGEND -- arrays of string positions.
1251      REG_INFO -- array of information about each subexpression.
1252 
1253    Also assumes the variables `fail_stack' and (if debugging), `bufp',
1254    `pend', `string1', `size1', `string2', and `size2'.	*/
1255 
1256 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1257 {									\
1258   DEBUG_STATEMENT (fail_stack_elt_t failure_id;)			\
1259   int this_reg;								\
1260   const unsigned char *string_temp;					\
1261 									\
1262   assert (!FAIL_STACK_EMPTY ());					\
1263 									\
1264   /* Remove failure points and point to how many regs pushed.  */	\
1265   DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");				\
1266   DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);	\
1267   DEBUG_PRINT2 ("		     size: %d\n", fail_stack.size);	\
1268 									\
1269   assert (fail_stack.avail >= NUM_NONREG_ITEMS);			\
1270 									\
1271   DEBUG_POP (&failure_id);						\
1272   DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);		\
1273 									\
1274   /* If the saved string location is NULL, it came from an		\
1275      on_failure_keep_string_jump opcode, and we want to throw away the	\
1276      saved NULL, thus retaining our current position in the string.  */	\
1277   string_temp = POP_FAILURE_POINTER ();					\
1278   if (string_temp != NULL)						\
1279     str = (const char *) string_temp;					\
1280 									\
1281   DEBUG_PRINT2 ("  Popping string 0x%x: `", str);			\
1282   DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);	\
1283   DEBUG_PRINT1 ("'\n");							\
1284 									\
1285   pat = (unsigned char *) POP_FAILURE_POINTER ();			\
1286   DEBUG_PRINT2 ("  Popping pattern 0x%x: ", pat);			\
1287   DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);			\
1288 									\
1289   /* Restore register info.  */						\
1290   high_reg = (unsigned) POP_FAILURE_INT ();				\
1291   DEBUG_PRINT2 ("  Popping high active reg: %d\n", high_reg);		\
1292 									\
1293   low_reg = (unsigned) POP_FAILURE_INT ();				\
1294   DEBUG_PRINT2 ("  Popping  low active reg: %d\n", low_reg);		\
1295 									\
1296   if (1)								\
1297     for (this_reg = high_reg; this_reg >= low_reg; this_reg--)		\
1298       {									\
1299 	DEBUG_PRINT2 ("	   Popping reg: %d\n", this_reg);		\
1300 									\
1301 	reg_info[this_reg].word = POP_FAILURE_ELT ();			\
1302 	DEBUG_PRINT2 ("	     info: 0x%x\n", reg_info[this_reg]);	\
1303 									\
1304 	regend[this_reg] = (const char *) POP_FAILURE_POINTER ();	\
1305 	DEBUG_PRINT2 ("	     end: 0x%x\n", regend[this_reg]);		\
1306 									\
1307 	regstart[this_reg] = (const char *) POP_FAILURE_POINTER ();	\
1308 	DEBUG_PRINT2 ("	     start: 0x%x\n", regstart[this_reg]);	\
1309       }									\
1310   else									\
1311     {									\
1312       for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1313 	{								\
1314 	  reg_info[this_reg].word.integer = 0;				\
1315 	  regend[this_reg] = 0;						\
1316 	  regstart[this_reg] = 0;					\
1317 	}								\
1318       highest_active_reg = high_reg;					\
1319     }									\
1320 									\
1321   set_regs_matched_done = 0;						\
1322   DEBUG_STATEMENT (nfailure_points_popped++);				\
1323 } /* POP_FAILURE_POINT */
1324 
1325 
1326 
1327 /* Structure for per-register (a.k.a. per-group) information.
1328    Other register information, such as the
1329    starting and ending positions (which are addresses), and the list of
1330    inner groups (which is a bits list) are maintained in separate
1331    variables.
1332 
1333    We are making a (strictly speaking) nonportable assumption here: that
1334    the compiler will pack our bit fields into something that fits into
1335    the type of `word', i.e., is something that fits into one item on the
1336    failure stack.  */
1337 
1338 typedef union
1339 {
1340   fail_stack_elt_t word;
1341   struct
1342   {
1343       /* This field is one if this group can match the empty string,
1344 	 zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
1345 #define MATCH_NULL_UNSET_VALUE 3
1346     unsigned match_null_string_p : 2;
1347     unsigned is_active : 1;
1348     unsigned matched_something : 1;
1349     unsigned ever_matched_something : 1;
1350   } bits;
1351 } register_info_type;
1352 
1353 #define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
1354 #define IS_ACTIVE(R)  ((R).bits.is_active)
1355 #define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
1356 #define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
1357 
1358 
1359 /* Call this when have matched a real character; it sets `matched' flags
1360    for the subexpressions which we are currently inside.  Also records
1361    that those subexprs have matched.  */
1362 #define SET_REGS_MATCHED()						\
1363   do									\
1364     {									\
1365       if (!set_regs_matched_done)					\
1366 	{								\
1367 	  unsigned r;							\
1368 	  set_regs_matched_done = 1;					\
1369 	  for (r = lowest_active_reg; r <= highest_active_reg; r++)	\
1370 	    {								\
1371 	      MATCHED_SOMETHING (reg_info[r])				\
1372 		= EVER_MATCHED_SOMETHING (reg_info[r])			\
1373 		= 1;							\
1374 	    }								\
1375 	}								\
1376     }									\
1377   while (0)
1378 
1379 /* Registers are set to a sentinel when they haven't yet matched.  */
1380 static char reg_unset_dummy;
1381 #define REG_UNSET_VALUE (&reg_unset_dummy)
1382 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1383 
1384 /* Subroutine declarations and macros for regex_compile.  */
1385 
1386 static void store_op1 (), store_op2 ();
1387 static void insert_op1 (), insert_op2 ();
1388 static boolean at_begline_loc_p (), at_endline_loc_p ();
1389 static boolean group_in_compile_stack ();
1390 static reg_errcode_t compile_range ();
1391 
1392 /* Fetch the next character in the uncompiled pattern---translating it
1393    if necessary.  Also cast from a signed character in the constant
1394    string passed to us by the user to an unsigned char that we can use
1395    as an array index (in, e.g., `translate').  */
1396 #ifndef PATFETCH
1397 #define PATFETCH(c)							\
1398   do {if (p == pend) return REG_EEND;					\
1399     c = (unsigned char) *p++;						\
1400     if (translate) c = (unsigned char) translate[c];			\
1401   } while (0)
1402 #endif
1403 
1404 /* Fetch the next character in the uncompiled pattern, with no
1405    translation.	 */
1406 #define PATFETCH_RAW(c)							\
1407   do {if (p == pend) return REG_EEND;					\
1408     c = (unsigned char) *p++;						\
1409   } while (0)
1410 
1411 /* Go backwards one character in the pattern.  */
1412 #define PATUNFETCH p--
1413 
1414 
1415 /* If `translate' is non-null, return translate[D], else just D.  We
1416    cast the subscript to translate because some data is declared as
1417    `char *', to avoid warnings when a string constant is passed.  But
1418    when we use a character as a subscript we must make it unsigned.  */
1419 #ifndef TRANSLATE
1420 #define TRANSLATE(d) \
1421   (translate ? (char) translate[(unsigned char) (d)] : (d))
1422 #endif
1423 
1424 
1425 /* Macros for outputting the compiled pattern into `buffer'.  */
1426 
1427 /* If the buffer isn't allocated when it comes in, use this.  */
1428 #define INIT_BUF_SIZE  32
1429 
1430 /* Make sure we have at least N more bytes of space in buffer.	*/
1431 #define GET_BUFFER_SPACE(n)						\
1432     while (b - bufp->buffer + (n) > bufp->allocated)			\
1433       EXTEND_BUFFER ()
1434 
1435 /* Make sure we have one more byte of buffer space and then add C to it.  */
1436 #define BUF_PUSH(c)							\
1437   do {									\
1438     GET_BUFFER_SPACE (1);						\
1439     *b++ = (unsigned char) (c);						\
1440   } while (0)
1441 
1442 
1443 /* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
1444 #define BUF_PUSH_2(c1, c2)						\
1445   do {									\
1446     GET_BUFFER_SPACE (2);						\
1447     *b++ = (unsigned char) (c1);					\
1448     *b++ = (unsigned char) (c2);					\
1449   } while (0)
1450 
1451 
1452 /* As with BUF_PUSH_2, except for three bytes.	*/
1453 #define BUF_PUSH_3(c1, c2, c3)						\
1454   do {									\
1455     GET_BUFFER_SPACE (3);						\
1456     *b++ = (unsigned char) (c1);					\
1457     *b++ = (unsigned char) (c2);					\
1458     *b++ = (unsigned char) (c3);					\
1459   } while (0)
1460 
1461 
1462 /* Store a jump with opcode OP at LOC to location TO.  We store a
1463    relative address offset by the three bytes the jump itself occupies.	 */
1464 #define STORE_JUMP(op, loc, to) \
1465   store_op1 (op, loc, (to) - (loc) - 3)
1466 
1467 /* Likewise, for a two-argument jump.  */
1468 #define STORE_JUMP2(op, loc, to, arg) \
1469   store_op2 (op, loc, (to) - (loc) - 3, arg)
1470 
1471 /* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.	 */
1472 #define INSERT_JUMP(op, loc, to) \
1473   insert_op1 (op, loc, (to) - (loc) - 3, b)
1474 
1475 /* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
1476 #define INSERT_JUMP2(op, loc, to, arg) \
1477   insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1478 
1479 
1480 /* This is not an arbitrary limit: the arguments which represent offsets
1481    into the pattern are two bytes long.	 So if 2^16 bytes turns out to
1482    be too small, many things would have to change.  */
1483 #define MAX_BUF_SIZE (1L << 16)
1484 
1485 
1486 /* Extend the buffer by twice its current size via realloc and
1487    reset the pointers that pointed into the old block to point to the
1488    correct places in the new one.  If extending the buffer results in it
1489    being larger than MAX_BUF_SIZE, then flag memory exhausted.	*/
1490 #define EXTEND_BUFFER()							\
1491   do {									\
1492     unsigned char *old_buffer = bufp->buffer;				\
1493     if (bufp->allocated == MAX_BUF_SIZE)				\
1494       return REG_ESIZE;							\
1495     bufp->allocated <<= 1;						\
1496     if (bufp->allocated > MAX_BUF_SIZE)					\
1497       bufp->allocated = MAX_BUF_SIZE;					\
1498     bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1499     if (bufp->buffer == NULL)						\
1500       return REG_ESPACE;						\
1501     /* If the buffer moved, move all the pointers into it.  */		\
1502     if (old_buffer != bufp->buffer)					\
1503       {									\
1504 	b = (b - old_buffer) + bufp->buffer;				\
1505 	begalt = (begalt - old_buffer) + bufp->buffer;			\
1506 	if (fixup_alt_jump)						\
1507 	  fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1508 	if (laststart)							\
1509 	  laststart = (laststart - old_buffer) + bufp->buffer;		\
1510 	if (pending_exact)						\
1511 	  pending_exact = (pending_exact - old_buffer) + bufp->buffer;	\
1512       }									\
1513   } while (0)
1514 
1515 
1516 /* Since we have one byte reserved for the register number argument to
1517    {start,stop}_memory, the maximum number of groups we can report
1518    things about is what fits in that byte.  */
1519 #define MAX_REGNUM 255
1520 
1521 /* But patterns can have more than `MAX_REGNUM' registers.  We just
1522    ignore the excess.  */
1523 typedef unsigned regnum_t;
1524 
1525 
1526 /* Macros for the compile stack.  */
1527 
1528 /* Since offsets can go either forwards or backwards, this type needs to
1529    be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.	 */
1530 typedef int pattern_offset_t;
1531 
1532 typedef struct
1533 {
1534   pattern_offset_t begalt_offset;
1535   pattern_offset_t fixup_alt_jump;
1536   pattern_offset_t inner_group_offset;
1537   pattern_offset_t laststart_offset;
1538   regnum_t regnum;
1539 } compile_stack_elt_t;
1540 
1541 
1542 typedef struct
1543 {
1544   compile_stack_elt_t *stack;
1545   unsigned size;
1546   unsigned avail;			/* Offset of next open position.  */
1547 } compile_stack_type;
1548 
1549 
1550 #define INIT_COMPILE_STACK_SIZE 32
1551 
1552 #define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
1553 #define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
1554 
1555 /* The next available element.	*/
1556 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1557 
1558 
1559 /* Set the bit for character C in a list.  */
1560 #define SET_LIST_BIT(c)				      \
1561   (b[((unsigned char) (c)) / BYTEWIDTH]		      \
1562    |= 1 << (((unsigned char) c) % BYTEWIDTH))
1563 
1564 
1565 /* Get the next unsigned number in the uncompiled pattern.  */
1566 #define GET_UNSIGNED_NUMBER(num)					\
1567   { if (p != pend)							\
1568      {									\
1569        PATFETCH (c);							\
1570        while (ISDIGIT (c))						\
1571 	 {								\
1572 	   if (num < 0)							\
1573 	      num = 0;							\
1574 	   num = num * 10 + c - '0';					\
1575 	   if (p == pend)						\
1576 	      break;							\
1577 	   PATFETCH (c);						\
1578 	 }								\
1579        }								\
1580     }
1581 
1582 #define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
1583 
1584 #define IS_CHAR_CLASS(string)						\
1585    (STREQ (string, "alpha") || STREQ (string, "upper")			\
1586     || STREQ (string, "lower") || STREQ (string, "digit")		\
1587     || STREQ (string, "alnum") || STREQ (string, "xdigit")		\
1588     || STREQ (string, "space") || STREQ (string, "print")		\
1589     || STREQ (string, "punct") || STREQ (string, "graph")		\
1590     || STREQ (string, "cntrl") || STREQ (string, "blank"))
1591 
1592 #ifndef MATCH_MAY_ALLOCATE
1593 
1594 /* If we cannot allocate large objects within re_match_2_internal,
1595    we make the fail stack and register vectors global.
1596    The fail stack, we grow to the maximum size when a regexp
1597    is compiled.
1598    The register vectors, we adjust in size each time we
1599    compile a regexp, according to the number of registers it needs.  */
1600 
1601 static fail_stack_type fail_stack;
1602 
1603 /* Size with which the following vectors are currently allocated.
1604    That is so we can make them bigger as needed,
1605    but never make them smaller.	 */
1606 static int regs_allocated_size;
1607 
1608 static const char **	 regstart, **	  regend;
1609 static const char ** old_regstart, ** old_regend;
1610 static const char **best_regstart, **best_regend;
1611 static register_info_type *reg_info;
1612 static const char **reg_dummy;
1613 static register_info_type *reg_info_dummy;
1614 
1615 /* Make the register vectors big enough for NUM_REGS registers,
1616    but don't make them smaller.	 */
1617 
1618 static
regex_grow_registers(num_regs)1619 regex_grow_registers (num_regs)
1620      int num_regs;
1621 {
1622   if (num_regs > regs_allocated_size)
1623     {
1624       RETALLOC_IF (regstart,	 num_regs, const char *);
1625       RETALLOC_IF (regend,	 num_regs, const char *);
1626       RETALLOC_IF (old_regstart, num_regs, const char *);
1627       RETALLOC_IF (old_regend,	 num_regs, const char *);
1628       RETALLOC_IF (best_regstart, num_regs, const char *);
1629       RETALLOC_IF (best_regend,	 num_regs, const char *);
1630       RETALLOC_IF (reg_info,	 num_regs, register_info_type);
1631       RETALLOC_IF (reg_dummy,	 num_regs, const char *);
1632       RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1633 
1634       regs_allocated_size = num_regs;
1635     }
1636 }
1637 
1638 #endif /* not MATCH_MAY_ALLOCATE */
1639 
1640 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1641    Returns one of error codes defined in `regex.h', or zero for success.
1642 
1643    Assumes the `allocated' (and perhaps `buffer') and `translate'
1644    fields are set in BUFP on entry.
1645 
1646    If it succeeds, results are put in BUFP (if it returns an error, the
1647    contents of BUFP are undefined):
1648      `buffer' is the compiled pattern;
1649      `syntax' is set to SYNTAX;
1650      `used' is set to the length of the compiled pattern;
1651      `fastmap_accurate' is zero;
1652      `re_nsub' is the number of subexpressions in PATTERN;
1653      `not_bol' and `not_eol' are zero;
1654 
1655    The `fastmap' and `newline_anchor' fields are neither
1656    examined nor set.  */
1657 
1658 /* Return, freeing storage we allocated.  */
1659 #define FREE_STACK_RETURN(value)		\
1660   return (free (compile_stack.stack), value)
1661 
1662 static reg_errcode_t
regex_compile(pattern,size,syntax,bufp)1663 regex_compile (pattern, size, syntax, bufp)
1664      const char *pattern;
1665      int size;
1666      reg_syntax_t syntax;
1667      struct re_pattern_buffer *bufp;
1668 {
1669   /* We fetch characters from PATTERN here.  Even though PATTERN is
1670      `char *' (i.e., signed), we declare these variables as unsigned, so
1671      they can be reliably used as array indices.  */
1672   register unsigned char c, c1;
1673 
1674   /* A random temporary spot in PATTERN.  */
1675   const char *p1;
1676 
1677   /* Points to the end of the buffer, where we should append.  */
1678   register unsigned char *b;
1679 
1680   /* Keeps track of unclosed groups.  */
1681   compile_stack_type compile_stack;
1682 
1683   /* Points to the current (ending) position in the pattern.  */
1684   const char *p = pattern;
1685   const char *pend = pattern + size;
1686 
1687   /* How to translate the characters in the pattern.  */
1688   RE_TRANSLATE_TYPE translate = bufp->translate;
1689 
1690   /* Address of the count-byte of the most recently inserted `exactn'
1691      command.  This makes it possible to tell if a new exact-match
1692      character can be added to that command or if the character requires
1693      a new `exactn' command.  */
1694   unsigned char *pending_exact = 0;
1695 
1696   /* Address of start of the most recently finished expression.
1697      This tells, e.g., postfix * where to find the start of its
1698      operand.  Reset at the beginning of groups and alternatives.  */
1699   unsigned char *laststart = 0;
1700 
1701   /* Address of beginning of regexp, or inside of last group.  */
1702   unsigned char *begalt;
1703 
1704   /* Place in the uncompiled pattern (i.e., the {) to
1705      which to go back if the interval is invalid.  */
1706   const char *beg_interval;
1707 
1708   /* Address of the place where a forward jump should go to the end of
1709      the containing expression.	 Each alternative of an `or' -- except the
1710      last -- ends with a forward jump of this sort.  */
1711   unsigned char *fixup_alt_jump = 0;
1712 
1713   /* Counts open-groups as they are encountered.  Remembered for the
1714      matching close-group on the compile stack, so the same register
1715      number is put in the stop_memory as the start_memory.  */
1716   regnum_t regnum = 0;
1717 
1718 #ifdef DEBUG
1719   DEBUG_PRINT1 ("\nCompiling pattern: ");
1720   if (debug)
1721     {
1722       unsigned debug_count;
1723 
1724       for (debug_count = 0; debug_count < size; debug_count++)
1725 	putchar (pattern[debug_count]);
1726       putchar ('\n');
1727     }
1728 #endif /* DEBUG */
1729 
1730   /* Initialize the compile stack.  */
1731   compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1732   if (compile_stack.stack == NULL)
1733     return REG_ESPACE;
1734 
1735   compile_stack.size = INIT_COMPILE_STACK_SIZE;
1736   compile_stack.avail = 0;
1737 
1738   /* Initialize the pattern buffer.  */
1739   bufp->syntax = syntax;
1740   bufp->fastmap_accurate = 0;
1741   bufp->not_bol = bufp->not_eol = 0;
1742 
1743   /* Set `used' to zero, so that if we return an error, the pattern
1744      printer (for debugging) will think there's no pattern.  We reset it
1745      at the end.  */
1746   bufp->used = 0;
1747 
1748   /* Always count groups, whether or not bufp->no_sub is set.  */
1749   bufp->re_nsub = 0;
1750 
1751 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1752   /* Initialize the syntax table.  */
1753    init_syntax_once ();
1754 #endif
1755 
1756   if (bufp->allocated == 0)
1757     {
1758       if (bufp->buffer)
1759 	{ /* If zero allocated, but buffer is non-null, try to realloc
1760 	     enough space.  This loses if buffer's address is bogus, but
1761 	     that is the user's responsibility.	 */
1762 	  RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1763 	}
1764       else
1765 	{ /* Caller did not allocate a buffer.	Do it for them.	 */
1766 	  bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1767 	}
1768       if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1769 
1770       bufp->allocated = INIT_BUF_SIZE;
1771     }
1772 
1773   begalt = b = bufp->buffer;
1774 
1775   /* Loop through the uncompiled pattern until we're at the end.  */
1776   while (p != pend)
1777     {
1778       PATFETCH (c);
1779 
1780       switch (c)
1781 	{
1782 	case '^':
1783 	  {
1784 	    if (   /* If at start of pattern, it's an operator.	 */
1785 		   p == pattern + 1
1786 		   /* If context independent, it's an operator.	 */
1787 		|| syntax & RE_CONTEXT_INDEP_ANCHORS
1788 		   /* Otherwise, depends on what's come before.	 */
1789 		|| at_begline_loc_p (pattern, p, syntax))
1790 	      BUF_PUSH (begline);
1791 	    else
1792 	      goto normal_char;
1793 	  }
1794 	  break;
1795 
1796 
1797 	case '$':
1798 	  {
1799 	    if (   /* If at end of pattern, it's an operator.  */
1800 		   p == pend
1801 		   /* If context independent, it's an operator.	 */
1802 		|| syntax & RE_CONTEXT_INDEP_ANCHORS
1803 		   /* Otherwise, depends on what's next.  */
1804 		|| at_endline_loc_p (p, pend, syntax))
1805 	       BUF_PUSH (endline);
1806 	     else
1807 	       goto normal_char;
1808 	   }
1809 	   break;
1810 
1811 
1812 	case '+':
1813 	case '?':
1814 	  if ((syntax & RE_BK_PLUS_QM)
1815 	      || (syntax & RE_LIMITED_OPS))
1816 	    goto normal_char;
1817 	handle_plus:
1818 	case '*':
1819 	  /* If there is no previous pattern... */
1820 	  if (!laststart)
1821 	    {
1822 	      if (syntax & RE_CONTEXT_INVALID_OPS)
1823 		FREE_STACK_RETURN (REG_BADRPT);
1824 	      else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1825 		goto normal_char;
1826 	    }
1827 
1828 	  {
1829 	    /* Are we optimizing this jump?  */
1830 	    boolean keep_string_p = false;
1831 
1832 	    /* 1 means zero (many) matches is allowed.	*/
1833 	    char zero_times_ok = 0, many_times_ok = 0;
1834 
1835 	    /* If there is a sequence of repetition chars, collapse it
1836 	       down to just one (the right one).  We can't combine
1837 	       interval operators with these because of, e.g., `a{2}*',
1838 	       which should only match an even number of `a's.	*/
1839 
1840 	    for (;;)
1841 	      {
1842 		zero_times_ok |= c != '+';
1843 		many_times_ok |= c != '?';
1844 
1845 		if (p == pend)
1846 		  break;
1847 
1848 		PATFETCH (c);
1849 
1850 		if (c == '*'
1851 		    || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1852 		  ;
1853 
1854 		else if (syntax & RE_BK_PLUS_QM	 &&  c == '\\')
1855 		  {
1856 		    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1857 
1858 		    PATFETCH (c1);
1859 		    if (!(c1 == '+' || c1 == '?'))
1860 		      {
1861 			PATUNFETCH;
1862 			PATUNFETCH;
1863 			break;
1864 		      }
1865 
1866 		    c = c1;
1867 		  }
1868 		else
1869 		  {
1870 		    PATUNFETCH;
1871 		    break;
1872 		  }
1873 
1874 		/* If we get here, we found another repeat character.  */
1875 	       }
1876 
1877 	    /* Star, etc. applied to an empty pattern is equivalent
1878 	       to an empty pattern.  */
1879 	    if (!laststart)
1880 	      break;
1881 
1882 	    /* Now we know whether or not zero matches is allowed
1883 	       and also whether or not two or more matches is allowed.	*/
1884 	    if (many_times_ok)
1885 	      { /* More than one repetition is allowed, so put in at the
1886 		   end a backward relative jump from `b' to before the next
1887 		   jump we're going to put in below (which jumps from
1888 		   laststart to after this jump).
1889 
1890 		   But if we are at the `*' in the exact sequence `.*\n',
1891 		   insert an unconditional jump backwards to the .,
1892 		   instead of the beginning of the loop.  This way we only
1893 		   push a failure point once, instead of every time
1894 		   through the loop.  */
1895 		assert (p - 1 > pattern);
1896 
1897 		/* Allocate the space for the jump.  */
1898 		GET_BUFFER_SPACE (3);
1899 
1900 		/* We know we are not at the first character of the pattern,
1901 		   because laststart was nonzero.  And we've already
1902 		   incremented `p', by the way, to be the character after
1903 		   the `*'.  Do we have to do something analogous here
1904 		   for null bytes, because of RE_DOT_NOT_NULL?	*/
1905 		if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
1906 		    && zero_times_ok
1907 		    && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1908 		    && !(syntax & RE_DOT_NEWLINE))
1909 		  { /* We have .*\n.  */
1910 		    STORE_JUMP (jump, b, laststart);
1911 		    keep_string_p = true;
1912 		  }
1913 		else
1914 		  /* Anything else.  */
1915 		  STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1916 
1917 		/* We've added more stuff to the buffer.  */
1918 		b += 3;
1919 	      }
1920 
1921 	    /* On failure, jump from laststart to b + 3, which will be the
1922 	       end of the buffer after this jump is inserted.  */
1923 	    GET_BUFFER_SPACE (3);
1924 	    INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1925 				       : on_failure_jump,
1926 			 laststart, b + 3);
1927 	    pending_exact = 0;
1928 	    b += 3;
1929 
1930 	    if (!zero_times_ok)
1931 	      {
1932 		/* At least one repetition is required, so insert a
1933 		   `dummy_failure_jump' before the initial
1934 		   `on_failure_jump' instruction of the loop. This
1935 		   effects a skip over that instruction the first time
1936 		   we hit that loop.  */
1937 		GET_BUFFER_SPACE (3);
1938 		INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1939 		b += 3;
1940 	      }
1941 	    }
1942 	  break;
1943 
1944 
1945 	case '.':
1946 	  laststart = b;
1947 	  BUF_PUSH (anychar);
1948 	  break;
1949 
1950 
1951 	case '[':
1952 	  {
1953 	    boolean had_char_class = false;
1954 
1955 	    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
1956 
1957 	    /* Ensure that we have enough space to push a charset: the
1958 	       opcode, the length count, and the bitset; 34 bytes in all.  */
1959 	    GET_BUFFER_SPACE (34);
1960 
1961 	    laststart = b;
1962 
1963 	    /* We test `*p == '^' twice, instead of using an if
1964 	       statement, so we only need one BUF_PUSH.	 */
1965 	    BUF_PUSH (*p == '^' ? charset_not : charset);
1966 	    if (*p == '^')
1967 	      p++;
1968 
1969 	    /* Remember the first position in the bracket expression.  */
1970 	    p1 = p;
1971 
1972 	    /* Push the number of bytes in the bitmap.	*/
1973 	    BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1974 
1975 	    /* Clear the whole map.  */
1976 	    bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1977 
1978 	    /* charset_not matches newline according to a syntax bit.  */
1979 	    if ((re_opcode_t) b[-2] == charset_not
1980 		&& (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1981 	      SET_LIST_BIT ('\n');
1982 
1983 	    /* Read in characters and ranges, setting map bits.	 */
1984 	    for (;;)
1985 	      {
1986 		if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
1987 
1988 		PATFETCH (c);
1989 
1990 		/* \ might escape characters inside [...] and [^...].  */
1991 		if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1992 		  {
1993 		    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1994 
1995 		    PATFETCH (c1);
1996 		    SET_LIST_BIT (c1);
1997 		    continue;
1998 		  }
1999 
2000 		/* Could be the end of the bracket expression.	If it's
2001 		   not (i.e., when the bracket expression is `[]' so
2002 		   far), the ']' character bit gets set way below.  */
2003 		if (c == ']' && p != p1 + 1)
2004 		  break;
2005 
2006 		/* Look ahead to see if it's a range when the last thing
2007 		   was a character class.  */
2008 		if (had_char_class && c == '-' && *p != ']')
2009 		  FREE_STACK_RETURN (REG_ERANGE);
2010 
2011 		/* Look ahead to see if it's a range when the last thing
2012 		   was a character: if this is a hyphen not at the
2013 		   beginning or the end of a list, then it's the range
2014 		   operator.  */
2015 		if (c == '-'
2016 		    && !(p - 2 >= pattern && p[-2] == '[')
2017 		    && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2018 		    && *p != ']')
2019 		  {
2020 		    reg_errcode_t ret
2021 		      = compile_range (&p, pend, translate, syntax, b);
2022 		    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2023 		  }
2024 
2025 		else if (p[0] == '-' && p[1] != ']')
2026 		  { /* This handles ranges made up of characters only.	*/
2027 		    reg_errcode_t ret;
2028 
2029 		    /* Move past the `-'.  */
2030 		    PATFETCH (c1);
2031 
2032 		    ret = compile_range (&p, pend, translate, syntax, b);
2033 		    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2034 		  }
2035 
2036 		/* See if we're at the beginning of a possible character
2037 		   class.  */
2038 
2039 		else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2040 		  { /* Leave room for the null.	 */
2041 		    char str[CHAR_CLASS_MAX_LENGTH + 1];
2042 
2043 		    PATFETCH (c);
2044 		    c1 = 0;
2045 
2046 		    /* If pattern is `[[:'.  */
2047 		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2048 
2049 		    for (;;)
2050 		      {
2051 			PATFETCH (c);
2052 			if (c == ':' || c == ']' || p == pend
2053 			    || c1 == CHAR_CLASS_MAX_LENGTH)
2054 			  break;
2055 			str[c1++] = c;
2056 		      }
2057 		    str[c1] = '\0';
2058 
2059 		    /* If isn't a word bracketed by `[:' and:`]':
2060 		       undo the ending character, the letters, and leave
2061 		       the leading `:' and `[' (but set bits for them).	 */
2062 		    if (c == ':' && *p == ']')
2063 		      {
2064 			int ch;
2065 			boolean is_alnum = STREQ (str, "alnum");
2066 			boolean is_alpha = STREQ (str, "alpha");
2067 			boolean is_blank = STREQ (str, "blank");
2068 			boolean is_cntrl = STREQ (str, "cntrl");
2069 			boolean is_digit = STREQ (str, "digit");
2070 			boolean is_graph = STREQ (str, "graph");
2071 			boolean is_lower = STREQ (str, "lower");
2072 			boolean is_print = STREQ (str, "print");
2073 			boolean is_punct = STREQ (str, "punct");
2074 			boolean is_space = STREQ (str, "space");
2075 			boolean is_upper = STREQ (str, "upper");
2076 			boolean is_xdigit = STREQ (str, "xdigit");
2077 
2078 			if (!IS_CHAR_CLASS (str))
2079 			  FREE_STACK_RETURN (REG_ECTYPE);
2080 
2081 			/* Throw away the ] at the end of the character
2082 			   class.  */
2083 			PATFETCH (c);
2084 
2085 			if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2086 
2087 			for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2088 			  {
2089 			    int translated = TRANSLATE (ch);
2090 			    /* This was split into 3 if's to
2091 			       avoid an arbitrary limit in some compiler.  */
2092 			    if (   (is_alnum  && ISALNUM (ch))
2093 				|| (is_alpha  && ISALPHA (ch))
2094 				|| (is_blank  && ISBLANK (ch))
2095 				|| (is_cntrl  && ISCNTRL (ch)))
2096 			      SET_LIST_BIT (translated);
2097 			    if (   (is_digit  && ISDIGIT (ch))
2098 				|| (is_graph  && ISGRAPH (ch))
2099 				|| (is_lower  && ISLOWER (ch))
2100 				|| (is_print  && ISPRINT (ch)))
2101 			      SET_LIST_BIT (translated);
2102 			    if (   (is_punct  && ISPUNCT (ch))
2103 				|| (is_space  && ISSPACE (ch))
2104 				|| (is_upper  && ISUPPER (ch))
2105 				|| (is_xdigit && ISXDIGIT (ch)))
2106 			      SET_LIST_BIT (translated);
2107 			  }
2108 			had_char_class = true;
2109 		      }
2110 		    else
2111 		      {
2112 			c1++;
2113 			while (c1--)
2114 			  PATUNFETCH;
2115 			SET_LIST_BIT ('[');
2116 			SET_LIST_BIT (':');
2117 			had_char_class = false;
2118 		      }
2119 		  }
2120 		else
2121 		  {
2122 		    had_char_class = false;
2123 		    SET_LIST_BIT (c);
2124 		  }
2125 	      }
2126 
2127 	    /* Discard any (non)matching list bytes that are all 0 at the
2128 	       end of the map.	Decrease the map-length byte too.  */
2129 	    while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2130 	      b[-1]--;
2131 	    b += b[-1];
2132 	  }
2133 	  break;
2134 
2135 
2136 	case '(':
2137 	  if (syntax & RE_NO_BK_PARENS)
2138 	    goto handle_open;
2139 	  else
2140 	    goto normal_char;
2141 
2142 
2143 	case ')':
2144 	  if (syntax & RE_NO_BK_PARENS)
2145 	    goto handle_close;
2146 	  else
2147 	    goto normal_char;
2148 
2149 
2150 	case '\n':
2151 	  if (syntax & RE_NEWLINE_ALT)
2152 	    goto handle_alt;
2153 	  else
2154 	    goto normal_char;
2155 
2156 
2157 	case '|':
2158 	  if (syntax & RE_NO_BK_VBAR)
2159 	    goto handle_alt;
2160 	  else
2161 	    goto normal_char;
2162 
2163 
2164 	case '{':
2165 	   if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2166 	     goto handle_interval;
2167 	   else
2168 	     goto normal_char;
2169 
2170 
2171 	case '\\':
2172 	  if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2173 
2174 	  /* Do not translate the character after the \, so that we can
2175 	     distinguish, e.g., \B from \b, even if we normally would
2176 	     translate, e.g., B to b.  */
2177 	  PATFETCH_RAW (c);
2178 
2179 	  switch (c)
2180 	    {
2181 	    case '(':
2182 	      if (syntax & RE_NO_BK_PARENS)
2183 		goto normal_backslash;
2184 
2185 	    handle_open:
2186 	      bufp->re_nsub++;
2187 	      regnum++;
2188 
2189 	      if (COMPILE_STACK_FULL)
2190 		{
2191 		  RETALLOC (compile_stack.stack, compile_stack.size << 1,
2192 			    compile_stack_elt_t);
2193 		  if (compile_stack.stack == NULL) return REG_ESPACE;
2194 
2195 		  compile_stack.size <<= 1;
2196 		}
2197 
2198 	      /* These are the values to restore when we hit end of this
2199 		 group.	 They are all relative offsets, so that if the
2200 		 whole pattern moves because of realloc, they will still
2201 		 be valid.  */
2202 	      COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2203 	      COMPILE_STACK_TOP.fixup_alt_jump
2204 		= fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2205 	      COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2206 	      COMPILE_STACK_TOP.regnum = regnum;
2207 
2208 	      /* We will eventually replace the 0 with the number of
2209 		 groups inner to this one.  But do not push a
2210 		 start_memory for groups beyond the last one we can
2211 		 represent in the compiled pattern.  */
2212 	      if (regnum <= MAX_REGNUM)
2213 		{
2214 		  COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2215 		  BUF_PUSH_3 (start_memory, regnum, 0);
2216 		}
2217 
2218 	      compile_stack.avail++;
2219 
2220 	      fixup_alt_jump = 0;
2221 	      laststart = 0;
2222 	      begalt = b;
2223 	      /* If we've reached MAX_REGNUM groups, then this open
2224 		 won't actually generate any code, so we'll have to
2225 		 clear pending_exact explicitly.  */
2226 	      pending_exact = 0;
2227 	      break;
2228 
2229 
2230 	    case ')':
2231 	      if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2232 
2233 	      if (COMPILE_STACK_EMPTY)
2234 	      {
2235 		if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2236 		  goto normal_backslash;
2237 		else
2238 		  FREE_STACK_RETURN (REG_ERPAREN);
2239 	      }
2240 
2241 	    handle_close:
2242 	      if (fixup_alt_jump)
2243 		{ /* Push a dummy failure point at the end of the
2244 		     alternative for a possible future
2245 		     `pop_failure_jump' to pop.	 See comments at
2246 		     `push_dummy_failure' in `re_match_2'.  */
2247 		  BUF_PUSH (push_dummy_failure);
2248 
2249 		  /* We allocated space for this jump when we assigned
2250 		     to `fixup_alt_jump', in the `handle_alt' case below.  */
2251 		  STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2252 		}
2253 
2254 	      /* See similar code for backslashed left paren above.  */
2255 	      if (COMPILE_STACK_EMPTY)
2256 	      {
2257 		if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2258 		  goto normal_char;
2259 		else
2260 		  FREE_STACK_RETURN (REG_ERPAREN);
2261 	      }
2262 
2263 	      /* Since we just checked for an empty stack above, this
2264 		 ``can't happen''.  */
2265 	      assert (compile_stack.avail != 0);
2266 	      {
2267 		/* We don't just want to restore into `regnum', because
2268 		   later groups should continue to be numbered higher,
2269 		   as in `(ab)c(de)' -- the second group is #2.	 */
2270 		regnum_t this_group_regnum;
2271 
2272 		compile_stack.avail--;
2273 		begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2274 		fixup_alt_jump
2275 		  = COMPILE_STACK_TOP.fixup_alt_jump
2276 		    ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2277 		    : 0;
2278 		laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2279 		this_group_regnum = COMPILE_STACK_TOP.regnum;
2280 		/* If we've reached MAX_REGNUM groups, then this open
2281 		   won't actually generate any code, so we'll have to
2282 		   clear pending_exact explicitly.  */
2283 		pending_exact = 0;
2284 
2285 		/* We're at the end of the group, so now we know how many
2286 		   groups were inside this one.	 */
2287 		if (this_group_regnum <= MAX_REGNUM)
2288 		  {
2289 		    unsigned char *inner_group_loc
2290 		      = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2291 
2292 		    *inner_group_loc = regnum - this_group_regnum;
2293 		    BUF_PUSH_3 (stop_memory, this_group_regnum,
2294 				regnum - this_group_regnum);
2295 		  }
2296 	      }
2297 	      break;
2298 
2299 
2300 	    case '|':					/* `\|'.  */
2301 	      if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2302 		goto normal_backslash;
2303 	    handle_alt:
2304 	      if (syntax & RE_LIMITED_OPS)
2305 		goto normal_char;
2306 
2307 	      /* Insert before the previous alternative a jump which
2308 		 jumps to this alternative if the former fails.	 */
2309 	      GET_BUFFER_SPACE (3);
2310 	      INSERT_JUMP (on_failure_jump, begalt, b + 6);
2311 	      pending_exact = 0;
2312 	      b += 3;
2313 
2314 	      /* The alternative before this one has a jump after it
2315 		 which gets executed if it gets matched.  Adjust that
2316 		 jump so it will jump to this alternative's analogous
2317 		 jump (put in below, which in turn will jump to the next
2318 		 (if any) alternative's such jump, etc.).  The last such
2319 		 jump jumps to the correct final destination.  A picture:
2320 			  _____ _____
2321 			  |   | |   |
2322 			  |   v |   v
2323 			 a | b	 | c
2324 
2325 		 If we are at `b', then fixup_alt_jump right now points to a
2326 		 three-byte space after `a'.  We'll put in the jump, set
2327 		 fixup_alt_jump to right after `b', and leave behind three
2328 		 bytes which we'll fill in when we get to after `c'.  */
2329 
2330 	      if (fixup_alt_jump)
2331 		STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2332 
2333 	      /* Mark and leave space for a jump after this alternative,
2334 		 to be filled in later either by next alternative or
2335 		 when know we're at the end of a series of alternatives.  */
2336 	      fixup_alt_jump = b;
2337 	      GET_BUFFER_SPACE (3);
2338 	      b += 3;
2339 
2340 	      laststart = 0;
2341 	      begalt = b;
2342 	      break;
2343 
2344 
2345 	    case '{':
2346 	      /* If \{ is a literal.  */
2347 	      if (!(syntax & RE_INTERVALS)
2348 		     /* If we're at `\{' and it's not the open-interval
2349 			operator.  */
2350 		  || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2351 		  || (p - 2 == pattern	&&  p == pend))
2352 		goto normal_backslash;
2353 
2354 	    handle_interval:
2355 	      {
2356 		/* If got here, then the syntax allows intervals.  */
2357 
2358 		/* At least (most) this many matches must be made.  */
2359 		int lower_bound = -1, upper_bound = -1;
2360 
2361 		beg_interval = p - 1;
2362 
2363 		if (p == pend)
2364 		  {
2365 		    if (syntax & RE_NO_BK_BRACES)
2366 		      goto unfetch_interval;
2367 		    else
2368 		      FREE_STACK_RETURN (REG_EBRACE);
2369 		  }
2370 
2371 		GET_UNSIGNED_NUMBER (lower_bound);
2372 
2373 		if (c == ',')
2374 		  {
2375 		    GET_UNSIGNED_NUMBER (upper_bound);
2376 		    if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2377 		  }
2378 		else
2379 		  /* Interval such as `{1}' => match exactly once. */
2380 		  upper_bound = lower_bound;
2381 
2382 		if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2383 		    || lower_bound > upper_bound)
2384 		  {
2385 		    if (syntax & RE_NO_BK_BRACES)
2386 		      goto unfetch_interval;
2387 		    else
2388 		      FREE_STACK_RETURN (REG_BADBR);
2389 		  }
2390 
2391 		if (!(syntax & RE_NO_BK_BRACES))
2392 		  {
2393 		    if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2394 
2395 		    PATFETCH (c);
2396 		  }
2397 
2398 		if (c != '}')
2399 		  {
2400 		    if (syntax & RE_NO_BK_BRACES)
2401 		      goto unfetch_interval;
2402 		    else
2403 		      FREE_STACK_RETURN (REG_BADBR);
2404 		  }
2405 
2406 		/* We just parsed a valid interval.  */
2407 
2408 		/* If it's invalid to have no preceding re.  */
2409 		if (!laststart)
2410 		  {
2411 		    if (syntax & RE_CONTEXT_INVALID_OPS)
2412 		      FREE_STACK_RETURN (REG_BADRPT);
2413 		    else if (syntax & RE_CONTEXT_INDEP_OPS)
2414 		      laststart = b;
2415 		    else
2416 		      goto unfetch_interval;
2417 		  }
2418 
2419 		/* If the upper bound is zero, don't want to succeed at
2420 		   all; jump from `laststart' to `b + 3', which will be
2421 		   the end of the buffer after we insert the jump.  */
2422 		 if (upper_bound == 0)
2423 		   {
2424 		     GET_BUFFER_SPACE (3);
2425 		     INSERT_JUMP (jump, laststart, b + 3);
2426 		     b += 3;
2427 		   }
2428 
2429 		 /* Otherwise, we have a nontrivial interval.  When
2430 		    we're all done, the pattern will look like:
2431 		      set_number_at <jump count> <upper bound>
2432 		      set_number_at <succeed_n count> <lower bound>
2433 		      succeed_n <after jump addr> <succeed_n count>
2434 		      <body of loop>
2435 		      jump_n <succeed_n addr> <jump count>
2436 		    (The upper bound and `jump_n' are omitted if
2437 		    `upper_bound' is 1, though.)  */
2438 		 else
2439 		   { /* If the upper bound is > 1, we need to insert
2440 			more at the end of the loop.  */
2441 		     unsigned nbytes = 10 + (upper_bound > 1) * 10;
2442 
2443 		     GET_BUFFER_SPACE (nbytes);
2444 
2445 		     /* Initialize lower bound of the `succeed_n', even
2446 			though it will be set during matching by its
2447 			attendant `set_number_at' (inserted next),
2448 			because `re_compile_fastmap' needs to know.
2449 			Jump to the `jump_n' we might insert below.  */
2450 		     INSERT_JUMP2 (succeed_n, laststart,
2451 				   b + 5 + (upper_bound > 1) * 5,
2452 				   lower_bound);
2453 		     b += 5;
2454 
2455 		     /* Code to initialize the lower bound.  Insert
2456 			before the `succeed_n'.	 The `5' is the last two
2457 			bytes of this `set_number_at', plus 3 bytes of
2458 			the following `succeed_n'.  */
2459 		     insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2460 		     b += 5;
2461 
2462 		     if (upper_bound > 1)
2463 		       { /* More than one repetition is allowed, so
2464 			    append a backward jump to the `succeed_n'
2465 			    that starts this interval.
2466 
2467 			    When we've reached this during matching,
2468 			    we'll have matched the interval once, so
2469 			    jump back only `upper_bound - 1' times.  */
2470 			 STORE_JUMP2 (jump_n, b, laststart + 5,
2471 				      upper_bound - 1);
2472 			 b += 5;
2473 
2474 			 /* The location we want to set is the second
2475 			    parameter of the `jump_n'; that is `b-2' as
2476 			    an absolute address.  `laststart' will be
2477 			    the `set_number_at' we're about to insert;
2478 			    `laststart+3' the number to set, the source
2479 			    for the relative address.  But we are
2480 			    inserting into the middle of the pattern --
2481 			    so everything is getting moved up by 5.
2482 			    Conclusion: (b - 2) - (laststart + 3) + 5,
2483 			    i.e., b - laststart.
2484 
2485 			    We insert this at the beginning of the loop
2486 			    so that if we fail during matching, we'll
2487 			    reinitialize the bounds.  */
2488 			 insert_op2 (set_number_at, laststart, b - laststart,
2489 				     upper_bound - 1, b);
2490 			 b += 5;
2491 		       }
2492 		   }
2493 		pending_exact = 0;
2494 		beg_interval = NULL;
2495 	      }
2496 	      break;
2497 
2498 	    unfetch_interval:
2499 	      /* If an invalid interval, match the characters as literals.  */
2500 	       assert (beg_interval);
2501 	       p = beg_interval;
2502 	       beg_interval = NULL;
2503 
2504 	       /* normal_char and normal_backslash need `c'.  */
2505 	       PATFETCH (c);
2506 
2507 	       if (!(syntax & RE_NO_BK_BRACES))
2508 		 {
2509 		   if (p > pattern  &&	p[-1] == '\\')
2510 		     goto normal_backslash;
2511 		 }
2512 	       goto normal_char;
2513 
2514 #ifdef emacs
2515 	    /* There is no way to specify the before_dot and after_dot
2516 	       operators.  rms says this is ok.	 --karl	 */
2517 	    case '=':
2518 	      BUF_PUSH (at_dot);
2519 	      break;
2520 
2521 	    case 's':
2522 	      laststart = b;
2523 	      PATFETCH (c);
2524 	      BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2525 	      break;
2526 
2527 	    case 'S':
2528 	      laststart = b;
2529 	      PATFETCH (c);
2530 	      BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2531 	      break;
2532 #endif /* emacs */
2533 
2534 
2535 	    case 'w':
2536 	      laststart = b;
2537 	      BUF_PUSH (wordchar);
2538 	      break;
2539 
2540 
2541 	    case 'W':
2542 	      laststart = b;
2543 	      BUF_PUSH (notwordchar);
2544 	      break;
2545 
2546 
2547 	    case '<':
2548 	      BUF_PUSH (wordbeg);
2549 	      break;
2550 
2551 	    case '>':
2552 	      BUF_PUSH (wordend);
2553 	      break;
2554 
2555 	    case 'b':
2556 	      BUF_PUSH (wordbound);
2557 	      break;
2558 
2559 	    case 'B':
2560 	      BUF_PUSH (notwordbound);
2561 	      break;
2562 
2563 	    case '`':
2564 	      BUF_PUSH (begbuf);
2565 	      break;
2566 
2567 	    case '\'':
2568 	      BUF_PUSH (endbuf);
2569 	      break;
2570 
2571 	    case '1': case '2': case '3': case '4': case '5':
2572 	    case '6': case '7': case '8': case '9':
2573 	      if (syntax & RE_NO_BK_REFS)
2574 		goto normal_char;
2575 
2576 	      c1 = c - '0';
2577 
2578 	      if (c1 > regnum)
2579 		FREE_STACK_RETURN (REG_ESUBREG);
2580 
2581 	      /* Can't back reference to a subexpression if inside of it.  */
2582 	      if (group_in_compile_stack (compile_stack, c1))
2583 		goto normal_char;
2584 
2585 	      laststart = b;
2586 	      BUF_PUSH_2 (duplicate, c1);
2587 	      break;
2588 
2589 
2590 	    case '+':
2591 	    case '?':
2592 	      if (syntax & RE_BK_PLUS_QM)
2593 		goto handle_plus;
2594 	      else
2595 		goto normal_backslash;
2596 
2597 	    default:
2598 	    normal_backslash:
2599 	      /* You might think it would be useful for \ to mean
2600 		 not to translate; but if we don't translate it
2601 		 it will never match anything.	*/
2602 	      c = TRANSLATE (c);
2603 	      goto normal_char;
2604 	    }
2605 	  break;
2606 
2607 
2608 	default:
2609 	/* Expects the character in `c'.  */
2610 	normal_char:
2611 	      /* If no exactn currently being built.  */
2612 	  if (!pending_exact
2613 
2614 	      /* If last exactn not at current position.  */
2615 	      || pending_exact + *pending_exact + 1 != b
2616 
2617 	      /* We have only one byte following the exactn for the count.  */
2618 	      || *pending_exact == (1 << BYTEWIDTH) - 1
2619 
2620 	      /* If followed by a repetition operator.	*/
2621 	      || *p == '*' || *p == '^'
2622 	      || ((syntax & RE_BK_PLUS_QM)
2623 		  ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2624 		  : (*p == '+' || *p == '?'))
2625 	      || ((syntax & RE_INTERVALS)
2626 		  && ((syntax & RE_NO_BK_BRACES)
2627 		      ? *p == '{'
2628 		      : (p[0] == '\\' && p[1] == '{'))))
2629 	    {
2630 	      /* Start building a new exactn.  */
2631 
2632 	      laststart = b;
2633 
2634 	      BUF_PUSH_2 (exactn, 0);
2635 	      pending_exact = b - 1;
2636 	    }
2637 
2638 	  BUF_PUSH (c);
2639 	  (*pending_exact)++;
2640 	  break;
2641 	} /* switch (c) */
2642     } /* while p != pend */
2643 
2644 
2645   /* Through the pattern now.  */
2646 
2647   if (fixup_alt_jump)
2648     STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2649 
2650   if (!COMPILE_STACK_EMPTY)
2651     FREE_STACK_RETURN (REG_EPAREN);
2652 
2653   /* If we don't want backtracking, force success
2654      the first time we reach the end of the compiled pattern.  */
2655   if (syntax & RE_NO_POSIX_BACKTRACKING)
2656     BUF_PUSH (succeed);
2657 
2658   free (compile_stack.stack);
2659 
2660   /* We have succeeded; set the length of the buffer.  */
2661   bufp->used = b - bufp->buffer;
2662 
2663 #ifdef DEBUG
2664   if (debug)
2665     {
2666       DEBUG_PRINT1 ("\nCompiled pattern: \n");
2667       print_compiled_pattern (bufp);
2668     }
2669 #endif /* DEBUG */
2670 
2671 #ifndef MATCH_MAY_ALLOCATE
2672   /* Initialize the failure stack to the largest possible stack.  This
2673      isn't necessary unless we're trying to avoid calling alloca in
2674      the search and match routines.  */
2675   {
2676     int num_regs = bufp->re_nsub + 1;
2677 
2678     /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2679        is strictly greater than re_max_failures, the largest possible stack
2680        is 2 * re_max_failures failure points.  */
2681     if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2682       {
2683 	fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2684 
2685 #ifdef emacs
2686 	if (! fail_stack.stack)
2687 	  fail_stack.stack
2688 	    = (fail_stack_elt_t *) xmalloc (fail_stack.size
2689 					    * sizeof (fail_stack_elt_t));
2690 	else
2691 	  fail_stack.stack
2692 	    = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2693 					     (fail_stack.size
2694 					      * sizeof (fail_stack_elt_t)));
2695 #else /* not emacs */
2696 	if (! fail_stack.stack)
2697 	  fail_stack.stack
2698 	    = (fail_stack_elt_t *) malloc (fail_stack.size
2699 					   * sizeof (fail_stack_elt_t));
2700 	else
2701 	  fail_stack.stack
2702 	    = (fail_stack_elt_t *) realloc (fail_stack.stack,
2703 					    (fail_stack.size
2704 					     * sizeof (fail_stack_elt_t)));
2705 #endif /* not emacs */
2706       }
2707 
2708     regex_grow_registers (num_regs);
2709   }
2710 #endif /* not MATCH_MAY_ALLOCATE */
2711 
2712   return REG_NOERROR;
2713 } /* regex_compile */
2714 
2715 /* Subroutines for `regex_compile'.  */
2716 
2717 /* Store OP at LOC followed by two-byte integer parameter ARG.	*/
2718 
2719 static void
store_op1(op,loc,arg)2720 store_op1 (op, loc, arg)
2721     re_opcode_t op;
2722     unsigned char *loc;
2723     int arg;
2724 {
2725   *loc = (unsigned char) op;
2726   STORE_NUMBER (loc + 1, arg);
2727 }
2728 
2729 
2730 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
2731 
2732 static void
store_op2(op,loc,arg1,arg2)2733 store_op2 (op, loc, arg1, arg2)
2734     re_opcode_t op;
2735     unsigned char *loc;
2736     int arg1, arg2;
2737 {
2738   *loc = (unsigned char) op;
2739   STORE_NUMBER (loc + 1, arg1);
2740   STORE_NUMBER (loc + 3, arg2);
2741 }
2742 
2743 
2744 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2745    for OP followed by two-byte integer parameter ARG.  */
2746 
2747 static void
insert_op1(op,loc,arg,end)2748 insert_op1 (op, loc, arg, end)
2749     re_opcode_t op;
2750     unsigned char *loc;
2751     int arg;
2752     unsigned char *end;
2753 {
2754   register unsigned char *pfrom = end;
2755   register unsigned char *pto = end + 3;
2756 
2757   while (pfrom != loc)
2758     *--pto = *--pfrom;
2759 
2760   store_op1 (op, loc, arg);
2761 }
2762 
2763 
2764 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
2765 
2766 static void
insert_op2(op,loc,arg1,arg2,end)2767 insert_op2 (op, loc, arg1, arg2, end)
2768     re_opcode_t op;
2769     unsigned char *loc;
2770     int arg1, arg2;
2771     unsigned char *end;
2772 {
2773   register unsigned char *pfrom = end;
2774   register unsigned char *pto = end + 5;
2775 
2776   while (pfrom != loc)
2777     *--pto = *--pfrom;
2778 
2779   store_op2 (op, loc, arg1, arg2);
2780 }
2781 
2782 
2783 /* P points to just after a ^ in PATTERN.  Return true if that ^ comes
2784    after an alternative or a begin-subexpression.  We assume there is at
2785    least one character before the ^.  */
2786 
2787 static boolean
at_begline_loc_p(pattern,p,syntax)2788 at_begline_loc_p (pattern, p, syntax)
2789     const char *pattern, *p;
2790     reg_syntax_t syntax;
2791 {
2792   const char *prev = p - 2;
2793   boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2794 
2795   return
2796        /* After a subexpression?  */
2797        (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2798        /* After an alternative?	 */
2799     || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2800 }
2801 
2802 
2803 /* The dual of at_begline_loc_p.  This one is for $.  We assume there is
2804    at least one character after the $, i.e., `P < PEND'.  */
2805 
2806 static boolean
at_endline_loc_p(p,pend,syntax)2807 at_endline_loc_p (p, pend, syntax)
2808     const char *p, *pend;
2809     int syntax;
2810 {
2811   const char *next = p;
2812   boolean next_backslash = *next == '\\';
2813   const char *next_next = p + 1 < pend ? p + 1 : 0;
2814 
2815   return
2816        /* Before a subexpression?  */
2817        (syntax & RE_NO_BK_PARENS ? *next == ')'
2818 	: next_backslash && next_next && *next_next == ')')
2819        /* Before an alternative?  */
2820     || (syntax & RE_NO_BK_VBAR ? *next == '|'
2821 	: next_backslash && next_next && *next_next == '|');
2822 }
2823 
2824 
2825 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2826    false if it's not.  */
2827 
2828 static boolean
group_in_compile_stack(compile_stack,regnum)2829 group_in_compile_stack (compile_stack, regnum)
2830     compile_stack_type compile_stack;
2831     regnum_t regnum;
2832 {
2833   int this_element;
2834 
2835   for (this_element = compile_stack.avail - 1;
2836        this_element >= 0;
2837        this_element--)
2838     if (compile_stack.stack[this_element].regnum == regnum)
2839       return true;
2840 
2841   return false;
2842 }
2843 
2844 
2845 /* Read the ending character of a range (in a bracket expression) from the
2846    uncompiled pattern *P_PTR (which ends at PEND).  We assume the
2847    starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
2848    Then we set the translation of all bits between the starting and
2849    ending characters (inclusive) in the compiled pattern B.
2850 
2851    Return an error code.
2852 
2853    We use these short variable names so we can use the same macros as
2854    `regex_compile' itself.  */
2855 
2856 static reg_errcode_t
compile_range(p_ptr,pend,translate,syntax,b)2857 compile_range (p_ptr, pend, translate, syntax, b)
2858     const char **p_ptr, *pend;
2859     RE_TRANSLATE_TYPE translate;
2860     reg_syntax_t syntax;
2861     unsigned char *b;
2862 {
2863   unsigned this_char;
2864 
2865   const char *p = *p_ptr;
2866   int range_start, range_end;
2867 
2868   if (p == pend)
2869     return REG_ERANGE;
2870 
2871   /* Even though the pattern is a signed `char *', we need to fetch
2872      with unsigned char *'s; if the high bit of the pattern character
2873      is set, the range endpoints will be negative if we fetch using a
2874      signed char *.
2875 
2876      We also want to fetch the endpoints without translating them; the
2877      appropriate translation is done in the bit-setting loop below.  */
2878   /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *.  */
2879   range_start = ((const unsigned char *) p)[-2];
2880   range_end   = ((const unsigned char *) p)[0];
2881 
2882   /* Have to increment the pointer into the pattern string, so the
2883      caller isn't still at the ending character.  */
2884   (*p_ptr)++;
2885 
2886   /* If the start is after the end, the range is empty.	 */
2887   if (range_start > range_end)
2888     return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2889 
2890   /* Here we see why `this_char' has to be larger than an `unsigned
2891      char' -- the range is inclusive, so if `range_end' == 0xff
2892      (assuming 8-bit characters), we would otherwise go into an infinite
2893      loop, since all characters <= 0xff.  */
2894   for (this_char = range_start; this_char <= range_end; this_char++)
2895     {
2896       SET_LIST_BIT (TRANSLATE (this_char));
2897     }
2898 
2899   return REG_NOERROR;
2900 }
2901 
2902 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2903    BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
2904    characters can start a string that matches the pattern.  This fastmap
2905    is used by re_search to skip quickly over impossible starting points.
2906 
2907    The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2908    area as BUFP->fastmap.
2909 
2910    We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2911    the pattern buffer.
2912 
2913    Returns 0 if we succeed, -2 if an internal error.   */
2914 
2915 int
re_compile_fastmap(bufp)2916 re_compile_fastmap (bufp)
2917      struct re_pattern_buffer *bufp;
2918 {
2919   int j, k;
2920 #ifdef MATCH_MAY_ALLOCATE
2921   fail_stack_type fail_stack;
2922 #endif
2923 #ifndef REGEX_MALLOC
2924   char *destination;
2925 #endif
2926   /* We don't push any register information onto the failure stack.  */
2927   unsigned num_regs = 0;
2928 
2929   register char *fastmap = bufp->fastmap;
2930   unsigned char *pattern = bufp->buffer;
2931   unsigned long size = bufp->used;
2932   unsigned char *p = pattern;
2933   register unsigned char *pend = pattern + size;
2934 
2935   /* This holds the pointer to the failure stack, when
2936      it is allocated relocatably.  */
2937 #ifdef REL_ALLOC
2938   fail_stack_elt_t *failure_stack_ptr;
2939 #endif
2940 
2941   /* Assume that each path through the pattern can be null until
2942      proven otherwise.	We set this false at the bottom of switch
2943      statement, to which we get only if a particular path doesn't
2944      match the empty string.  */
2945   boolean path_can_be_null = true;
2946 
2947   /* We aren't doing a `succeed_n' to begin with.  */
2948   boolean succeed_n_p = false;
2949 
2950   assert (fastmap != NULL && p != NULL);
2951 
2952   INIT_FAIL_STACK ();
2953   bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.	*/
2954   bufp->fastmap_accurate = 1;	    /* It will be when we're done.  */
2955   bufp->can_be_null = 0;
2956 
2957   while (1)
2958     {
2959       if (p == pend || *p == succeed)
2960 	{
2961 	  /* We have reached the (effective) end of pattern.  */
2962 	  if (!FAIL_STACK_EMPTY ())
2963 	    {
2964 	      bufp->can_be_null |= path_can_be_null;
2965 
2966 	      /* Reset for next path.  */
2967 	      path_can_be_null = true;
2968 
2969 	      p = fail_stack.stack[--fail_stack.avail].pointer;
2970 
2971 	      continue;
2972 	    }
2973 	  else
2974 	    break;
2975 	}
2976 
2977       /* We should never be about to go beyond the end of the pattern.	*/
2978       assert (p < pend);
2979 
2980       switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
2981 	{
2982 
2983 	/* I guess the idea here is to simply not bother with a fastmap
2984 	   if a backreference is used, since it's too hard to figure out
2985 	   the fastmap for the corresponding group.  Setting
2986 	   `can_be_null' stops `re_search_2' from using the fastmap, so
2987 	   that is all we do.  */
2988 	case duplicate:
2989 	  bufp->can_be_null = 1;
2990 	  goto done;
2991 
2992 
2993       /* Following are the cases which match a character.  These end
2994 	 with `break'.	*/
2995 
2996 	case exactn:
2997 	  fastmap[p[1]] = 1;
2998 	  break;
2999 
3000 
3001 	case charset:
3002 	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3003 	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3004 	      fastmap[j] = 1;
3005 	  break;
3006 
3007 
3008 	case charset_not:
3009 	  /* Chars beyond end of map must be allowed.  */
3010 	  for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3011 	    fastmap[j] = 1;
3012 
3013 	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3014 	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3015 	      fastmap[j] = 1;
3016 	  break;
3017 
3018 
3019 	case wordchar:
3020 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
3021 	    if (SYNTAX (j) == Sword)
3022 	      fastmap[j] = 1;
3023 	  break;
3024 
3025 
3026 	case notwordchar:
3027 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
3028 	    if (SYNTAX (j) != Sword)
3029 	      fastmap[j] = 1;
3030 	  break;
3031 
3032 
3033 	case anychar:
3034 	  {
3035 	    int fastmap_newline = fastmap['\n'];
3036 
3037 	    /* `.' matches anything ...	 */
3038 	    for (j = 0; j < (1 << BYTEWIDTH); j++)
3039 	      fastmap[j] = 1;
3040 
3041 	    /* ... except perhaps newline.  */
3042 	    if (!(bufp->syntax & RE_DOT_NEWLINE))
3043 	      fastmap['\n'] = fastmap_newline;
3044 
3045 	    /* Return if we have already set `can_be_null'; if we have,
3046 	       then the fastmap is irrelevant.	Something's wrong here.	 */
3047 	    else if (bufp->can_be_null)
3048 	      goto done;
3049 
3050 	    /* Otherwise, have to check alternative paths.  */
3051 	    break;
3052 	  }
3053 
3054 #ifdef emacs
3055 	case syntaxspec:
3056 	  k = *p++;
3057 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
3058 	    if (SYNTAX (j) == (enum syntaxcode) k)
3059 	      fastmap[j] = 1;
3060 	  break;
3061 
3062 
3063 	case notsyntaxspec:
3064 	  k = *p++;
3065 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
3066 	    if (SYNTAX (j) != (enum syntaxcode) k)
3067 	      fastmap[j] = 1;
3068 	  break;
3069 
3070 
3071       /* All cases after this match the empty string.  These end with
3072 	 `continue'.  */
3073 
3074 
3075 	case before_dot:
3076 	case at_dot:
3077 	case after_dot:
3078 	  continue;
3079 #endif /* emacs */
3080 
3081 
3082 	case no_op:
3083 	case begline:
3084 	case endline:
3085 	case begbuf:
3086 	case endbuf:
3087 	case wordbound:
3088 	case notwordbound:
3089 	case wordbeg:
3090 	case wordend:
3091 	case push_dummy_failure:
3092 	  continue;
3093 
3094 
3095 	case jump_n:
3096 	case pop_failure_jump:
3097 	case maybe_pop_jump:
3098 	case jump:
3099 	case jump_past_alt:
3100 	case dummy_failure_jump:
3101 	  EXTRACT_NUMBER_AND_INCR (j, p);
3102 	  p += j;
3103 	  if (j > 0)
3104 	    continue;
3105 
3106 	  /* Jump backward implies we just went through the body of a
3107 	     loop and matched nothing.	Opcode jumped to should be
3108 	     `on_failure_jump' or `succeed_n'.	Just treat it like an
3109 	     ordinary jump.  For a * loop, it has pushed its failure
3110 	     point already; if so, discard that as redundant.  */
3111 	  if ((re_opcode_t) *p != on_failure_jump
3112 	      && (re_opcode_t) *p != succeed_n)
3113 	    continue;
3114 
3115 	  p++;
3116 	  EXTRACT_NUMBER_AND_INCR (j, p);
3117 	  p += j;
3118 
3119 	  /* If what's on the stack is where we are now, pop it.  */
3120 	  if (!FAIL_STACK_EMPTY ()
3121 	      && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3122 	    fail_stack.avail--;
3123 
3124 	  continue;
3125 
3126 
3127 	case on_failure_jump:
3128 	case on_failure_keep_string_jump:
3129 	handle_on_failure_jump:
3130 	  EXTRACT_NUMBER_AND_INCR (j, p);
3131 
3132 	  /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3133 	     end of the pattern.  We don't want to push such a point,
3134 	     since when we restore it above, entering the switch will
3135 	     increment `p' past the end of the pattern.	 We don't need
3136 	     to push such a point since we obviously won't find any more
3137 	     fastmap entries beyond `pend'.  Such a pattern can match
3138 	     the null string, though.  */
3139 	  if (p + j < pend)
3140 	    {
3141 	      if (!PUSH_PATTERN_OP (p + j, fail_stack))
3142 		{
3143 		  RESET_FAIL_STACK ();
3144 		  return -2;
3145 		}
3146 	    }
3147 	  else
3148 	    bufp->can_be_null = 1;
3149 
3150 	  if (succeed_n_p)
3151 	    {
3152 	      EXTRACT_NUMBER_AND_INCR (k, p);	/* Skip the n.	*/
3153 	      succeed_n_p = false;
3154 	    }
3155 
3156 	  continue;
3157 
3158 
3159 	case succeed_n:
3160 	  /* Get to the number of times to succeed.  */
3161 	  p += 2;
3162 
3163 	  /* Increment p past the n for when k != 0.  */
3164 	  EXTRACT_NUMBER_AND_INCR (k, p);
3165 	  if (k == 0)
3166 	    {
3167 	      p -= 4;
3168 	      succeed_n_p = true;  /* Spaghetti code alert.  */
3169 	      goto handle_on_failure_jump;
3170 	    }
3171 	  continue;
3172 
3173 
3174 	case set_number_at:
3175 	  p += 4;
3176 	  continue;
3177 
3178 
3179 	case start_memory:
3180 	case stop_memory:
3181 	  p += 2;
3182 	  continue;
3183 
3184 
3185 	default:
3186 	  abort (); /* We have listed all the cases.  */
3187 	} /* switch *p++ */
3188 
3189       /* Getting here means we have found the possible starting
3190 	 characters for one path of the pattern -- and that the empty
3191 	 string does not match.	 We need not follow this path further.
3192 	 Instead, look at the next alternative (remembered on the
3193 	 stack), or quit if no more.  The test at the top of the loop
3194 	 does these things.  */
3195       path_can_be_null = false;
3196       p = pend;
3197     } /* while p */
3198 
3199   /* Set `can_be_null' for the last path (also the first path, if the
3200      pattern is empty).	 */
3201   bufp->can_be_null |= path_can_be_null;
3202 
3203  done:
3204   RESET_FAIL_STACK ();
3205   return 0;
3206 } /* re_compile_fastmap */
3207 
3208 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3209    ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
3210    this memory for recording register information.  STARTS and ENDS
3211    must be allocated using the malloc library routine, and must each
3212    be at least NUM_REGS * sizeof (regoff_t) bytes long.
3213 
3214    If NUM_REGS == 0, then subsequent matches should allocate their own
3215    register data.
3216 
3217    Unless this function is called, the first search or match using
3218    PATTERN_BUFFER will allocate its own register data, without
3219    freeing the old data.  */
3220 
3221 void
re_set_registers(bufp,regs,num_regs,starts,ends)3222 re_set_registers (bufp, regs, num_regs, starts, ends)
3223     struct re_pattern_buffer *bufp;
3224     struct re_registers *regs;
3225     unsigned num_regs;
3226     regoff_t *starts, *ends;
3227 {
3228   if (num_regs)
3229     {
3230       bufp->regs_allocated = REGS_REALLOCATE;
3231       regs->num_regs = num_regs;
3232       regs->start = starts;
3233       regs->end = ends;
3234     }
3235   else
3236     {
3237       bufp->regs_allocated = REGS_UNALLOCATED;
3238       regs->num_regs = 0;
3239       regs->start = regs->end = (regoff_t *) 0;
3240     }
3241 }
3242 
3243 /* Searching routines.	*/
3244 
3245 /* Like re_search_2, below, but only one string is specified, and
3246    doesn't let you say where to stop matching. */
3247 
3248 int
re_search(bufp,string,size,startpos,range,regs)3249 re_search (bufp, string, size, startpos, range, regs)
3250      struct re_pattern_buffer *bufp;
3251      const char *string;
3252      int size, startpos, range;
3253      struct re_registers *regs;
3254 {
3255   return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3256 		      regs, size);
3257 }
3258 
3259 
3260 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3261    virtual concatenation of STRING1 and STRING2, starting first at index
3262    STARTPOS, then at STARTPOS + 1, and so on.
3263 
3264    STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3265 
3266    RANGE is how far to scan while trying to match.  RANGE = 0 means try
3267    only at STARTPOS; in general, the last start tried is STARTPOS +
3268    RANGE.
3269 
3270    In REGS, return the indices of the virtual concatenation of STRING1
3271    and STRING2 that matched the entire BUFP->buffer and its contained
3272    subexpressions.
3273 
3274    Do not consider matching one past the index STOP in the virtual
3275    concatenation of STRING1 and STRING2.
3276 
3277    We return either the position in the strings at which the match was
3278    found, -1 if no match, or -2 if error (such as failure
3279    stack overflow).  */
3280 
3281 int
re_search_2(bufp,string1,size1,string2,size2,startpos,range,regs,stop)3282 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3283      struct re_pattern_buffer *bufp;
3284      const char *string1, *string2;
3285      int size1, size2;
3286      int startpos;
3287      int range;
3288      struct re_registers *regs;
3289      int stop;
3290 {
3291   int val;
3292   register char *fastmap = bufp->fastmap;
3293   register RE_TRANSLATE_TYPE translate = bufp->translate;
3294   int total_size = size1 + size2;
3295   int endpos = startpos + range;
3296   int anchored_start = 0;
3297 
3298   /* Check for out-of-range STARTPOS.  */
3299   if (startpos < 0 || startpos > total_size)
3300     return -1;
3301 
3302   /* Fix up RANGE if it might eventually take us outside
3303      the virtual concatenation of STRING1 and STRING2.
3304      Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
3305   if (endpos < 0)
3306     range = 0 - startpos;
3307   else if (endpos > total_size)
3308     range = total_size - startpos;
3309 
3310   /* If the search isn't to be a backwards one, don't waste time in a
3311      search for a pattern that must be anchored.  */
3312   if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3313     {
3314       if (startpos > 0)
3315 	return -1;
3316       else
3317 	range = 1;
3318     }
3319 
3320 #ifdef emacs
3321   /* In a forward search for something that starts with \=.
3322      don't keep searching past point.  */
3323   if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3324     {
3325       range = PT - startpos;
3326       if (range <= 0)
3327 	return -1;
3328     }
3329 #endif /* emacs */
3330 
3331   /* Update the fastmap now if not correct already.  */
3332   if (fastmap && !bufp->fastmap_accurate)
3333     if (re_compile_fastmap (bufp) == -2)
3334       return -2;
3335 
3336   /* See whether the pattern is anchored.  */
3337   if (bufp->buffer[0] == begline)
3338     anchored_start = 1;
3339 
3340   /* Loop through the string, looking for a place to start matching.  */
3341   for (;;)
3342     {
3343       /* If the pattern is anchored,
3344 	 skip quickly past places we cannot match.
3345 	 We don't bother to treat startpos == 0 specially
3346 	 because that case doesn't repeat.  */
3347       if (anchored_start && startpos > 0)
3348 	{
3349 	  if (! (bufp->newline_anchor
3350 		 && ((startpos <= size1 ? string1[startpos - 1]
3351 		      : string2[startpos - size1 - 1])
3352 		     == '\n')))
3353 	    goto advance;
3354 	}
3355 
3356       /* If a fastmap is supplied, skip quickly over characters that
3357 	 cannot be the start of a match.  If the pattern can match the
3358 	 null string, however, we don't need to skip characters; we want
3359 	 the first null string.	 */
3360       if (fastmap && startpos < total_size && !bufp->can_be_null)
3361 	{
3362 	  if (range > 0)	/* Searching forwards.	*/
3363 	    {
3364 	      register const char *d;
3365 	      register int lim = 0;
3366 	      int irange = range;
3367 
3368 	      if (startpos < size1 && startpos + range >= size1)
3369 		lim = range - (size1 - startpos);
3370 
3371 	      d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3372 
3373 	      /* Written out as an if-else to avoid testing `translate'
3374 		 inside the loop.  */
3375 	      if (translate)
3376 		while (range > lim
3377 		       && !fastmap[(unsigned char)
3378 				   translate[(unsigned char) *d++]])
3379 		  range--;
3380 	      else
3381 		while (range > lim && !fastmap[(unsigned char) *d++])
3382 		  range--;
3383 
3384 	      startpos += irange - range;
3385 	    }
3386 	  else				/* Searching backwards.	 */
3387 	    {
3388 	      register char c = (size1 == 0 || startpos >= size1
3389 				 ? string2[startpos - size1]
3390 				 : string1[startpos]);
3391 
3392 	      if (!fastmap[(unsigned char) TRANSLATE (c)])
3393 		goto advance;
3394 	    }
3395 	}
3396 
3397       /* If can't match the null string, and that's all we have left, fail.  */
3398       if (range >= 0 && startpos == total_size && fastmap
3399 	  && !bufp->can_be_null)
3400 	return -1;
3401 
3402       val = re_match_2_internal (bufp, string1, size1, string2, size2,
3403 				 startpos, regs, stop);
3404 #ifndef REGEX_MALLOC
3405 #ifdef C_ALLOCA
3406       alloca (0);
3407 #endif
3408 #endif
3409 
3410       if (val >= 0)
3411 	return startpos;
3412 
3413       if (val == -2)
3414 	return -2;
3415 
3416     advance:
3417       if (!range)
3418 	break;
3419       else if (range > 0)
3420 	{
3421 	  range--;
3422 	  startpos++;
3423 	}
3424       else
3425 	{
3426 	  range++;
3427 	  startpos--;
3428 	}
3429     }
3430   return -1;
3431 } /* re_search_2 */
3432 
3433 /* Declarations and macros for re_match_2.  */
3434 
3435 static int bcmp_translate ();
3436 static boolean alt_match_null_string_p (),
3437 	       common_op_match_null_string_p (),
3438 	       group_match_null_string_p ();
3439 
3440 /* This converts PTR, a pointer into one of the search strings `string1'
3441    and `string2' into an offset from the beginning of that string.  */
3442 #define POINTER_TO_OFFSET(ptr)			\
3443   (FIRST_STRING_P (ptr)				\
3444    ? ((regoff_t) ((ptr) - string1))		\
3445    : ((regoff_t) ((ptr) - string2 + size1)))
3446 
3447 /* Macros for dealing with the split strings in re_match_2.  */
3448 
3449 #define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
3450 
3451 /* Call before fetching a character with *d.  This switches over to
3452    string2 if necessary.  */
3453 #define PREFETCH()							\
3454   while (d == dend)							\
3455     {									\
3456       /* End of string2 => fail.  */					\
3457       if (dend == end_match_2)						\
3458 	goto fail;							\
3459       /* End of string1 => advance to string2.	*/			\
3460       d = string2;							\
3461       dend = end_match_2;						\
3462     }
3463 
3464 
3465 /* Test if at very beginning or at very end of the virtual concatenation
3466    of `string1' and `string2'.	If only one string, it's `string2'.  */
3467 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3468 #define AT_STRINGS_END(d) ((d) == end2)
3469 
3470 
3471 /* Test if D points to a character which is word-constituent.  We have
3472    two special cases to check for: if past the end of string1, look at
3473    the first character in string2; and if before the beginning of
3474    string2, look at the last character in string1.  */
3475 #define WORDCHAR_P(d)							\
3476   (SYNTAX ((d) == end1 ? *string2					\
3477 	   : (d) == string2 - 1 ? *(end1 - 1) : *(d))			\
3478    == Sword)
3479 
3480 /* Disabled due to a compiler bug -- see comment at case wordbound */
3481 #if 0
3482 /* Test if the character before D and the one at D differ with respect
3483    to being word-constituent.  */
3484 #define AT_WORD_BOUNDARY(d)						\
3485   (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)				\
3486    || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3487 #endif
3488 
3489 /* Free everything we malloc.  */
3490 #ifdef MATCH_MAY_ALLOCATE
3491 #define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
3492 #define FREE_VARIABLES()						\
3493   do {									\
3494     REGEX_FREE_STACK (fail_stack.stack);				\
3495     FREE_VAR (regstart);						\
3496     FREE_VAR (regend);							\
3497     FREE_VAR (old_regstart);						\
3498     FREE_VAR (old_regend);						\
3499     FREE_VAR (best_regstart);						\
3500     FREE_VAR (best_regend);						\
3501     FREE_VAR (reg_info);						\
3502     FREE_VAR (reg_dummy);						\
3503     FREE_VAR (reg_info_dummy);						\
3504   } while (0)
3505 #else
3506 #define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning.  */
3507 #endif /* not MATCH_MAY_ALLOCATE */
3508 
3509 /* These values must meet several constraints.	They must not be valid
3510    register values; since we have a limit of 255 registers (because
3511    we use only one byte in the pattern for the register number), we can
3512    use numbers larger than 255.	 They must differ by 1, because of
3513    NUM_FAILURE_ITEMS above.  And the value for the lowest register must
3514    be larger than the value for the highest register, so we do not try
3515    to actually save any registers when none are active.	 */
3516 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3517 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3518 
3519 /* Matching routines.  */
3520 
3521 #ifndef emacs	/* Emacs never uses this.  */
3522 /* re_match is like re_match_2 except it takes only a single string.  */
3523 
3524 int
re_match(bufp,string,size,pos,regs)3525 re_match (bufp, string, size, pos, regs)
3526      struct re_pattern_buffer *bufp;
3527      const char *string;
3528      int size, pos;
3529      struct re_registers *regs;
3530 {
3531   int result = re_match_2_internal (bufp, NULL, 0, string, size,
3532 				    pos, regs, size);
3533   alloca (0);
3534   return result;
3535 }
3536 #endif /* not emacs */
3537 
3538 
3539 /* re_match_2 matches the compiled pattern in BUFP against the
3540    the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3541    and SIZE2, respectively).  We start matching at POS, and stop
3542    matching at STOP.
3543 
3544    If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3545    store offsets for the substring each group matched in REGS.	See the
3546    documentation for exactly how many groups we fill.
3547 
3548    We return -1 if no match, -2 if an internal error (such as the
3549    failure stack overflowing).	Otherwise, we return the length of the
3550    matched substring.  */
3551 
3552 int
re_match_2(bufp,string1,size1,string2,size2,pos,regs,stop)3553 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3554      struct re_pattern_buffer *bufp;
3555      const char *string1, *string2;
3556      int size1, size2;
3557      int pos;
3558      struct re_registers *regs;
3559      int stop;
3560 {
3561   int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3562 				    pos, regs, stop);
3563   alloca (0);
3564   return result;
3565 }
3566 
3567 /* This is a separate function so that we can force an alloca cleanup
3568    afterwards.	*/
3569 static int
re_match_2_internal(bufp,string1,size1,string2,size2,pos,regs,stop)3570 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3571      struct re_pattern_buffer *bufp;
3572      const char *string1, *string2;
3573      int size1, size2;
3574      int pos;
3575      struct re_registers *regs;
3576      int stop;
3577 {
3578   /* General temporaries.  */
3579   int mcnt;
3580   unsigned char *p1;
3581 
3582   /* Just past the end of the corresponding string.  */
3583   const char *end1, *end2;
3584 
3585   /* Pointers into string1 and string2, just past the last characters in
3586      each to consider matching.	 */
3587   const char *end_match_1, *end_match_2;
3588 
3589   /* Where we are in the data, and the end of the current string.  */
3590   const char *d, *dend;
3591 
3592   /* Where we are in the pattern, and the end of the pattern.  */
3593   unsigned char *p = bufp->buffer;
3594   register unsigned char *pend = p + bufp->used;
3595 
3596   /* Mark the opcode just after a start_memory, so we can test for an
3597      empty subpattern when we get to the stop_memory.  */
3598   unsigned char *just_past_start_mem = 0;
3599 
3600   /* We use this to map every character in the string.	*/
3601   RE_TRANSLATE_TYPE translate = bufp->translate;
3602 
3603   /* Failure point stack.  Each place that can handle a failure further
3604      down the line pushes a failure point on this stack.  It consists of
3605      restart, regend, and reg_info for all registers corresponding to
3606      the subexpressions we're currently inside, plus the number of such
3607      registers, and, finally, two char *'s.  The first char * is where
3608      to resume scanning the pattern; the second one is where to resume
3609      scanning the strings.  If the latter is zero, the failure point is
3610      a ``dummy''; if a failure happens and the failure point is a dummy,
3611      it gets discarded and the next next one is tried.	*/
3612 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.	 */
3613   fail_stack_type fail_stack;
3614 #endif
3615 #ifdef DEBUG
3616   static unsigned failure_id = 0;
3617   unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3618 #endif
3619 
3620   /* This holds the pointer to the failure stack, when
3621      it is allocated relocatably.  */
3622 #ifdef REL_ALLOC
3623   fail_stack_elt_t *failure_stack_ptr;
3624 #endif
3625 
3626   /* We fill all the registers internally, independent of what we
3627      return, for use in backreferences.	 The number here includes
3628      an element for register zero.  */
3629   unsigned num_regs = bufp->re_nsub + 1;
3630 
3631   /* The currently active registers.  */
3632   unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3633   unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3634 
3635   /* Information on the contents of registers. These are pointers into
3636      the input strings; they record just what was matched (on this
3637      attempt) by a subexpression part of the pattern, that is, the
3638      regnum-th regstart pointer points to where in the pattern we began
3639      matching and the regnum-th regend points to right after where we
3640      stopped matching the regnum-th subexpression.  (The zeroth register
3641      keeps track of what the whole pattern matches.)  */
3642 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
3643   const char **regstart, **regend;
3644 #endif
3645 
3646   /* If a group that's operated upon by a repetition operator fails to
3647      match anything, then the register for its start will need to be
3648      restored because it will have been set to wherever in the string we
3649      are when we last see its open-group operator.  Similarly for a
3650      register's end.  */
3651 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
3652   const char **old_regstart, **old_regend;
3653 #endif
3654 
3655   /* The is_active field of reg_info helps us keep track of which (possibly
3656      nested) subexpressions we are currently in. The matched_something
3657      field of reg_info[reg_num] helps us tell whether or not we have
3658      matched any of the pattern so far this time through the reg_num-th
3659      subexpression.  These two fields get reset each time through any
3660      loop their register is in.	 */
3661 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.	 */
3662   register_info_type *reg_info;
3663 #endif
3664 
3665   /* The following record the register info as found in the above
3666      variables when we find a match better than any we've seen before.
3667      This happens as we backtrack through the failure points, which in
3668      turn happens only if we have not yet matched the entire string. */
3669   unsigned best_regs_set = false;
3670 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
3671   const char **best_regstart, **best_regend;
3672 #endif
3673 
3674   /* Logically, this is `best_regend[0]'.  But we don't want to have to
3675      allocate space for that if we're not allocating space for anything
3676      else (see below).	Also, we never need info about register 0 for
3677      any of the other register vectors, and it seems rather a kludge to
3678      treat `best_regend' differently than the rest.  So we keep track of
3679      the end of the best match so far in a separate variable.  We
3680      initialize this to NULL so that when we backtrack the first time
3681      and need to test it, it's not garbage.  */
3682   const char *match_end = NULL;
3683 
3684   /* This helps SET_REGS_MATCHED avoid doing redundant work.  */
3685   int set_regs_matched_done = 0;
3686 
3687   /* Used when we pop values we don't care about.  */
3688 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
3689   const char **reg_dummy;
3690   register_info_type *reg_info_dummy;
3691 #endif
3692 
3693 #ifdef DEBUG
3694   /* Counts the total number of registers pushed.  */
3695   unsigned num_regs_pushed = 0;
3696 #endif
3697 
3698   DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3699 
3700   INIT_FAIL_STACK ();
3701 
3702 #ifdef MATCH_MAY_ALLOCATE
3703   /* Do not bother to initialize all the register variables if there are
3704      no groups in the pattern, as it takes a fair amount of time.  If
3705      there are groups, we include space for register 0 (the whole
3706      pattern), even though we never use it, since it simplifies the
3707      array indexing.  We should fix this.  */
3708   if (bufp->re_nsub)
3709     {
3710       regstart = REGEX_TALLOC (num_regs, const char *);
3711       regend = REGEX_TALLOC (num_regs, const char *);
3712       old_regstart = REGEX_TALLOC (num_regs, const char *);
3713       old_regend = REGEX_TALLOC (num_regs, const char *);
3714       best_regstart = REGEX_TALLOC (num_regs, const char *);
3715       best_regend = REGEX_TALLOC (num_regs, const char *);
3716       reg_info = REGEX_TALLOC (num_regs, register_info_type);
3717       reg_dummy = REGEX_TALLOC (num_regs, const char *);
3718       reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3719 
3720       if (!(regstart && regend && old_regstart && old_regend && reg_info
3721 	    && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3722 	{
3723 	  FREE_VARIABLES ();
3724 	  return -2;
3725 	}
3726     }
3727   else
3728     {
3729       /* We must initialize all our variables to NULL, so that
3730 	 `FREE_VARIABLES' doesn't try to free them.  */
3731       regstart = regend = old_regstart = old_regend = best_regstart
3732 	= best_regend = reg_dummy = NULL;
3733       reg_info = reg_info_dummy = (register_info_type *) NULL;
3734     }
3735 #endif /* MATCH_MAY_ALLOCATE */
3736 
3737   /* The starting position is bogus.  */
3738   if (pos < 0 || pos > size1 + size2)
3739     {
3740       FREE_VARIABLES ();
3741       return -1;
3742     }
3743 
3744   /* Initialize subexpression text positions to -1 to mark ones that no
3745      start_memory/stop_memory has been seen for. Also initialize the
3746      register information struct.  */
3747   for (mcnt = 1; mcnt < num_regs; mcnt++)
3748     {
3749       regstart[mcnt] = regend[mcnt]
3750 	= old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3751 
3752       REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3753       IS_ACTIVE (reg_info[mcnt]) = 0;
3754       MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3755       EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3756     }
3757 
3758   /* We move `string1' into `string2' if the latter's empty -- but not if
3759      `string1' is null.	 */
3760   if (size2 == 0 && string1 != NULL)
3761     {
3762       string2 = string1;
3763       size2 = size1;
3764       string1 = 0;
3765       size1 = 0;
3766     }
3767   end1 = string1 + size1;
3768   end2 = string2 + size2;
3769 
3770   /* Compute where to stop matching, within the two strings.  */
3771   if (stop <= size1)
3772     {
3773       end_match_1 = string1 + stop;
3774       end_match_2 = string2;
3775     }
3776   else
3777     {
3778       end_match_1 = end1;
3779       end_match_2 = string2 + stop - size1;
3780     }
3781 
3782   /* `p' scans through the pattern as `d' scans through the data.
3783      `dend' is the end of the input string that `d' points within.  `d'
3784      is advanced into the following input string whenever necessary, but
3785      this happens before fetching; therefore, at the beginning of the
3786      loop, `d' can be pointing at the end of a string, but it cannot
3787      equal `string2'.  */
3788   if (size1 > 0 && pos <= size1)
3789     {
3790       d = string1 + pos;
3791       dend = end_match_1;
3792     }
3793   else
3794     {
3795       d = string2 + pos - size1;
3796       dend = end_match_2;
3797     }
3798 
3799   DEBUG_PRINT1 ("The compiled pattern is: ");
3800   DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3801   DEBUG_PRINT1 ("The string to match is: `");
3802   DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3803   DEBUG_PRINT1 ("'\n");
3804 
3805   /* This loops over pattern commands.	It exits by returning from the
3806      function if the match is complete, or it drops through if the match
3807      fails at this starting point in the input data.  */
3808   for (;;)
3809     {
3810       DEBUG_PRINT2 ("\n0x%x: ", p);
3811 
3812       if (p == pend)
3813 	{ /* End of pattern means we might have succeeded.  */
3814 	  DEBUG_PRINT1 ("end of pattern ... ");
3815 
3816 	  /* If we haven't matched the entire string, and we want the
3817 	     longest match, try backtracking.  */
3818 	  if (d != end_match_2)
3819 	    {
3820 	      /* 1 if this match ends in the same string (string1 or string2)
3821 		 as the best previous match.  */
3822 	      boolean same_str_p = (FIRST_STRING_P (match_end)
3823 				    == MATCHING_IN_FIRST_STRING);
3824 	      /* 1 if this match is the best seen so far.  */
3825 	      boolean best_match_p;
3826 
3827 	      /* AIX compiler got confused when this was combined
3828 		 with the previous declaration.	 */
3829 	      if (same_str_p)
3830 		best_match_p = d > match_end;
3831 	      else
3832 		best_match_p = !MATCHING_IN_FIRST_STRING;
3833 
3834 	      DEBUG_PRINT1 ("backtracking.\n");
3835 
3836 	      if (!FAIL_STACK_EMPTY ())
3837 		{ /* More failure points to try.  */
3838 
3839 		  /* If exceeds best match so far, save it.  */
3840 		  if (!best_regs_set || best_match_p)
3841 		    {
3842 		      best_regs_set = true;
3843 		      match_end = d;
3844 
3845 		      DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3846 
3847 		      for (mcnt = 1; mcnt < num_regs; mcnt++)
3848 			{
3849 			  best_regstart[mcnt] = regstart[mcnt];
3850 			  best_regend[mcnt] = regend[mcnt];
3851 			}
3852 		    }
3853 		  goto fail;
3854 		}
3855 
3856 	      /* If no failure points, don't restore garbage.  And if
3857 		 last match is real best match, don't restore second
3858 		 best one. */
3859 	      else if (best_regs_set && !best_match_p)
3860 		{
3861 		restore_best_regs:
3862 		  /* Restore best match.  It may happen that `dend ==
3863 		     end_match_1' while the restored d is in string2.
3864 		     For example, the pattern `x.*y.*z' against the
3865 		     strings `x-' and `y-z-', if the two strings are
3866 		     not consecutive in memory.	 */
3867 		  DEBUG_PRINT1 ("Restoring best registers.\n");
3868 
3869 		  d = match_end;
3870 		  dend = ((d >= string1 && d <= end1)
3871 			   ? end_match_1 : end_match_2);
3872 
3873 		  for (mcnt = 1; mcnt < num_regs; mcnt++)
3874 		    {
3875 		      regstart[mcnt] = best_regstart[mcnt];
3876 		      regend[mcnt] = best_regend[mcnt];
3877 		    }
3878 		}
3879 	    } /* d != end_match_2 */
3880 
3881 	succeed_label:
3882 	  DEBUG_PRINT1 ("Accepting match.\n");
3883 
3884 	  /* If caller wants register contents data back, do it.  */
3885 	  if (regs && !bufp->no_sub)
3886 	    {
3887 	      /* Have the register data arrays been allocated?	*/
3888 	      if (bufp->regs_allocated == REGS_UNALLOCATED)
3889 		{ /* No.  So allocate them with malloc.	 We need one
3890 		     extra element beyond `num_regs' for the `-1' marker
3891 		     GNU code uses.  */
3892 		  regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3893 		  regs->start = TALLOC (regs->num_regs, regoff_t);
3894 		  regs->end = TALLOC (regs->num_regs, regoff_t);
3895 		  if (regs->start == NULL || regs->end == NULL)
3896 		    {
3897 		      FREE_VARIABLES ();
3898 		      return -2;
3899 		    }
3900 		  bufp->regs_allocated = REGS_REALLOCATE;
3901 		}
3902 	      else if (bufp->regs_allocated == REGS_REALLOCATE)
3903 		{ /* Yes.  If we need more elements than were already
3904 		     allocated, reallocate them.  If we need fewer, just
3905 		     leave it alone.  */
3906 		  if (regs->num_regs < num_regs + 1)
3907 		    {
3908 		      regs->num_regs = num_regs + 1;
3909 		      RETALLOC (regs->start, regs->num_regs, regoff_t);
3910 		      RETALLOC (regs->end, regs->num_regs, regoff_t);
3911 		      if (regs->start == NULL || regs->end == NULL)
3912 			{
3913 			  FREE_VARIABLES ();
3914 			  return -2;
3915 			}
3916 		    }
3917 		}
3918 	      else
3919 		{
3920 		  /* These braces fend off a "empty body in an else-statement"
3921 		     warning under GCC when assert expands to nothing.	*/
3922 		  assert (bufp->regs_allocated == REGS_FIXED);
3923 		}
3924 
3925 	      /* Convert the pointer data in `regstart' and `regend' to
3926 		 indices.  Register zero has to be set differently,
3927 		 since we haven't kept track of any info for it.  */
3928 	      if (regs->num_regs > 0)
3929 		{
3930 		  regs->start[0] = pos;
3931 		  regs->end[0] = (MATCHING_IN_FIRST_STRING
3932 				  ? ((regoff_t) (d - string1))
3933 				  : ((regoff_t) (d - string2 + size1)));
3934 		}
3935 
3936 	      /* Go through the first `min (num_regs, regs->num_regs)'
3937 		 registers, since that is all we initialized.  */
3938 	      for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
3939 		{
3940 		  if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3941 		    regs->start[mcnt] = regs->end[mcnt] = -1;
3942 		  else
3943 		    {
3944 		      regs->start[mcnt]
3945 			= (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
3946 		      regs->end[mcnt]
3947 			= (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
3948 		    }
3949 		}
3950 
3951 	      /* If the regs structure we return has more elements than
3952 		 were in the pattern, set the extra elements to -1.  If
3953 		 we (re)allocated the registers, this is the case,
3954 		 because we always allocate enough to have at least one
3955 		 -1 at the end.	 */
3956 	      for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3957 		regs->start[mcnt] = regs->end[mcnt] = -1;
3958 	    } /* regs && !bufp->no_sub */
3959 
3960 	  DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3961 			nfailure_points_pushed, nfailure_points_popped,
3962 			nfailure_points_pushed - nfailure_points_popped);
3963 	  DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
3964 
3965 	  mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3966 			    ? string1
3967 			    : string2 - size1);
3968 
3969 	  DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
3970 
3971 	  FREE_VARIABLES ();
3972 	  return mcnt;
3973 	}
3974 
3975       /* Otherwise match next pattern command.	*/
3976       switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3977 	{
3978 	/* Ignore these.  Used to ignore the n of succeed_n's which
3979 	   currently have n == 0.  */
3980 	case no_op:
3981 	  DEBUG_PRINT1 ("EXECUTING no_op.\n");
3982 	  break;
3983 
3984 	case succeed:
3985 	  DEBUG_PRINT1 ("EXECUTING succeed.\n");
3986 	  goto succeed_label;
3987 
3988 	/* Match the next n pattern characters exactly.	 The following
3989 	   byte in the pattern defines n, and the n bytes after that
3990 	   are the characters to match.	 */
3991 	case exactn:
3992 	  mcnt = *p++;
3993 	  DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
3994 
3995 	  /* This is written out as an if-else so we don't waste time
3996 	     testing `translate' inside the loop.  */
3997 	  if (translate)
3998 	    {
3999 	      do
4000 		{
4001 		  PREFETCH ();
4002 		  if ((unsigned char) translate[(unsigned char) *d++]
4003 		      != (unsigned char) *p++)
4004 		    goto fail;
4005 		}
4006 	      while (--mcnt);
4007 	    }
4008 	  else
4009 	    {
4010 	      do
4011 		{
4012 		  PREFETCH ();
4013 		  if (*d++ != (char) *p++) goto fail;
4014 		}
4015 	      while (--mcnt);
4016 	    }
4017 	  SET_REGS_MATCHED ();
4018 	  break;
4019 
4020 
4021 	/* Match any character except possibly a newline or a null.  */
4022 	case anychar:
4023 	  DEBUG_PRINT1 ("EXECUTING anychar.\n");
4024 
4025 	  PREFETCH ();
4026 
4027 	  if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4028 	      || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4029 	    goto fail;
4030 
4031 	  SET_REGS_MATCHED ();
4032 	  DEBUG_PRINT2 ("  Matched `%d'.\n", *d);
4033 	  d++;
4034 	  break;
4035 
4036 
4037 	case charset:
4038 	case charset_not:
4039 	  {
4040 	    register unsigned char c;
4041 	    boolean not = (re_opcode_t) *(p - 1) == charset_not;
4042 
4043 	    DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4044 
4045 	    PREFETCH ();
4046 	    c = TRANSLATE (*d); /* The character to match.  */
4047 
4048 	    /* Cast to `unsigned' instead of `unsigned char' in case the
4049 	       bit list is a full 32 bytes long.  */
4050 	    if (c < (unsigned) (*p * BYTEWIDTH)
4051 		&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4052 	      not = !not;
4053 
4054 	    p += 1 + *p;
4055 
4056 	    if (!not) goto fail;
4057 
4058 	    SET_REGS_MATCHED ();
4059 	    d++;
4060 	    break;
4061 	  }
4062 
4063 
4064 	/* The beginning of a group is represented by start_memory.
4065 	   The arguments are the register number in the next byte, and the
4066 	   number of groups inner to this one in the next.  The text
4067 	   matched within the group is recorded (in the internal
4068 	   registers data structure) under the register number.	 */
4069 	case start_memory:
4070 	  DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4071 
4072 	  /* Find out if this group can match the empty string.	 */
4073 	  p1 = p;		/* To send to group_match_null_string_p.  */
4074 
4075 	  if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4076 	    REG_MATCH_NULL_STRING_P (reg_info[*p])
4077 	      = group_match_null_string_p (&p1, pend, reg_info);
4078 
4079 	  /* Save the position in the string where we were the last time
4080 	     we were at this open-group operator in case the group is
4081 	     operated upon by a repetition operator, e.g., with `(a*)*b'
4082 	     against `ab'; then we want to ignore where we are now in
4083 	     the string in case this attempt to match fails.  */
4084 	  old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4085 			     ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4086 			     : regstart[*p];
4087 	  DEBUG_PRINT2 ("  old_regstart: %d\n",
4088 			 POINTER_TO_OFFSET (old_regstart[*p]));
4089 
4090 	  regstart[*p] = d;
4091 	  DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4092 
4093 	  IS_ACTIVE (reg_info[*p]) = 1;
4094 	  MATCHED_SOMETHING (reg_info[*p]) = 0;
4095 
4096 	  /* Clear this whenever we change the register activity status.  */
4097 	  set_regs_matched_done = 0;
4098 
4099 	  /* This is the new highest active register.  */
4100 	  highest_active_reg = *p;
4101 
4102 	  /* If nothing was active before, this is the new lowest active
4103 	     register.	*/
4104 	  if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4105 	    lowest_active_reg = *p;
4106 
4107 	  /* Move past the register number and inner group count.  */
4108 	  p += 2;
4109 	  just_past_start_mem = p;
4110 
4111 	  break;
4112 
4113 
4114 	/* The stop_memory opcode represents the end of a group.  Its
4115 	   arguments are the same as start_memory's: the register
4116 	   number, and the number of inner groups.  */
4117 	case stop_memory:
4118 	  DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4119 
4120 	  /* We need to save the string position the last time we were at
4121 	     this close-group operator in case the group is operated
4122 	     upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4123 	     against `aba'; then we want to ignore where we are now in
4124 	     the string in case this attempt to match fails.  */
4125 	  old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4126 			   ? REG_UNSET (regend[*p]) ? d : regend[*p]
4127 			   : regend[*p];
4128 	  DEBUG_PRINT2 ("      old_regend: %d\n",
4129 			 POINTER_TO_OFFSET (old_regend[*p]));
4130 
4131 	  regend[*p] = d;
4132 	  DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4133 
4134 	  /* This register isn't active anymore.  */
4135 	  IS_ACTIVE (reg_info[*p]) = 0;
4136 
4137 	  /* Clear this whenever we change the register activity status.  */
4138 	  set_regs_matched_done = 0;
4139 
4140 	  /* If this was the only register active, nothing is active
4141 	     anymore.  */
4142 	  if (lowest_active_reg == highest_active_reg)
4143 	    {
4144 	      lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4145 	      highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4146 	    }
4147 	  else
4148 	    { /* We must scan for the new highest active register, since
4149 		 it isn't necessarily one less than now: consider
4150 		 (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
4151 		 new highest active register is 1.  */
4152 	      unsigned char r = *p - 1;
4153 	      while (r > 0 && !IS_ACTIVE (reg_info[r]))
4154 		r--;
4155 
4156 	      /* If we end up at register zero, that means that we saved
4157 		 the registers as the result of an `on_failure_jump', not
4158 		 a `start_memory', and we jumped to past the innermost
4159 		 `stop_memory'.	 For example, in ((.)*) we save
4160 		 registers 1 and 2 as a result of the *, but when we pop
4161 		 back to the second ), we are at the stop_memory 1.
4162 		 Thus, nothing is active.  */
4163 	      if (r == 0)
4164 		{
4165 		  lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4166 		  highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4167 		}
4168 	      else
4169 		highest_active_reg = r;
4170 	    }
4171 
4172 	  /* If just failed to match something this time around with a
4173 	     group that's operated on by a repetition operator, try to
4174 	     force exit from the ``loop'', and restore the register
4175 	     information for this group that we had before trying this
4176 	     last match.  */
4177 	  if ((!MATCHED_SOMETHING (reg_info[*p])
4178 	       || just_past_start_mem == p - 1)
4179 	      && (p + 2) < pend)
4180 	    {
4181 	      boolean is_a_jump_n = false;
4182 
4183 	      p1 = p + 2;
4184 	      mcnt = 0;
4185 	      switch ((re_opcode_t) *p1++)
4186 		{
4187 		  case jump_n:
4188 		    is_a_jump_n = true;
4189 		  case pop_failure_jump:
4190 		  case maybe_pop_jump:
4191 		  case jump:
4192 		  case dummy_failure_jump:
4193 		    EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4194 		    if (is_a_jump_n)
4195 		      p1 += 2;
4196 		    break;
4197 
4198 		  default:
4199 		    /* do nothing */ ;
4200 		}
4201 	      p1 += mcnt;
4202 
4203 	      /* If the next operation is a jump backwards in the pattern
4204 		 to an on_failure_jump right before the start_memory
4205 		 corresponding to this stop_memory, exit from the loop
4206 		 by forcing a failure after pushing on the stack the
4207 		 on_failure_jump's jump in the pattern, and d.	*/
4208 	      if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4209 		  && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4210 		{
4211 		  /* If this group ever matched anything, then restore
4212 		     what its registers were before trying this last
4213 		     failed match, e.g., with `(a*)*b' against `ab' for
4214 		     regstart[1], and, e.g., with `((a*)*(b*)*)*'
4215 		     against `aba' for regend[3].
4216 
4217 		     Also restore the registers for inner groups for,
4218 		     e.g., `((a*)(b*))*' against `aba' (register 3 would
4219 		     otherwise get trashed).  */
4220 
4221 		  if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4222 		    {
4223 		      unsigned r;
4224 
4225 		      EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4226 
4227 		      /* Restore this and inner groups' (if any) registers.  */
4228 		      for (r = *p; r < *p + *(p + 1); r++)
4229 			{
4230 			  regstart[r] = old_regstart[r];
4231 
4232 			  /* xx why this test?	*/
4233 			  if (old_regend[r] >= regstart[r])
4234 			    regend[r] = old_regend[r];
4235 			}
4236 		    }
4237 		  p1++;
4238 		  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4239 		  PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4240 
4241 		  goto fail;
4242 		}
4243 	    }
4244 
4245 	  /* Move past the register number and the inner group count.  */
4246 	  p += 2;
4247 	  break;
4248 
4249 
4250 	/* \<digit> has been turned into a `duplicate' command which is
4251 	   followed by the numeric value of <digit> as the register number.  */
4252 	case duplicate:
4253 	  {
4254 	    register const char *d2, *dend2;
4255 	    int regno = *p++;	/* Get which register to match against.	 */
4256 	    DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4257 
4258 	    /* Can't back reference a group which we've never matched.	*/
4259 	    if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4260 	      goto fail;
4261 
4262 	    /* Where in input to try to start matching.	 */
4263 	    d2 = regstart[regno];
4264 
4265 	    /* Where to stop matching; if both the place to start and
4266 	       the place to stop matching are in the same string, then
4267 	       set to the place to stop, otherwise, for now have to use
4268 	       the end of the first string.  */
4269 
4270 	    dend2 = ((FIRST_STRING_P (regstart[regno])
4271 		      == FIRST_STRING_P (regend[regno]))
4272 		     ? regend[regno] : end_match_1);
4273 	    for (;;)
4274 	      {
4275 		/* If necessary, advance to next segment in register
4276 		   contents.  */
4277 		while (d2 == dend2)
4278 		  {
4279 		    if (dend2 == end_match_2) break;
4280 		    if (dend2 == regend[regno]) break;
4281 
4282 		    /* End of string1 => advance to string2. */
4283 		    d2 = string2;
4284 		    dend2 = regend[regno];
4285 		  }
4286 		/* At end of register contents => success */
4287 		if (d2 == dend2) break;
4288 
4289 		/* If necessary, advance to next segment in data.  */
4290 		PREFETCH ();
4291 
4292 		/* How many characters left in this segment to match.  */
4293 		mcnt = dend - d;
4294 
4295 		/* Want how many consecutive characters we can match in
4296 		   one shot, so, if necessary, adjust the count.  */
4297 		if (mcnt > dend2 - d2)
4298 		  mcnt = dend2 - d2;
4299 
4300 		/* Compare that many; failure if mismatch, else move
4301 		   past them.  */
4302 		if (translate
4303 		    ? bcmp_translate (d, d2, mcnt, translate)
4304 		    : bcmp (d, d2, mcnt))
4305 		  goto fail;
4306 		d += mcnt, d2 += mcnt;
4307 
4308 		/* Do this because we've match some characters.	 */
4309 		SET_REGS_MATCHED ();
4310 	      }
4311 	  }
4312 	  break;
4313 
4314 
4315 	/* begline matches the empty string at the beginning of the string
4316 	   (unless `not_bol' is set in `bufp'), and, if
4317 	   `newline_anchor' is set, after newlines.  */
4318 	case begline:
4319 	  DEBUG_PRINT1 ("EXECUTING begline.\n");
4320 
4321 	  if (AT_STRINGS_BEG (d))
4322 	    {
4323 	      if (!bufp->not_bol) break;
4324 	    }
4325 	  else if (d[-1] == '\n' && bufp->newline_anchor)
4326 	    {
4327 	      break;
4328 	    }
4329 	  /* In all other cases, we fail.  */
4330 	  goto fail;
4331 
4332 
4333 	/* endline is the dual of begline.  */
4334 	case endline:
4335 	  DEBUG_PRINT1 ("EXECUTING endline.\n");
4336 
4337 	  if (AT_STRINGS_END (d))
4338 	    {
4339 	      if (!bufp->not_eol) break;
4340 	    }
4341 
4342 	  /* We have to ``prefetch'' the next character.  */
4343 	  else if ((d == end1 ? *string2 : *d) == '\n'
4344 		   && bufp->newline_anchor)
4345 	    {
4346 	      break;
4347 	    }
4348 	  goto fail;
4349 
4350 
4351 	/* Match at the very beginning of the data.  */
4352 	case begbuf:
4353 	  DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4354 	  if (AT_STRINGS_BEG (d))
4355 	    break;
4356 	  goto fail;
4357 
4358 
4359 	/* Match at the very end of the data.  */
4360 	case endbuf:
4361 	  DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4362 	  if (AT_STRINGS_END (d))
4363 	    break;
4364 	  goto fail;
4365 
4366 
4367 	/* on_failure_keep_string_jump is used to optimize `.*\n'.  It
4368 	   pushes NULL as the value for the string on the stack.  Then
4369 	   `pop_failure_point' will keep the current value for the
4370 	   string, instead of restoring it.  To see why, consider
4371 	   matching `foo\nbar' against `.*\n'.	The .* matches the foo;
4372 	   then the . fails against the \n.  But the next thing we want
4373 	   to do is match the \n against the \n; if we restored the
4374 	   string value, we would be back at the foo.
4375 
4376 	   Because this is used only in specific cases, we don't need to
4377 	   check all the things that `on_failure_jump' does, to make
4378 	   sure the right things get saved on the stack.  Hence we don't
4379 	   share its code.  The only reason to push anything on the
4380 	   stack at all is that otherwise we would have to change
4381 	   `anychar's code to do something besides goto fail in this
4382 	   case; that seems worse than this.  */
4383 	case on_failure_keep_string_jump:
4384 	  DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4385 
4386 	  EXTRACT_NUMBER_AND_INCR (mcnt, p);
4387 	  DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4388 
4389 	  PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4390 	  break;
4391 
4392 
4393 	/* Uses of on_failure_jump:
4394 
4395 	   Each alternative starts with an on_failure_jump that points
4396 	   to the beginning of the next alternative.  Each alternative
4397 	   except the last ends with a jump that in effect jumps past
4398 	   the rest of the alternatives.  (They really jump to the
4399 	   ending jump of the following alternative, because tensioning
4400 	   these jumps is a hassle.)
4401 
4402 	   Repeats start with an on_failure_jump that points past both
4403 	   the repetition text and either the following jump or
4404 	   pop_failure_jump back to this on_failure_jump.  */
4405 	case on_failure_jump:
4406 	on_failure:
4407 	  DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4408 
4409 	  EXTRACT_NUMBER_AND_INCR (mcnt, p);
4410 	  DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4411 
4412 	  /* If this on_failure_jump comes right before a group (i.e.,
4413 	     the original * applied to a group), save the information
4414 	     for that group and all inner ones, so that if we fail back
4415 	     to this point, the group's information will be correct.
4416 	     For example, in \(a*\)*\1, we need the preceding group,
4417 	     and in \(zz\(a*\)b*\)\2, we need the inner group.	*/
4418 
4419 	  /* We can't use `p' to check ahead because we push
4420 	     a failure point to `p + mcnt' after we do this.  */
4421 	  p1 = p;
4422 
4423 	  /* We need to skip no_op's before we look for the
4424 	     start_memory in case this on_failure_jump is happening as
4425 	     the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4426 	     against aba.  */
4427 	  while (p1 < pend && (re_opcode_t) *p1 == no_op)
4428 	    p1++;
4429 
4430 	  if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4431 	    {
4432 	      /* We have a new highest active register now.  This will
4433 		 get reset at the start_memory we are about to get to,
4434 		 but we will have saved all the registers relevant to
4435 		 this repetition op, as described above.  */
4436 	      highest_active_reg = *(p1 + 1) + *(p1 + 2);
4437 	      if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4438 		lowest_active_reg = *(p1 + 1);
4439 	    }
4440 
4441 	  DEBUG_PRINT1 (":\n");
4442 	  PUSH_FAILURE_POINT (p + mcnt, d, -2);
4443 	  break;
4444 
4445 
4446 	/* A smart repeat ends with `maybe_pop_jump'.
4447 	   We change it to either `pop_failure_jump' or `jump'.	 */
4448 	case maybe_pop_jump:
4449 	  EXTRACT_NUMBER_AND_INCR (mcnt, p);
4450 	  DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4451 	  {
4452 	    register unsigned char *p2 = p;
4453 
4454 	    /* Compare the beginning of the repeat with what in the
4455 	       pattern follows its end. If we can establish that there
4456 	       is nothing that they would both match, i.e., that we
4457 	       would have to backtrack because of (as in, e.g., `a*a')
4458 	       then we can change to pop_failure_jump, because we'll
4459 	       never have to backtrack.
4460 
4461 	       This is not true in the case of alternatives: in
4462 	       `(a|ab)*' we do need to backtrack to the `ab' alternative
4463 	       (e.g., if the string was `ab').	But instead of trying to
4464 	       detect that here, the alternative has put on a dummy
4465 	       failure point which is what we will end up popping.  */
4466 
4467 	    /* Skip over open/close-group commands.
4468 	       If what follows this loop is a ...+ construct,
4469 	       look at what begins its body, since we will have to
4470 	       match at least one of that.  */
4471 	    while (1)
4472 	      {
4473 		if (p2 + 2 < pend
4474 		    && ((re_opcode_t) *p2 == stop_memory
4475 			|| (re_opcode_t) *p2 == start_memory))
4476 		  p2 += 3;
4477 		else if (p2 + 6 < pend
4478 			 && (re_opcode_t) *p2 == dummy_failure_jump)
4479 		  p2 += 6;
4480 		else
4481 		  break;
4482 	      }
4483 
4484 	    p1 = p + mcnt;
4485 	    /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4486 	       to the `maybe_finalize_jump' of this case.  Examine what
4487 	       follows.	 */
4488 
4489 	    /* If we're at the end of the pattern, we can change.  */
4490 	    if (p2 == pend)
4491 	      {
4492 		/* Consider what happens when matching ":\(.*\)"
4493 		   against ":/".  I don't really understand this code
4494 		   yet.	 */
4495 		p[-3] = (unsigned char) pop_failure_jump;
4496 		DEBUG_PRINT1
4497 		  ("  End of pattern: change to `pop_failure_jump'.\n");
4498 	      }
4499 
4500 	    else if ((re_opcode_t) *p2 == exactn
4501 		     || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4502 	      {
4503 		register unsigned char c
4504 		  = *p2 == (unsigned char) endline ? '\n' : p2[2];
4505 
4506 		if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4507 		  {
4508 		    p[-3] = (unsigned char) pop_failure_jump;
4509 		    DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
4510 				  c, p1[5]);
4511 		  }
4512 
4513 		else if ((re_opcode_t) p1[3] == charset
4514 			 || (re_opcode_t) p1[3] == charset_not)
4515 		  {
4516 		    int not = (re_opcode_t) p1[3] == charset_not;
4517 
4518 		    if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4519 			&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4520 		      not = !not;
4521 
4522 		    /* `not' is equal to 1 if c would match, which means
4523 			that we can't change to pop_failure_jump.  */
4524 		    if (!not)
4525 		      {
4526 			p[-3] = (unsigned char) pop_failure_jump;
4527 			DEBUG_PRINT1 ("	 No match => pop_failure_jump.\n");
4528 		      }
4529 		  }
4530 	      }
4531 	    else if ((re_opcode_t) *p2 == charset)
4532 	      {
4533 #ifdef DEBUG
4534 		register unsigned char c
4535 		  = *p2 == (unsigned char) endline ? '\n' : p2[2];
4536 #endif
4537 
4538 		if ((re_opcode_t) p1[3] == exactn
4539 		    && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
4540 			  && (p2[2 + p1[5] / BYTEWIDTH]
4541 			      & (1 << (p1[5] % BYTEWIDTH)))))
4542 		  {
4543 		    p[-3] = (unsigned char) pop_failure_jump;
4544 		    DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
4545 				  c, p1[5]);
4546 		  }
4547 
4548 		else if ((re_opcode_t) p1[3] == charset_not)
4549 		  {
4550 		    int idx;
4551 		    /* We win if the charset_not inside the loop
4552 		       lists every character listed in the charset after.  */
4553 		    for (idx = 0; idx < (int) p2[1]; idx++)
4554 		      if (! (p2[2 + idx] == 0
4555 			     || (idx < (int) p1[4]
4556 				 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4557 			break;
4558 
4559 		    if (idx == p2[1])
4560 		      {
4561 			p[-3] = (unsigned char) pop_failure_jump;
4562 			DEBUG_PRINT1 ("	 No match => pop_failure_jump.\n");
4563 		      }
4564 		  }
4565 		else if ((re_opcode_t) p1[3] == charset)
4566 		  {
4567 		    int idx;
4568 		    /* We win if the charset inside the loop
4569 		       has no overlap with the one after the loop.  */
4570 		    for (idx = 0;
4571 			 idx < (int) p2[1] && idx < (int) p1[4];
4572 			 idx++)
4573 		      if ((p2[2 + idx] & p1[5 + idx]) != 0)
4574 			break;
4575 
4576 		    if (idx == p2[1] || idx == p1[4])
4577 		      {
4578 			p[-3] = (unsigned char) pop_failure_jump;
4579 			DEBUG_PRINT1 ("	 No match => pop_failure_jump.\n");
4580 		      }
4581 		  }
4582 	      }
4583 	  }
4584 	  p -= 2;		/* Point at relative address again.  */
4585 	  if ((re_opcode_t) p[-1] != pop_failure_jump)
4586 	    {
4587 	      p[-1] = (unsigned char) jump;
4588 	      DEBUG_PRINT1 ("  Match => jump.\n");
4589 	      goto unconditional_jump;
4590 	    }
4591 	/* Note fall through.  */
4592 
4593 
4594 	/* The end of a simple repeat has a pop_failure_jump back to
4595 	   its matching on_failure_jump, where the latter will push a
4596 	   failure point.  The pop_failure_jump takes off failure
4597 	   points put on by this pop_failure_jump's matching
4598 	   on_failure_jump; we got through the pattern to here from the
4599 	   matching on_failure_jump, so didn't fail.  */
4600 	case pop_failure_jump:
4601 	  {
4602 	    /* We need to pass separate storage for the lowest and
4603 	       highest registers, even though we don't care about the
4604 	       actual values.  Otherwise, we will restore only one
4605 	       register from the stack, since lowest will == highest in
4606 	       `pop_failure_point'.  */
4607 	    unsigned dummy_low_reg, dummy_high_reg;
4608 	    unsigned char *pdummy;
4609 	    const char *sdummy;
4610 
4611 	    DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4612 	    POP_FAILURE_POINT (sdummy, pdummy,
4613 			       dummy_low_reg, dummy_high_reg,
4614 			       reg_dummy, reg_dummy, reg_info_dummy);
4615 	  }
4616 	  /* Note fall through.	 */
4617 
4618 
4619 	/* Unconditionally jump (without popping any failure points).  */
4620 	case jump:
4621 	unconditional_jump:
4622 	  EXTRACT_NUMBER_AND_INCR (mcnt, p);	/* Get the amount to jump.  */
4623 	  DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4624 	  p += mcnt;				/* Do the jump.	 */
4625 	  DEBUG_PRINT2 ("(to 0x%x).\n", p);
4626 	  break;
4627 
4628 
4629 	/* We need this opcode so we can detect where alternatives end
4630 	   in `group_match_null_string_p' et al.  */
4631 	case jump_past_alt:
4632 	  DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4633 	  goto unconditional_jump;
4634 
4635 
4636 	/* Normally, the on_failure_jump pushes a failure point, which
4637 	   then gets popped at pop_failure_jump.  We will end up at
4638 	   pop_failure_jump, also, and with a pattern of, say, `a+', we
4639 	   are skipping over the on_failure_jump, so we have to push
4640 	   something meaningless for pop_failure_jump to pop.  */
4641 	case dummy_failure_jump:
4642 	  DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4643 	  /* It doesn't matter what we push for the string here.  What
4644 	     the code at `fail' tests is the value for the pattern.  */
4645 	  PUSH_FAILURE_POINT (0, 0, -2);
4646 	  goto unconditional_jump;
4647 
4648 
4649 	/* At the end of an alternative, we need to push a dummy failure
4650 	   point in case we are followed by a `pop_failure_jump', because
4651 	   we don't want the failure point for the alternative to be
4652 	   popped.  For example, matching `(a|ab)*' against `aab'
4653 	   requires that we match the `ab' alternative.	 */
4654 	case push_dummy_failure:
4655 	  DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4656 	  /* See comments just above at `dummy_failure_jump' about the
4657 	     two zeroes.  */
4658 	  PUSH_FAILURE_POINT (0, 0, -2);
4659 	  break;
4660 
4661 	/* Have to succeed matching what follows at least n times.
4662 	   After that, handle like `on_failure_jump'.  */
4663 	case succeed_n:
4664 	  EXTRACT_NUMBER (mcnt, p + 2);
4665 	  DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4666 
4667 	  assert (mcnt >= 0);
4668 	  /* Originally, this is how many times we HAVE to succeed.  */
4669 	  if (mcnt > 0)
4670 	    {
4671 	       mcnt--;
4672 	       p += 2;
4673 	       STORE_NUMBER_AND_INCR (p, mcnt);
4674 	       DEBUG_PRINT3 ("	Setting 0x%x to %d.\n", p, mcnt);
4675 	    }
4676 	  else if (mcnt == 0)
4677 	    {
4678 	      DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n", p+2);
4679 	      p[2] = (unsigned char) no_op;
4680 	      p[3] = (unsigned char) no_op;
4681 	      goto on_failure;
4682 	    }
4683 	  break;
4684 
4685 	case jump_n:
4686 	  EXTRACT_NUMBER (mcnt, p + 2);
4687 	  DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4688 
4689 	  /* Originally, this is how many times we CAN jump.  */
4690 	  if (mcnt)
4691 	    {
4692 	       mcnt--;
4693 	       STORE_NUMBER (p + 2, mcnt);
4694 	       goto unconditional_jump;
4695 	    }
4696 	  /* If don't have to jump any more, skip over the rest of command.  */
4697 	  else
4698 	    p += 4;
4699 	  break;
4700 
4701 	case set_number_at:
4702 	  {
4703 	    DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4704 
4705 	    EXTRACT_NUMBER_AND_INCR (mcnt, p);
4706 	    p1 = p + mcnt;
4707 	    EXTRACT_NUMBER_AND_INCR (mcnt, p);
4708 	    DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
4709 	    STORE_NUMBER (p1, mcnt);
4710 	    break;
4711 	  }
4712 
4713 #if 0
4714 	/* The DEC Alpha C compiler 3.x generates incorrect code for the
4715 	   test	 WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
4716 	   AT_WORD_BOUNDARY, so this code is disabled.	Expanding the
4717 	   macro and introducing temporary variables works around the bug.  */
4718 
4719 	case wordbound:
4720 	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4721 	  if (AT_WORD_BOUNDARY (d))
4722 	    break;
4723 	  goto fail;
4724 
4725 	case notwordbound:
4726 	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4727 	  if (AT_WORD_BOUNDARY (d))
4728 	    goto fail;
4729 	  break;
4730 #else
4731 	case wordbound:
4732 	{
4733 	  boolean prevchar, thischar;
4734 
4735 	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4736 	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4737 	    break;
4738 
4739 	  prevchar = WORDCHAR_P (d - 1);
4740 	  thischar = WORDCHAR_P (d);
4741 	  if (prevchar != thischar)
4742 	    break;
4743 	  goto fail;
4744 	}
4745 
4746       case notwordbound:
4747 	{
4748 	  boolean prevchar, thischar;
4749 
4750 	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4751 	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4752 	    goto fail;
4753 
4754 	  prevchar = WORDCHAR_P (d - 1);
4755 	  thischar = WORDCHAR_P (d);
4756 	  if (prevchar != thischar)
4757 	    goto fail;
4758 	  break;
4759 	}
4760 #endif
4761 
4762 	case wordbeg:
4763 	  DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4764 	  if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4765 	    break;
4766 	  goto fail;
4767 
4768 	case wordend:
4769 	  DEBUG_PRINT1 ("EXECUTING wordend.\n");
4770 	  if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4771 	      && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
4772 	    break;
4773 	  goto fail;
4774 
4775 #ifdef emacs
4776 	case before_dot:
4777 	  DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4778 	  if (PTR_CHAR_POS ((unsigned char *) d) >= PT)
4779 	    goto fail;
4780 	  break;
4781 
4782 	case at_dot:
4783 	  DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4784 	  if (PTR_CHAR_POS ((unsigned char *) d) != PT)
4785 	    goto fail;
4786 	  break;
4787 
4788 	case after_dot:
4789 	  DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4790 	  if (PTR_CHAR_POS ((unsigned char *) d) <= PT)
4791 	    goto fail;
4792 	  break;
4793 
4794 	case syntaxspec:
4795 	  DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4796 	  mcnt = *p++;
4797 	  goto matchsyntax;
4798 
4799 	case wordchar:
4800 	  DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4801 	  mcnt = (int) Sword;
4802 	matchsyntax:
4803 	  PREFETCH ();
4804 	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
4805 	  d++;
4806 	  if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
4807 	    goto fail;
4808 	  SET_REGS_MATCHED ();
4809 	  break;
4810 
4811 	case notsyntaxspec:
4812 	  DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4813 	  mcnt = *p++;
4814 	  goto matchnotsyntax;
4815 
4816 	case notwordchar:
4817 	  DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4818 	  mcnt = (int) Sword;
4819 	matchnotsyntax:
4820 	  PREFETCH ();
4821 	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
4822 	  d++;
4823 	  if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
4824 	    goto fail;
4825 	  SET_REGS_MATCHED ();
4826 	  break;
4827 
4828 #else /* not emacs */
4829 	case wordchar:
4830 	  DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4831 	  PREFETCH ();
4832 	  if (!WORDCHAR_P (d))
4833 	    goto fail;
4834 	  SET_REGS_MATCHED ();
4835 	  d++;
4836 	  break;
4837 
4838 	case notwordchar:
4839 	  DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4840 	  PREFETCH ();
4841 	  if (WORDCHAR_P (d))
4842 	    goto fail;
4843 	  SET_REGS_MATCHED ();
4844 	  d++;
4845 	  break;
4846 #endif /* not emacs */
4847 
4848 	default:
4849 	  abort ();
4850 	}
4851       continue;	 /* Successfully executed one pattern command; keep going.  */
4852 
4853 
4854     /* We goto here if a matching operation fails. */
4855     fail:
4856       if (!FAIL_STACK_EMPTY ())
4857 	{ /* A restart point is known.	Restore to that state.	*/
4858 	  DEBUG_PRINT1 ("\nFAIL:\n");
4859 	  POP_FAILURE_POINT (d, p,
4860 			     lowest_active_reg, highest_active_reg,
4861 			     regstart, regend, reg_info);
4862 
4863 	  /* If this failure point is a dummy, try the next one.  */
4864 	  if (!p)
4865 	    goto fail;
4866 
4867 	  /* If we failed to the end of the pattern, don't examine *p.	*/
4868 	  assert (p <= pend);
4869 	  if (p < pend)
4870 	    {
4871 	      boolean is_a_jump_n = false;
4872 
4873 	      /* If failed to a backwards jump that's part of a repetition
4874 		 loop, need to pop this failure point and use the next one.  */
4875 	      switch ((re_opcode_t) *p)
4876 		{
4877 		case jump_n:
4878 		  is_a_jump_n = true;
4879 		case maybe_pop_jump:
4880 		case pop_failure_jump:
4881 		case jump:
4882 		  p1 = p + 1;
4883 		  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4884 		  p1 += mcnt;
4885 
4886 		  if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4887 		      || (!is_a_jump_n
4888 			  && (re_opcode_t) *p1 == on_failure_jump))
4889 		    goto fail;
4890 		  break;
4891 		default:
4892 		  /* do nothing */ ;
4893 		}
4894 	    }
4895 
4896 	  if (d >= string1 && d <= end1)
4897 	    dend = end_match_1;
4898 	}
4899       else
4900 	break;	 /* Matching at this starting point really fails.  */
4901     } /* for (;;) */
4902 
4903   if (best_regs_set)
4904     goto restore_best_regs;
4905 
4906   FREE_VARIABLES ();
4907 
4908   return -1;				/* Failure to match.  */
4909 } /* re_match_2 */
4910 
4911 /* Subroutine definitions for re_match_2.  */
4912 
4913 
4914 /* We are passed P pointing to a register number after a start_memory.
4915 
4916    Return true if the pattern up to the corresponding stop_memory can
4917    match the empty string, and false otherwise.
4918 
4919    If we find the matching stop_memory, sets P to point to one past its number.
4920    Otherwise, sets P to an undefined byte less than or equal to END.
4921 
4922    We don't handle duplicates properly (yet).  */
4923 
4924 static boolean
group_match_null_string_p(p,end,reg_info)4925 group_match_null_string_p (p, end, reg_info)
4926     unsigned char **p, *end;
4927     register_info_type *reg_info;
4928 {
4929   int mcnt;
4930   /* Point to after the args to the start_memory.  */
4931   unsigned char *p1 = *p + 2;
4932 
4933   while (p1 < end)
4934     {
4935       /* Skip over opcodes that can match nothing, and return true or
4936 	 false, as appropriate, when we get to one that can't, or to the
4937 	 matching stop_memory.	*/
4938 
4939       switch ((re_opcode_t) *p1)
4940 	{
4941 	/* Could be either a loop or a series of alternatives.	*/
4942 	case on_failure_jump:
4943 	  p1++;
4944 	  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4945 
4946 	  /* If the next operation is not a jump backwards in the
4947 	     pattern.  */
4948 
4949 	  if (mcnt >= 0)
4950 	    {
4951 	      /* Go through the on_failure_jumps of the alternatives,
4952 		 seeing if any of the alternatives cannot match nothing.
4953 		 The last alternative starts with only a jump,
4954 		 whereas the rest start with on_failure_jump and end
4955 		 with a jump, e.g., here is the pattern for `a|b|c':
4956 
4957 		 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4958 		 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4959 		 /exactn/1/c
4960 
4961 		 So, we have to first go through the first (n-1)
4962 		 alternatives and then deal with the last one separately.  */
4963 
4964 
4965 	      /* Deal with the first (n-1) alternatives, which start
4966 		 with an on_failure_jump (see above) that jumps to right
4967 		 past a jump_past_alt.	*/
4968 
4969 	      while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4970 		{
4971 		  /* `mcnt' holds how many bytes long the alternative
4972 		     is, including the ending `jump_past_alt' and
4973 		     its number.  */
4974 
4975 		  if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
4976 						      reg_info))
4977 		    return false;
4978 
4979 		  /* Move to right after this alternative, including the
4980 		     jump_past_alt.  */
4981 		  p1 += mcnt;
4982 
4983 		  /* Break if it's the beginning of an n-th alternative
4984 		     that doesn't begin with an on_failure_jump.  */
4985 		  if ((re_opcode_t) *p1 != on_failure_jump)
4986 		    break;
4987 
4988 		  /* Still have to check that it's not an n-th
4989 		     alternative that starts with an on_failure_jump.  */
4990 		  p1++;
4991 		  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4992 		  if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4993 		    {
4994 		      /* Get to the beginning of the n-th alternative.	*/
4995 		      p1 -= 3;
4996 		      break;
4997 		    }
4998 		}
4999 
5000 	      /* Deal with the last alternative: go back and get number
5001 		 of the `jump_past_alt' just before it.	 `mcnt' contains
5002 		 the length of the alternative.	 */
5003 	      EXTRACT_NUMBER (mcnt, p1 - 2);
5004 
5005 	      if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5006 		return false;
5007 
5008 	      p1 += mcnt;	/* Get past the n-th alternative.  */
5009 	    } /* if mcnt > 0 */
5010 	  break;
5011 
5012 
5013 	case stop_memory:
5014 	  assert (p1[1] == **p);
5015 	  *p = p1 + 2;
5016 	  return true;
5017 
5018 
5019 	default:
5020 	  if (!common_op_match_null_string_p (&p1, end, reg_info))
5021 	    return false;
5022 	}
5023     } /* while p1 < end */
5024 
5025   return false;
5026 } /* group_match_null_string_p */
5027 
5028 
5029 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5030    It expects P to be the first byte of a single alternative and END one
5031    byte past the last. The alternative can contain groups.  */
5032 
5033 static boolean
alt_match_null_string_p(p,end,reg_info)5034 alt_match_null_string_p (p, end, reg_info)
5035     unsigned char *p, *end;
5036     register_info_type *reg_info;
5037 {
5038   int mcnt;
5039   unsigned char *p1 = p;
5040 
5041   while (p1 < end)
5042     {
5043       /* Skip over opcodes that can match nothing, and break when we get
5044 	 to one that can't.  */
5045 
5046       switch ((re_opcode_t) *p1)
5047 	{
5048 	/* It's a loop.	 */
5049 	case on_failure_jump:
5050 	  p1++;
5051 	  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5052 	  p1 += mcnt;
5053 	  break;
5054 
5055 	default:
5056 	  if (!common_op_match_null_string_p (&p1, end, reg_info))
5057 	    return false;
5058 	}
5059     }  /* while p1 < end */
5060 
5061   return true;
5062 } /* alt_match_null_string_p */
5063 
5064 
5065 /* Deals with the ops common to group_match_null_string_p and
5066    alt_match_null_string_p.
5067 
5068    Sets P to one after the op and its arguments, if any.  */
5069 
5070 static boolean
common_op_match_null_string_p(p,end,reg_info)5071 common_op_match_null_string_p (p, end, reg_info)
5072     unsigned char **p, *end;
5073     register_info_type *reg_info;
5074 {
5075   int mcnt;
5076   boolean ret;
5077   int reg_no;
5078   unsigned char *p1 = *p;
5079 
5080   switch ((re_opcode_t) *p1++)
5081     {
5082     case no_op:
5083     case begline:
5084     case endline:
5085     case begbuf:
5086     case endbuf:
5087     case wordbeg:
5088     case wordend:
5089     case wordbound:
5090     case notwordbound:
5091 #ifdef emacs
5092     case before_dot:
5093     case at_dot:
5094     case after_dot:
5095 #endif
5096       break;
5097 
5098     case start_memory:
5099       reg_no = *p1;
5100       assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5101       ret = group_match_null_string_p (&p1, end, reg_info);
5102 
5103       /* Have to set this here in case we're checking a group which
5104 	 contains a group and a back reference to it.  */
5105 
5106       if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5107 	REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5108 
5109       if (!ret)
5110 	return false;
5111       break;
5112 
5113     /* If this is an optimized succeed_n for zero times, make the jump.	 */
5114     case jump:
5115       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5116       if (mcnt >= 0)
5117 	p1 += mcnt;
5118       else
5119 	return false;
5120       break;
5121 
5122     case succeed_n:
5123       /* Get to the number of times to succeed.	 */
5124       p1 += 2;
5125       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5126 
5127       if (mcnt == 0)
5128 	{
5129 	  p1 -= 4;
5130 	  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5131 	  p1 += mcnt;
5132 	}
5133       else
5134 	return false;
5135       break;
5136 
5137     case duplicate:
5138       if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5139 	return false;
5140       break;
5141 
5142     case set_number_at:
5143       p1 += 4;
5144 
5145     default:
5146       /* All other opcodes mean we cannot match the empty string.  */
5147       return false;
5148   }
5149 
5150   *p = p1;
5151   return true;
5152 } /* common_op_match_null_string_p */
5153 
5154 
5155 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5156    bytes; nonzero otherwise.  */
5157 
5158 static int
bcmp_translate(s1,s2,len,translate)5159 bcmp_translate (s1, s2, len, translate)
5160      unsigned char *s1, *s2;
5161      register int len;
5162      RE_TRANSLATE_TYPE translate;
5163 {
5164   register unsigned char *p1 = s1, *p2 = s2;
5165   while (len)
5166     {
5167       if (translate[*p1++] != translate[*p2++]) return 1;
5168       len--;
5169     }
5170   return 0;
5171 }
5172 
5173 /* Entry points for GNU code.  */
5174 
5175 /* re_compile_pattern is the GNU regular expression compiler: it
5176    compiles PATTERN (of length SIZE) and puts the result in BUFP.
5177    Returns 0 if the pattern was valid, otherwise an error string.
5178 
5179    Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5180    are set in BUFP on entry.
5181 
5182    We call regex_compile to do the actual compilation.	*/
5183 
5184 const char *
re_compile_pattern(pattern,length,bufp)5185 re_compile_pattern (pattern, length, bufp)
5186      const char *pattern;
5187      int length;
5188      struct re_pattern_buffer *bufp;
5189 {
5190   reg_errcode_t ret;
5191 
5192   /* GNU code is written to assume at least RE_NREGS registers will be set
5193      (and at least one extra will be -1).  */
5194   bufp->regs_allocated = REGS_UNALLOCATED;
5195 
5196   /* And GNU code determines whether or not to get register information
5197      by passing null for the REGS argument to re_match, etc., not by
5198      setting no_sub.  */
5199   bufp->no_sub = 0;
5200 
5201   /* Match anchors at newline.	*/
5202   bufp->newline_anchor = 1;
5203 
5204   ret = regex_compile (pattern, length, re_syntax_options, bufp);
5205 
5206   if (!ret)
5207     return NULL;
5208   return gettext (re_error_msgid[(int) ret]);
5209 }
5210 
5211 /* Entry points compatible with 4.2 BSD regex library.	We don't define
5212    them unless specifically requested.	*/
5213 
5214 #if defined (_REGEX_RE_COMP) || defined (_LIBC)
5215 
5216 /* BSD has one and only one pattern buffer.  */
5217 static struct re_pattern_buffer re_comp_buf;
5218 
5219 char *
5220 #ifdef _LIBC
5221 /* Make these definitions weak in libc, so POSIX programs can redefine
5222    these names if they don't use our functions, and still use
5223    regcomp/regexec below without link errors.  */
5224 weak_function
5225 #endif
re_comp(s)5226 re_comp (s)
5227     const char *s;
5228 {
5229   reg_errcode_t ret;
5230 
5231   if (!s)
5232     {
5233       if (!re_comp_buf.buffer)
5234 	return gettext ("No previous regular expression");
5235       return 0;
5236     }
5237 
5238   if (!re_comp_buf.buffer)
5239     {
5240       re_comp_buf.buffer = (unsigned char *) malloc (200);
5241       if (re_comp_buf.buffer == NULL)
5242 	return gettext (re_error_msgid[(int) REG_ESPACE]);
5243       re_comp_buf.allocated = 200;
5244 
5245       re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5246       if (re_comp_buf.fastmap == NULL)
5247 	return gettext (re_error_msgid[(int) REG_ESPACE]);
5248     }
5249 
5250   /* Since `re_exec' always passes NULL for the `regs' argument, we
5251      don't need to initialize the pattern buffer fields which affect it.  */
5252 
5253   /* Match anchors at newlines.	 */
5254   re_comp_buf.newline_anchor = 1;
5255 
5256   ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5257 
5258   if (!ret)
5259     return NULL;
5260 
5261   /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
5262   return (char *) gettext (re_error_msgid[(int) ret]);
5263 }
5264 
5265 
5266 int
5267 #ifdef _LIBC
5268 weak_function
5269 #endif
re_exec(s)5270 re_exec (s)
5271     const char *s;
5272 {
5273   const int len = strlen (s);
5274   return
5275     0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5276 }
5277 #endif /* _REGEX_RE_COMP */
5278 
5279 /* POSIX.2 functions.  Don't define these for Emacs.  */
5280 
5281 #ifndef emacs
5282 
5283 /* regcomp takes a regular expression as a string and compiles it.
5284 
5285    PREG is a regex_t *.	 We do not expect any fields to be initialized,
5286    since POSIX says we shouldn't.  Thus, we set
5287 
5288      `buffer' to the compiled pattern;
5289      `used' to the length of the compiled pattern;
5290      `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5291        REG_EXTENDED bit in CFLAGS is set; otherwise, to
5292        RE_SYNTAX_POSIX_BASIC;
5293      `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5294      `fastmap' and `fastmap_accurate' to zero;
5295      `re_nsub' to the number of subexpressions in PATTERN.
5296 
5297    PATTERN is the address of the pattern string.
5298 
5299    CFLAGS is a series of bits which affect compilation.
5300 
5301      If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5302      use POSIX basic syntax.
5303 
5304      If REG_NEWLINE is set, then . and [^...] don't match newline.
5305      Also, regexec will try a match beginning after every newline.
5306 
5307      If REG_ICASE is set, then we considers upper- and lowercase
5308      versions of letters to be equivalent when matching.
5309 
5310      If REG_NOSUB is set, then when PREG is passed to regexec, that
5311      routine will report only success or failure, and nothing about the
5312      registers.
5313 
5314    It returns 0 if it succeeds, nonzero if it doesn't.	(See regex.h for
5315    the return codes and their meanings.)  */
5316 
5317 int
regcomp(preg,pattern,cflags)5318 regcomp (preg, pattern, cflags)
5319     regex_t *preg;
5320     const char *pattern;
5321     int cflags;
5322 {
5323   reg_errcode_t ret;
5324   unsigned syntax
5325     = (cflags & REG_EXTENDED) ?
5326       RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5327 
5328   /* regex_compile will allocate the space for the compiled pattern.  */
5329   preg->buffer = 0;
5330   preg->allocated = 0;
5331   preg->used = 0;
5332 
5333   /* Don't bother to use a fastmap when searching.  This simplifies the
5334      REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5335      characters after newlines into the fastmap.  This way, we just try
5336      every character.  */
5337   preg->fastmap = 0;
5338 
5339   if (cflags & REG_ICASE)
5340     {
5341       unsigned i;
5342 
5343       preg->translate
5344 	= (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5345 				      * sizeof (*(RE_TRANSLATE_TYPE)0));
5346       if (preg->translate == NULL)
5347 	return (int) REG_ESPACE;
5348 
5349       /* Map uppercase characters to corresponding lowercase ones.  */
5350       for (i = 0; i < CHAR_SET_SIZE; i++)
5351 	preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5352     }
5353   else
5354     preg->translate = NULL;
5355 
5356   /* If REG_NEWLINE is set, newlines are treated differently.  */
5357   if (cflags & REG_NEWLINE)
5358     { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
5359       syntax &= ~RE_DOT_NEWLINE;
5360       syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5361       /* It also changes the matching behavior.	 */
5362       preg->newline_anchor = 1;
5363     }
5364   else
5365     preg->newline_anchor = 0;
5366 
5367   preg->no_sub = !!(cflags & REG_NOSUB);
5368 
5369   /* POSIX says a null character in the pattern terminates it, so we
5370      can use strlen here in compiling the pattern.  */
5371   ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5372 
5373   /* POSIX doesn't distinguish between an unmatched open-group and an
5374      unmatched close-group: both are REG_EPAREN.  */
5375   if (ret == REG_ERPAREN) ret = REG_EPAREN;
5376 
5377   return (int) ret;
5378 }
5379 
5380 
5381 /* regexec searches for a given pattern, specified by PREG, in the
5382    string STRING.
5383 
5384    If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5385    `regcomp', we ignore PMATCH.	 Otherwise, we assume PMATCH has at
5386    least NMATCH elements, and we set them to the offsets of the
5387    corresponding matched substrings.
5388 
5389    EFLAGS specifies `execution flags' which affect matching: if
5390    REG_NOTBOL is set, then ^ does not match at the beginning of the
5391    string; if REG_NOTEOL is set, then $ does not match at the end.
5392 
5393    We return 0 if we find a match and REG_NOMATCH if not.  */
5394 
5395 int
regexec(preg,string,nmatch,pmatch,eflags)5396 regexec (preg, string, nmatch, pmatch, eflags)
5397     const regex_t *preg;
5398     const char *string;
5399     size_t nmatch;
5400     regmatch_t pmatch[];
5401     int eflags;
5402 {
5403   int ret;
5404   struct re_registers regs;
5405   regex_t private_preg;
5406   int len = strlen (string);
5407   boolean want_reg_info = !preg->no_sub && nmatch > 0;
5408 
5409   private_preg = *preg;
5410 
5411   private_preg.not_bol = !!(eflags & REG_NOTBOL);
5412   private_preg.not_eol = !!(eflags & REG_NOTEOL);
5413 
5414   /* The user has told us exactly how many registers to return
5415      information about, via `nmatch'.  We have to pass that on to the
5416      matching routines.	 */
5417   private_preg.regs_allocated = REGS_FIXED;
5418 
5419   if (want_reg_info)
5420     {
5421       regs.num_regs = nmatch;
5422       regs.start = TALLOC (nmatch, regoff_t);
5423       regs.end = TALLOC (nmatch, regoff_t);
5424       if (regs.start == NULL || regs.end == NULL)
5425 	return (int) REG_NOMATCH;
5426     }
5427 
5428   /* Perform the searching operation.  */
5429   ret = re_search (&private_preg, string, len,
5430 		   /* start: */ 0, /* range: */ len,
5431 		   want_reg_info ? &regs : (struct re_registers *) 0);
5432 
5433   /* Copy the register information to the POSIX structure.  */
5434   if (want_reg_info)
5435     {
5436       if (ret >= 0)
5437 	{
5438 	  unsigned r;
5439 
5440 	  for (r = 0; r < nmatch; r++)
5441 	    {
5442 	      pmatch[r].rm_so = regs.start[r];
5443 	      pmatch[r].rm_eo = regs.end[r];
5444 	    }
5445 	}
5446 
5447       /* If we needed the temporary register info, free the space now.	*/
5448       free (regs.start);
5449       free (regs.end);
5450     }
5451 
5452   /* We want zero return to mean success, unlike `re_search'.  */
5453   return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5454 }
5455 
5456 
5457 /* Returns a message corresponding to an error code, ERRCODE, returned
5458    from either regcomp or regexec.   We don't use PREG here.  */
5459 
5460 size_t
regerror(errcode,preg,errbuf,errbuf_size)5461 regerror (errcode, preg, errbuf, errbuf_size)
5462     int errcode;
5463     const regex_t *preg;
5464     char *errbuf;
5465     size_t errbuf_size;
5466 {
5467   const char *msg;
5468   size_t msg_size;
5469 
5470   if (errcode < 0
5471       || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5472     /* Only error codes returned by the rest of the code should be passed
5473        to this routine.	 If we are given anything else, or if other regex
5474        code generates an invalid error code, then the program has a bug.
5475        Dump core so we can fix it.  */
5476     abort ();
5477 
5478   msg = gettext (re_error_msgid[errcode]);
5479 
5480   msg_size = strlen (msg) + 1; /* Includes the null.  */
5481 
5482   if (errbuf_size != 0)
5483     {
5484       if (msg_size > errbuf_size)
5485 	{
5486 	  strncpy (errbuf, msg, errbuf_size - 1);
5487 	  errbuf[errbuf_size - 1] = 0;
5488 	}
5489       else
5490 	strcpy (errbuf, msg);
5491     }
5492 
5493   return msg_size;
5494 }
5495 
5496 
5497 /* Free dynamically allocated space used by PREG.  */
5498 
5499 void
regfree(preg)5500 regfree (preg)
5501     regex_t *preg;
5502 {
5503   if (preg->buffer != NULL)
5504     free (preg->buffer);
5505   preg->buffer = NULL;
5506 
5507   preg->allocated = 0;
5508   preg->used = 0;
5509 
5510   if (preg->fastmap != NULL)
5511     free (preg->fastmap);
5512   preg->fastmap = NULL;
5513   preg->fastmap_accurate = 0;
5514 
5515   if (preg->translate != NULL)
5516     free (preg->translate);
5517   preg->translate = NULL;
5518 }
5519 
5520 #endif /* not emacs  */
5521