• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis
2  *
3  * LibTomCrypt is a library that provides various cryptographic
4  * algorithms in a highly modular and flexible manner.
5  *
6  * The library is free for all purposes without any express
7  * guarantee it works.
8  *
9  * Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com
10  */
11 
12 /**
13   @file skipjack.c
14   Skipjack Implementation by Tom St Denis
15 */
16 #include "tomcrypt.h"
17 
18 #ifdef SKIPJACK
19 
20 const struct ltc_cipher_descriptor skipjack_desc =
21 {
22     "skipjack",
23     17,
24     10, 10, 8, 32,
25     &skipjack_setup,
26     &skipjack_ecb_encrypt,
27     &skipjack_ecb_decrypt,
28     &skipjack_test,
29     &skipjack_done,
30     &skipjack_keysize,
31     NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
32 };
33 
34 static const unsigned char sbox[256] = {
35    0xa3,0xd7,0x09,0x83,0xf8,0x48,0xf6,0xf4,0xb3,0x21,0x15,0x78,0x99,0xb1,0xaf,0xf9,
36    0xe7,0x2d,0x4d,0x8a,0xce,0x4c,0xca,0x2e,0x52,0x95,0xd9,0x1e,0x4e,0x38,0x44,0x28,
37    0x0a,0xdf,0x02,0xa0,0x17,0xf1,0x60,0x68,0x12,0xb7,0x7a,0xc3,0xe9,0xfa,0x3d,0x53,
38    0x96,0x84,0x6b,0xba,0xf2,0x63,0x9a,0x19,0x7c,0xae,0xe5,0xf5,0xf7,0x16,0x6a,0xa2,
39    0x39,0xb6,0x7b,0x0f,0xc1,0x93,0x81,0x1b,0xee,0xb4,0x1a,0xea,0xd0,0x91,0x2f,0xb8,
40    0x55,0xb9,0xda,0x85,0x3f,0x41,0xbf,0xe0,0x5a,0x58,0x80,0x5f,0x66,0x0b,0xd8,0x90,
41    0x35,0xd5,0xc0,0xa7,0x33,0x06,0x65,0x69,0x45,0x00,0x94,0x56,0x6d,0x98,0x9b,0x76,
42    0x97,0xfc,0xb2,0xc2,0xb0,0xfe,0xdb,0x20,0xe1,0xeb,0xd6,0xe4,0xdd,0x47,0x4a,0x1d,
43    0x42,0xed,0x9e,0x6e,0x49,0x3c,0xcd,0x43,0x27,0xd2,0x07,0xd4,0xde,0xc7,0x67,0x18,
44    0x89,0xcb,0x30,0x1f,0x8d,0xc6,0x8f,0xaa,0xc8,0x74,0xdc,0xc9,0x5d,0x5c,0x31,0xa4,
45    0x70,0x88,0x61,0x2c,0x9f,0x0d,0x2b,0x87,0x50,0x82,0x54,0x64,0x26,0x7d,0x03,0x40,
46    0x34,0x4b,0x1c,0x73,0xd1,0xc4,0xfd,0x3b,0xcc,0xfb,0x7f,0xab,0xe6,0x3e,0x5b,0xa5,
47    0xad,0x04,0x23,0x9c,0x14,0x51,0x22,0xf0,0x29,0x79,0x71,0x7e,0xff,0x8c,0x0e,0xe2,
48    0x0c,0xef,0xbc,0x72,0x75,0x6f,0x37,0xa1,0xec,0xd3,0x8e,0x62,0x8b,0x86,0x10,0xe8,
49    0x08,0x77,0x11,0xbe,0x92,0x4f,0x24,0xc5,0x32,0x36,0x9d,0xcf,0xf3,0xa6,0xbb,0xac,
50    0x5e,0x6c,0xa9,0x13,0x57,0x25,0xb5,0xe3,0xbd,0xa8,0x3a,0x01,0x05,0x59,0x2a,0x46
51 };
52 
53 /* simple x + 1 (mod 10) in one step. */
54 static const int keystep[] =  { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
55 
56 /* simple x - 1 (mod 10) in one step */
57 static const int ikeystep[] = { 9, 0, 1, 2, 3, 4, 5, 6, 7, 8 };
58 
59  /**
60     Initialize the Skipjack block cipher
61     @param key The symmetric key you wish to pass
62     @param keylen The key length in bytes
63     @param num_rounds The number of rounds desired (0 for default)
64     @param skey The key in as scheduled by this function.
65     @return CRYPT_OK if successful
66  */
skipjack_setup(const unsigned char * key,int keylen,int num_rounds,symmetric_key * skey)67 int skipjack_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
68 {
69    int x;
70 
71    LTC_ARGCHK(key  != NULL);
72    LTC_ARGCHK(skey != NULL);
73 
74    if (keylen != 10) {
75       return CRYPT_INVALID_KEYSIZE;
76    }
77 
78    if (num_rounds != 32 && num_rounds != 0) {
79       return CRYPT_INVALID_ROUNDS;
80    }
81 
82    /* make sure the key is in range for platforms where CHAR_BIT != 8 */
83    for (x = 0; x < 10; x++) {
84        skey->skipjack.key[x] = key[x] & 255;
85    }
86 
87    return CRYPT_OK;
88 }
89 
90 #define RULE_A \
91    tmp = g_func(w1, &kp, skey->skipjack.key);      \
92    w1  = tmp ^ w4 ^ x;                            \
93    w4  = w3; w3 = w2;                             \
94    w2  = tmp;
95 
96 #define RULE_B \
97    tmp  = g_func(w1, &kp, skey->skipjack.key);     \
98    tmp1 = w4; w4  = w3;                           \
99    w3   = w1 ^ w2 ^ x;                            \
100    w1   = tmp1; w2 = tmp;
101 
102 #define RULE_A1 \
103    tmp = w1 ^ w2 ^ x;                             \
104    w1  = ig_func(w2, &kp, skey->skipjack.key);     \
105    w2  = w3; w3 = w4; w4 = tmp;
106 
107 #define RULE_B1 \
108    tmp = ig_func(w2, &kp, skey->skipjack.key);     \
109    w2  = tmp ^ w3 ^ x;                            \
110    w3  = w4; w4 = w1; w1 = tmp;
111 
g_func(unsigned w,int * kp,unsigned char * key)112 static unsigned g_func(unsigned w, int *kp, unsigned char *key)
113 {
114    unsigned char g1,g2;
115 
116    g1 = (w >> 8) & 255; g2 = w & 255;
117    g1 ^= sbox[g2^key[*kp]]; *kp = keystep[*kp];
118    g2 ^= sbox[g1^key[*kp]]; *kp = keystep[*kp];
119    g1 ^= sbox[g2^key[*kp]]; *kp = keystep[*kp];
120    g2 ^= sbox[g1^key[*kp]]; *kp = keystep[*kp];
121    return ((unsigned)g1<<8)|(unsigned)g2;
122 }
123 
ig_func(unsigned w,int * kp,unsigned char * key)124 static unsigned ig_func(unsigned w, int *kp, unsigned char *key)
125 {
126    unsigned char g1,g2;
127 
128    g1 = (w >> 8) & 255; g2 = w & 255;
129    *kp = ikeystep[*kp]; g2 ^= sbox[g1^key[*kp]];
130    *kp = ikeystep[*kp]; g1 ^= sbox[g2^key[*kp]];
131    *kp = ikeystep[*kp]; g2 ^= sbox[g1^key[*kp]];
132    *kp = ikeystep[*kp]; g1 ^= sbox[g2^key[*kp]];
133    return ((unsigned)g1<<8)|(unsigned)g2;
134 }
135 
136 /**
137   Encrypts a block of text with Skipjack
138   @param pt The input plaintext (8 bytes)
139   @param ct The output ciphertext (8 bytes)
140   @param skey The key as scheduled
141   @return CRYPT_OK if successful
142 */
143 #ifdef LTC_CLEAN_STACK
_skipjack_ecb_encrypt(const unsigned char * pt,unsigned char * ct,symmetric_key * skey)144 static int _skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
145 #else
146 int skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
147 #endif
148 {
149    unsigned w1,w2,w3,w4,tmp,tmp1;
150    int x, kp;
151 
152    LTC_ARGCHK(pt   != NULL);
153    LTC_ARGCHK(ct   != NULL);
154    LTC_ARGCHK(skey != NULL);
155 
156    /* load block */
157    w1 = ((unsigned)pt[0]<<8)|pt[1];
158    w2 = ((unsigned)pt[2]<<8)|pt[3];
159    w3 = ((unsigned)pt[4]<<8)|pt[5];
160    w4 = ((unsigned)pt[6]<<8)|pt[7];
161 
162    /* 8 rounds of RULE A */
163    for (x = 1, kp = 0; x < 9; x++) {
164        RULE_A;
165    }
166 
167    /* 8 rounds of RULE B */
168    for (; x < 17; x++) {
169        RULE_B;
170    }
171 
172    /* 8 rounds of RULE A */
173    for (; x < 25; x++) {
174        RULE_A;
175    }
176 
177    /* 8 rounds of RULE B */
178    for (; x < 33; x++) {
179        RULE_B;
180    }
181 
182    /* store block */
183    ct[0] = (w1>>8)&255; ct[1] = w1&255;
184    ct[2] = (w2>>8)&255; ct[3] = w2&255;
185    ct[4] = (w3>>8)&255; ct[5] = w3&255;
186    ct[6] = (w4>>8)&255; ct[7] = w4&255;
187 
188    return CRYPT_OK;
189 }
190 
191 #ifdef LTC_CLEAN_STACK
skipjack_ecb_encrypt(const unsigned char * pt,unsigned char * ct,symmetric_key * skey)192 int skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
193 {
194    int err = _skipjack_ecb_encrypt(pt, ct, skey);
195    burn_stack(sizeof(unsigned) * 8 + sizeof(int) * 2);
196    return err;
197 }
198 #endif
199 
200 /**
201   Decrypts a block of text with Skipjack
202   @param ct The input ciphertext (8 bytes)
203   @param pt The output plaintext (8 bytes)
204   @param skey The key as scheduled
205   @return CRYPT_OK if successful
206 */
207 #ifdef LTC_CLEAN_STACK
_skipjack_ecb_decrypt(const unsigned char * ct,unsigned char * pt,symmetric_key * skey)208 static int _skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
209 #else
210 int skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
211 #endif
212 {
213    unsigned w1,w2,w3,w4,tmp;
214    int x, kp;
215 
216    LTC_ARGCHK(pt   != NULL);
217    LTC_ARGCHK(ct   != NULL);
218    LTC_ARGCHK(skey != NULL);
219 
220    /* load block */
221    w1 = ((unsigned)ct[0]<<8)|ct[1];
222    w2 = ((unsigned)ct[2]<<8)|ct[3];
223    w3 = ((unsigned)ct[4]<<8)|ct[5];
224    w4 = ((unsigned)ct[6]<<8)|ct[7];
225 
226    /* 8 rounds of RULE B^-1
227 
228       Note the value "kp = 8" comes from "kp = (32 * 4) mod 10" where 32*4 is 128 which mod 10 is 8
229     */
230    for (x = 32, kp = 8; x > 24; x--) {
231        RULE_B1;
232    }
233 
234    /* 8 rounds of RULE A^-1 */
235    for (; x > 16; x--) {
236        RULE_A1;
237    }
238 
239 
240    /* 8 rounds of RULE B^-1 */
241    for (; x > 8; x--) {
242        RULE_B1;
243    }
244 
245    /* 8 rounds of RULE A^-1 */
246    for (; x > 0; x--) {
247        RULE_A1;
248    }
249 
250    /* store block */
251    pt[0] = (w1>>8)&255; pt[1] = w1&255;
252    pt[2] = (w2>>8)&255; pt[3] = w2&255;
253    pt[4] = (w3>>8)&255; pt[5] = w3&255;
254    pt[6] = (w4>>8)&255; pt[7] = w4&255;
255 
256    return CRYPT_OK;
257 }
258 
259 #ifdef LTC_CLEAN_STACK
skipjack_ecb_decrypt(const unsigned char * ct,unsigned char * pt,symmetric_key * skey)260 int skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
261 {
262    int err = _skipjack_ecb_decrypt(ct, pt, skey);
263    burn_stack(sizeof(unsigned) * 7 + sizeof(int) * 2);
264    return err;
265 }
266 #endif
267 
268 /**
269   Performs a self-test of the Skipjack block cipher
270   @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
271 */
skipjack_test(void)272 int skipjack_test(void)
273 {
274  #ifndef LTC_TEST
275     return CRYPT_NOP;
276  #else
277    static const struct {
278        unsigned char key[10], pt[8], ct[8];
279    } tests[] = {
280    {
281        { 0x00, 0x99, 0x88, 0x77, 0x66, 0x55, 0x44, 0x33, 0x22, 0x11 },
282        { 0x33, 0x22, 0x11, 0x00, 0xdd, 0xcc, 0xbb, 0xaa },
283        { 0x25, 0x87, 0xca, 0xe2, 0x7a, 0x12, 0xd3, 0x00 }
284    }
285    };
286    unsigned char buf[2][8];
287    int x, y, err;
288    symmetric_key key;
289 
290    for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) {
291       /* setup key */
292       if ((err = skipjack_setup(tests[x].key, 10, 0, &key)) != CRYPT_OK) {
293          return err;
294       }
295 
296       /* encrypt and decrypt */
297       skipjack_ecb_encrypt(tests[x].pt, buf[0], &key);
298       skipjack_ecb_decrypt(buf[0], buf[1], &key);
299 
300       /* compare */
301       if (XMEMCMP(buf[0], tests[x].ct, 8) != 0 || XMEMCMP(buf[1], tests[x].pt, 8) != 0) {
302          return CRYPT_FAIL_TESTVECTOR;
303       }
304 
305       /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
306       for (y = 0; y < 8; y++) buf[0][y] = 0;
307       for (y = 0; y < 1000; y++) skipjack_ecb_encrypt(buf[0], buf[0], &key);
308       for (y = 0; y < 1000; y++) skipjack_ecb_decrypt(buf[0], buf[0], &key);
309       for (y = 0; y < 8; y++) if (buf[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
310    }
311 
312    return CRYPT_OK;
313   #endif
314 }
315 
316 /** Terminate the context
317    @param skey    The scheduled key
318 */
skipjack_done(symmetric_key * skey)319 void skipjack_done(symmetric_key *skey)
320 {
321 }
322 
323 /**
324   Gets suitable key size
325   @param keysize [in/out] The length of the recommended key (in bytes).  This function will store the suitable size back in this variable.
326   @return CRYPT_OK if the input key size is acceptable.
327 */
skipjack_keysize(int * keysize)328 int skipjack_keysize(int *keysize)
329 {
330    LTC_ARGCHK(keysize != NULL);
331    if (*keysize < 10) {
332       return CRYPT_INVALID_KEYSIZE;
333    } else if (*keysize > 10) {
334       *keysize = 10;
335    }
336    return CRYPT_OK;
337 }
338 
339 #endif
340 
341 /* $Source: /cvs/libtom/libtomcrypt/src/ciphers/skipjack.c,v $ */
342 /* $Revision: 1.12 $ */
343 /* $Date: 2006/11/08 23:01:06 $ */
344