1 // Copyright 2006-2008 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 // Platform specific code for Win32.
29 #ifndef WIN32_LEAN_AND_MEAN
30 // WIN32_LEAN_AND_MEAN implies NOCRYPT and NOGDI.
31 #define WIN32_LEAN_AND_MEAN
32 #endif
33 #ifndef NOMINMAX
34 #define NOMINMAX
35 #endif
36 #ifndef NOKERNEL
37 #define NOKERNEL
38 #endif
39 #ifndef NOUSER
40 #define NOUSER
41 #endif
42 #ifndef NOSERVICE
43 #define NOSERVICE
44 #endif
45 #ifndef NOSOUND
46 #define NOSOUND
47 #endif
48 #ifndef NOMCX
49 #define NOMCX
50 #endif
51 // Require Windows XP or higher (this is required for the RtlCaptureContext
52 // function to be present).
53 #ifndef _WIN32_WINNT
54 #define _WIN32_WINNT 0x501
55 #endif
56
57 #include <windows.h>
58
59 #include <time.h> // For LocalOffset() implementation.
60 #include <mmsystem.h> // For timeGetTime().
61 #ifdef __MINGW32__
62 // Require Windows XP or higher when compiling with MinGW. This is for MinGW
63 // header files to expose getaddrinfo.
64 #undef _WIN32_WINNT
65 #define _WIN32_WINNT 0x501
66 #endif // __MINGW32__
67 #ifndef __MINGW32__
68 #include <dbghelp.h> // For SymLoadModule64 and al.
69 #endif // __MINGW32__
70 #include <limits.h> // For INT_MAX and al.
71 #include <tlhelp32.h> // For Module32First and al.
72
73 // These additional WIN32 includes have to be right here as the #undef's below
74 // makes it impossible to have them elsewhere.
75 #include <winsock2.h>
76 #include <ws2tcpip.h>
77 #include <process.h> // for _beginthreadex()
78 #include <stdlib.h>
79
80 #undef VOID
81 #undef DELETE
82 #undef IN
83 #undef THIS
84 #undef CONST
85 #undef NAN
86 #undef GetObject
87 #undef CreateMutex
88 #undef CreateSemaphore
89
90 #include "v8.h"
91
92 #include "platform.h"
93
94 // Extra POSIX/ANSI routines for Win32 when when using Visual Studio C++. Please
95 // refer to The Open Group Base Specification for specification of the correct
96 // semantics for these functions.
97 // (http://www.opengroup.org/onlinepubs/000095399/)
98 #ifdef _MSC_VER
99
100 namespace v8 {
101 namespace internal {
102
103 // Test for finite value - usually defined in math.h
isfinite(double x)104 int isfinite(double x) {
105 return _finite(x);
106 }
107
108 } // namespace v8
109 } // namespace internal
110
111 // Test for a NaN (not a number) value - usually defined in math.h
isnan(double x)112 int isnan(double x) {
113 return _isnan(x);
114 }
115
116
117 // Test for infinity - usually defined in math.h
isinf(double x)118 int isinf(double x) {
119 return (_fpclass(x) & (_FPCLASS_PINF | _FPCLASS_NINF)) != 0;
120 }
121
122
123 // Test if x is less than y and both nominal - usually defined in math.h
isless(double x,double y)124 int isless(double x, double y) {
125 return isnan(x) || isnan(y) ? 0 : x < y;
126 }
127
128
129 // Test if x is greater than y and both nominal - usually defined in math.h
isgreater(double x,double y)130 int isgreater(double x, double y) {
131 return isnan(x) || isnan(y) ? 0 : x > y;
132 }
133
134
135 // Classify floating point number - usually defined in math.h
fpclassify(double x)136 int fpclassify(double x) {
137 // Use the MS-specific _fpclass() for classification.
138 int flags = _fpclass(x);
139
140 // Determine class. We cannot use a switch statement because
141 // the _FPCLASS_ constants are defined as flags.
142 if (flags & (_FPCLASS_PN | _FPCLASS_NN)) return FP_NORMAL;
143 if (flags & (_FPCLASS_PZ | _FPCLASS_NZ)) return FP_ZERO;
144 if (flags & (_FPCLASS_PD | _FPCLASS_ND)) return FP_SUBNORMAL;
145 if (flags & (_FPCLASS_PINF | _FPCLASS_NINF)) return FP_INFINITE;
146
147 // All cases should be covered by the code above.
148 ASSERT(flags & (_FPCLASS_SNAN | _FPCLASS_QNAN));
149 return FP_NAN;
150 }
151
152
153 // Test sign - usually defined in math.h
signbit(double x)154 int signbit(double x) {
155 // We need to take care of the special case of both positive
156 // and negative versions of zero.
157 if (x == 0)
158 return _fpclass(x) & _FPCLASS_NZ;
159 else
160 return x < 0;
161 }
162
163
164 // Case-insensitive bounded string comparisons. Use stricmp() on Win32. Usually
165 // defined in strings.h.
strncasecmp(const char * s1,const char * s2,int n)166 int strncasecmp(const char* s1, const char* s2, int n) {
167 return _strnicmp(s1, s2, n);
168 }
169
170 #endif // _MSC_VER
171
172
173 // Extra functions for MinGW. Most of these are the _s functions which are in
174 // the Microsoft Visual Studio C++ CRT.
175 #ifdef __MINGW32__
176
localtime_s(tm * out_tm,const time_t * time)177 int localtime_s(tm* out_tm, const time_t* time) {
178 tm* posix_local_time_struct = localtime(time);
179 if (posix_local_time_struct == NULL) return 1;
180 *out_tm = *posix_local_time_struct;
181 return 0;
182 }
183
184
185 // Not sure this the correct interpretation of _mkgmtime
_mkgmtime(tm * timeptr)186 time_t _mkgmtime(tm* timeptr) {
187 return mktime(timeptr);
188 }
189
190
fopen_s(FILE ** pFile,const char * filename,const char * mode)191 int fopen_s(FILE** pFile, const char* filename, const char* mode) {
192 *pFile = fopen(filename, mode);
193 return *pFile != NULL ? 0 : 1;
194 }
195
196
_vsnprintf_s(char * buffer,size_t sizeOfBuffer,size_t count,const char * format,va_list argptr)197 int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
198 const char* format, va_list argptr) {
199 return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
200 }
201 #define _TRUNCATE 0
202
203
strncpy_s(char * strDest,size_t numberOfElements,const char * strSource,size_t count)204 int strncpy_s(char* strDest, size_t numberOfElements,
205 const char* strSource, size_t count) {
206 strncpy(strDest, strSource, count);
207 return 0;
208 }
209
210 #endif // __MINGW32__
211
212 // Generate a pseudo-random number in the range 0-2^31-1. Usually
213 // defined in stdlib.h. Missing in both Microsoft Visual Studio C++ and MinGW.
random()214 int random() {
215 return rand();
216 }
217
218
219 namespace v8 {
220 namespace internal {
221
ceiling(double x)222 double ceiling(double x) {
223 return ceil(x);
224 }
225
226 #ifdef _WIN64
227 typedef double (*ModuloFunction)(double, double);
228
229 // Defined in codegen-x64.cc.
230 ModuloFunction CreateModuloFunction();
231
modulo(double x,double y)232 double modulo(double x, double y) {
233 static ModuloFunction function = CreateModuloFunction();
234 return function(x, y);
235 }
236 #else // Win32
237
modulo(double x,double y)238 double modulo(double x, double y) {
239 // Workaround MS fmod bugs. ECMA-262 says:
240 // dividend is finite and divisor is an infinity => result equals dividend
241 // dividend is a zero and divisor is nonzero finite => result equals dividend
242 if (!(isfinite(x) && (!isfinite(y) && !isnan(y))) &&
243 !(x == 0 && (y != 0 && isfinite(y)))) {
244 x = fmod(x, y);
245 }
246 return x;
247 }
248
249 #endif // _WIN64
250
251 // ----------------------------------------------------------------------------
252 // The Time class represents time on win32. A timestamp is represented as
253 // a 64-bit integer in 100 nano-seconds since January 1, 1601 (UTC). JavaScript
254 // timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
255 // January 1, 1970.
256
257 class Time {
258 public:
259 // Constructors.
260 Time();
261 explicit Time(double jstime);
262 Time(int year, int mon, int day, int hour, int min, int sec);
263
264 // Convert timestamp to JavaScript representation.
265 double ToJSTime();
266
267 // Set timestamp to current time.
268 void SetToCurrentTime();
269
270 // Returns the local timezone offset in milliseconds east of UTC. This is
271 // the number of milliseconds you must add to UTC to get local time, i.e.
272 // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
273 // routine also takes into account whether daylight saving is effect
274 // at the time.
275 int64_t LocalOffset();
276
277 // Returns the daylight savings time offset for the time in milliseconds.
278 int64_t DaylightSavingsOffset();
279
280 // Returns a string identifying the current timezone for the
281 // timestamp taking into account daylight saving.
282 char* LocalTimezone();
283
284 private:
285 // Constants for time conversion.
286 static const int64_t kTimeEpoc = 116444736000000000LL;
287 static const int64_t kTimeScaler = 10000;
288 static const int64_t kMsPerMinute = 60000;
289
290 // Constants for timezone information.
291 static const int kTzNameSize = 128;
292 static const bool kShortTzNames = false;
293
294 // Timezone information. We need to have static buffers for the
295 // timezone names because we return pointers to these in
296 // LocalTimezone().
297 static bool tz_initialized_;
298 static TIME_ZONE_INFORMATION tzinfo_;
299 static char std_tz_name_[kTzNameSize];
300 static char dst_tz_name_[kTzNameSize];
301
302 // Initialize the timezone information (if not already done).
303 static void TzSet();
304
305 // Guess the name of the timezone from the bias.
306 static const char* GuessTimezoneNameFromBias(int bias);
307
308 // Return whether or not daylight savings time is in effect at this time.
309 bool InDST();
310
311 // Return the difference (in milliseconds) between this timestamp and
312 // another timestamp.
313 int64_t Diff(Time* other);
314
315 // Accessor for FILETIME representation.
ft()316 FILETIME& ft() { return time_.ft_; }
317
318 // Accessor for integer representation.
t()319 int64_t& t() { return time_.t_; }
320
321 // Although win32 uses 64-bit integers for representing timestamps,
322 // these are packed into a FILETIME structure. The FILETIME structure
323 // is just a struct representing a 64-bit integer. The TimeStamp union
324 // allows access to both a FILETIME and an integer representation of
325 // the timestamp.
326 union TimeStamp {
327 FILETIME ft_;
328 int64_t t_;
329 };
330
331 TimeStamp time_;
332 };
333
334 // Static variables.
335 bool Time::tz_initialized_ = false;
336 TIME_ZONE_INFORMATION Time::tzinfo_;
337 char Time::std_tz_name_[kTzNameSize];
338 char Time::dst_tz_name_[kTzNameSize];
339
340
341 // Initialize timestamp to start of epoc.
Time()342 Time::Time() {
343 t() = 0;
344 }
345
346
347 // Initialize timestamp from a JavaScript timestamp.
Time(double jstime)348 Time::Time(double jstime) {
349 t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
350 }
351
352
353 // Initialize timestamp from date/time components.
Time(int year,int mon,int day,int hour,int min,int sec)354 Time::Time(int year, int mon, int day, int hour, int min, int sec) {
355 SYSTEMTIME st;
356 st.wYear = year;
357 st.wMonth = mon;
358 st.wDay = day;
359 st.wHour = hour;
360 st.wMinute = min;
361 st.wSecond = sec;
362 st.wMilliseconds = 0;
363 SystemTimeToFileTime(&st, &ft());
364 }
365
366
367 // Convert timestamp to JavaScript timestamp.
ToJSTime()368 double Time::ToJSTime() {
369 return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
370 }
371
372
373 // Guess the name of the timezone from the bias.
374 // The guess is very biased towards the northern hemisphere.
GuessTimezoneNameFromBias(int bias)375 const char* Time::GuessTimezoneNameFromBias(int bias) {
376 static const int kHour = 60;
377 switch (-bias) {
378 case -9*kHour: return "Alaska";
379 case -8*kHour: return "Pacific";
380 case -7*kHour: return "Mountain";
381 case -6*kHour: return "Central";
382 case -5*kHour: return "Eastern";
383 case -4*kHour: return "Atlantic";
384 case 0*kHour: return "GMT";
385 case +1*kHour: return "Central Europe";
386 case +2*kHour: return "Eastern Europe";
387 case +3*kHour: return "Russia";
388 case +5*kHour + 30: return "India";
389 case +8*kHour: return "China";
390 case +9*kHour: return "Japan";
391 case +12*kHour: return "New Zealand";
392 default: return "Local";
393 }
394 }
395
396
397 // Initialize timezone information. The timezone information is obtained from
398 // windows. If we cannot get the timezone information we fall back to CET.
399 // Please notice that this code is not thread-safe.
TzSet()400 void Time::TzSet() {
401 // Just return if timezone information has already been initialized.
402 if (tz_initialized_) return;
403
404 // Initialize POSIX time zone data.
405 _tzset();
406 // Obtain timezone information from operating system.
407 memset(&tzinfo_, 0, sizeof(tzinfo_));
408 if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
409 // If we cannot get timezone information we fall back to CET.
410 tzinfo_.Bias = -60;
411 tzinfo_.StandardDate.wMonth = 10;
412 tzinfo_.StandardDate.wDay = 5;
413 tzinfo_.StandardDate.wHour = 3;
414 tzinfo_.StandardBias = 0;
415 tzinfo_.DaylightDate.wMonth = 3;
416 tzinfo_.DaylightDate.wDay = 5;
417 tzinfo_.DaylightDate.wHour = 2;
418 tzinfo_.DaylightBias = -60;
419 }
420
421 // Make standard and DST timezone names.
422 OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize),
423 "%S",
424 tzinfo_.StandardName);
425 std_tz_name_[kTzNameSize - 1] = '\0';
426 OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize),
427 "%S",
428 tzinfo_.DaylightName);
429 dst_tz_name_[kTzNameSize - 1] = '\0';
430
431 // If OS returned empty string or resource id (like "@tzres.dll,-211")
432 // simply guess the name from the UTC bias of the timezone.
433 // To properly resolve the resource identifier requires a library load,
434 // which is not possible in a sandbox.
435 if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
436 OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize - 1),
437 "%s Standard Time",
438 GuessTimezoneNameFromBias(tzinfo_.Bias));
439 }
440 if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
441 OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize - 1),
442 "%s Daylight Time",
443 GuessTimezoneNameFromBias(tzinfo_.Bias));
444 }
445
446 // Timezone information initialized.
447 tz_initialized_ = true;
448 }
449
450
451 // Return the difference in milliseconds between this and another timestamp.
Diff(Time * other)452 int64_t Time::Diff(Time* other) {
453 return (t() - other->t()) / kTimeScaler;
454 }
455
456
457 // Set timestamp to current time.
SetToCurrentTime()458 void Time::SetToCurrentTime() {
459 // The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
460 // Because we're fast, we like fast timers which have at least a
461 // 1ms resolution.
462 //
463 // timeGetTime() provides 1ms granularity when combined with
464 // timeBeginPeriod(). If the host application for v8 wants fast
465 // timers, it can use timeBeginPeriod to increase the resolution.
466 //
467 // Using timeGetTime() has a drawback because it is a 32bit value
468 // and hence rolls-over every ~49days.
469 //
470 // To use the clock, we use GetSystemTimeAsFileTime as our base;
471 // and then use timeGetTime to extrapolate current time from the
472 // start time. To deal with rollovers, we resync the clock
473 // any time when more than kMaxClockElapsedTime has passed or
474 // whenever timeGetTime creates a rollover.
475
476 static bool initialized = false;
477 static TimeStamp init_time;
478 static DWORD init_ticks;
479 static const int64_t kHundredNanosecondsPerSecond = 10000000;
480 static const int64_t kMaxClockElapsedTime =
481 60*kHundredNanosecondsPerSecond; // 1 minute
482
483 // If we are uninitialized, we need to resync the clock.
484 bool needs_resync = !initialized;
485
486 // Get the current time.
487 TimeStamp time_now;
488 GetSystemTimeAsFileTime(&time_now.ft_);
489 DWORD ticks_now = timeGetTime();
490
491 // Check if we need to resync due to clock rollover.
492 needs_resync |= ticks_now < init_ticks;
493
494 // Check if we need to resync due to elapsed time.
495 needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
496
497 // Resync the clock if necessary.
498 if (needs_resync) {
499 GetSystemTimeAsFileTime(&init_time.ft_);
500 init_ticks = ticks_now = timeGetTime();
501 initialized = true;
502 }
503
504 // Finally, compute the actual time. Why is this so hard.
505 DWORD elapsed = ticks_now - init_ticks;
506 this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
507 }
508
509
510 // Return the local timezone offset in milliseconds east of UTC. This
511 // takes into account whether daylight saving is in effect at the time.
512 // Only times in the 32-bit Unix range may be passed to this function.
513 // Also, adding the time-zone offset to the input must not overflow.
514 // The function EquivalentTime() in date.js guarantees this.
LocalOffset()515 int64_t Time::LocalOffset() {
516 // Initialize timezone information, if needed.
517 TzSet();
518
519 Time rounded_to_second(*this);
520 rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler *
521 1000 * kTimeScaler;
522 // Convert to local time using POSIX localtime function.
523 // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
524 // very slow. Other browsers use localtime().
525
526 // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
527 // POSIX seconds past 1/1/1970 0:00:00.
528 double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
529 if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
530 return 0;
531 }
532 // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
533 time_t posix_time = static_cast<time_t>(unchecked_posix_time);
534
535 // Convert to local time, as struct with fields for day, hour, year, etc.
536 tm posix_local_time_struct;
537 if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
538 // Convert local time in struct to POSIX time as if it were a UTC time.
539 time_t local_posix_time = _mkgmtime(&posix_local_time_struct);
540 Time localtime(1000.0 * local_posix_time);
541
542 return localtime.Diff(&rounded_to_second);
543 }
544
545
546 // Return whether or not daylight savings time is in effect at this time.
InDST()547 bool Time::InDST() {
548 // Initialize timezone information, if needed.
549 TzSet();
550
551 // Determine if DST is in effect at the specified time.
552 bool in_dst = false;
553 if (tzinfo_.StandardDate.wMonth != 0 || tzinfo_.DaylightDate.wMonth != 0) {
554 // Get the local timezone offset for the timestamp in milliseconds.
555 int64_t offset = LocalOffset();
556
557 // Compute the offset for DST. The bias parameters in the timezone info
558 // are specified in minutes. These must be converted to milliseconds.
559 int64_t dstofs = -(tzinfo_.Bias + tzinfo_.DaylightBias) * kMsPerMinute;
560
561 // If the local time offset equals the timezone bias plus the daylight
562 // bias then DST is in effect.
563 in_dst = offset == dstofs;
564 }
565
566 return in_dst;
567 }
568
569
570 // Return the daylight savings time offset for this time.
DaylightSavingsOffset()571 int64_t Time::DaylightSavingsOffset() {
572 return InDST() ? 60 * kMsPerMinute : 0;
573 }
574
575
576 // Returns a string identifying the current timezone for the
577 // timestamp taking into account daylight saving.
LocalTimezone()578 char* Time::LocalTimezone() {
579 // Return the standard or DST time zone name based on whether daylight
580 // saving is in effect at the given time.
581 return InDST() ? dst_tz_name_ : std_tz_name_;
582 }
583
584
Setup()585 void OS::Setup() {
586 // Seed the random number generator.
587 // Convert the current time to a 64-bit integer first, before converting it
588 // to an unsigned. Going directly can cause an overflow and the seed to be
589 // set to all ones. The seed will be identical for different instances that
590 // call this setup code within the same millisecond.
591 uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
592 srand(static_cast<unsigned int>(seed));
593 }
594
595
596 // Returns the accumulated user time for thread.
GetUserTime(uint32_t * secs,uint32_t * usecs)597 int OS::GetUserTime(uint32_t* secs, uint32_t* usecs) {
598 FILETIME dummy;
599 uint64_t usertime;
600
601 // Get the amount of time that the thread has executed in user mode.
602 if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
603 reinterpret_cast<FILETIME*>(&usertime))) return -1;
604
605 // Adjust the resolution to micro-seconds.
606 usertime /= 10;
607
608 // Convert to seconds and microseconds
609 *secs = static_cast<uint32_t>(usertime / 1000000);
610 *usecs = static_cast<uint32_t>(usertime % 1000000);
611 return 0;
612 }
613
614
615 // Returns current time as the number of milliseconds since
616 // 00:00:00 UTC, January 1, 1970.
TimeCurrentMillis()617 double OS::TimeCurrentMillis() {
618 Time t;
619 t.SetToCurrentTime();
620 return t.ToJSTime();
621 }
622
623 // Returns the tickcounter based on timeGetTime.
Ticks()624 int64_t OS::Ticks() {
625 return timeGetTime() * 1000; // Convert to microseconds.
626 }
627
628
629 // Returns a string identifying the current timezone taking into
630 // account daylight saving.
LocalTimezone(double time)631 const char* OS::LocalTimezone(double time) {
632 return Time(time).LocalTimezone();
633 }
634
635
636 // Returns the local time offset in milliseconds east of UTC without
637 // taking daylight savings time into account.
LocalTimeOffset()638 double OS::LocalTimeOffset() {
639 // Use current time, rounded to the millisecond.
640 Time t(TimeCurrentMillis());
641 // Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
642 return static_cast<double>(t.LocalOffset() - t.DaylightSavingsOffset());
643 }
644
645
646 // Returns the daylight savings offset in milliseconds for the given
647 // time.
DaylightSavingsOffset(double time)648 double OS::DaylightSavingsOffset(double time) {
649 int64_t offset = Time(time).DaylightSavingsOffset();
650 return static_cast<double>(offset);
651 }
652
653
654 // ----------------------------------------------------------------------------
655 // Win32 console output.
656 //
657 // If a Win32 application is linked as a console application it has a normal
658 // standard output and standard error. In this case normal printf works fine
659 // for output. However, if the application is linked as a GUI application,
660 // the process doesn't have a console, and therefore (debugging) output is lost.
661 // This is the case if we are embedded in a windows program (like a browser).
662 // In order to be able to get debug output in this case the the debugging
663 // facility using OutputDebugString. This output goes to the active debugger
664 // for the process (if any). Else the output can be monitored using DBMON.EXE.
665
666 enum OutputMode {
667 UNKNOWN, // Output method has not yet been determined.
668 CONSOLE, // Output is written to stdout.
669 ODS // Output is written to debug facility.
670 };
671
672 static OutputMode output_mode = UNKNOWN; // Current output mode.
673
674
675 // Determine if the process has a console for output.
HasConsole()676 static bool HasConsole() {
677 // Only check the first time. Eventual race conditions are not a problem,
678 // because all threads will eventually determine the same mode.
679 if (output_mode == UNKNOWN) {
680 // We cannot just check that the standard output is attached to a console
681 // because this would fail if output is redirected to a file. Therefore we
682 // say that a process does not have an output console if either the
683 // standard output handle is invalid or its file type is unknown.
684 if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
685 GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
686 output_mode = CONSOLE;
687 else
688 output_mode = ODS;
689 }
690 return output_mode == CONSOLE;
691 }
692
693
VPrintHelper(FILE * stream,const char * format,va_list args)694 static void VPrintHelper(FILE* stream, const char* format, va_list args) {
695 if (HasConsole()) {
696 vfprintf(stream, format, args);
697 } else {
698 // It is important to use safe print here in order to avoid
699 // overflowing the buffer. We might truncate the output, but this
700 // does not crash.
701 EmbeddedVector<char, 4096> buffer;
702 OS::VSNPrintF(buffer, format, args);
703 OutputDebugStringA(buffer.start());
704 }
705 }
706
707
FOpen(const char * path,const char * mode)708 FILE* OS::FOpen(const char* path, const char* mode) {
709 FILE* result;
710 if (fopen_s(&result, path, mode) == 0) {
711 return result;
712 } else {
713 return NULL;
714 }
715 }
716
717
718 // Open log file in binary mode to avoid /n -> /r/n conversion.
719 const char* OS::LogFileOpenMode = "wb";
720
721
722 // Print (debug) message to console.
Print(const char * format,...)723 void OS::Print(const char* format, ...) {
724 va_list args;
725 va_start(args, format);
726 VPrint(format, args);
727 va_end(args);
728 }
729
730
VPrint(const char * format,va_list args)731 void OS::VPrint(const char* format, va_list args) {
732 VPrintHelper(stdout, format, args);
733 }
734
735
736 // Print error message to console.
PrintError(const char * format,...)737 void OS::PrintError(const char* format, ...) {
738 va_list args;
739 va_start(args, format);
740 VPrintError(format, args);
741 va_end(args);
742 }
743
744
VPrintError(const char * format,va_list args)745 void OS::VPrintError(const char* format, va_list args) {
746 VPrintHelper(stderr, format, args);
747 }
748
749
SNPrintF(Vector<char> str,const char * format,...)750 int OS::SNPrintF(Vector<char> str, const char* format, ...) {
751 va_list args;
752 va_start(args, format);
753 int result = VSNPrintF(str, format, args);
754 va_end(args);
755 return result;
756 }
757
758
VSNPrintF(Vector<char> str,const char * format,va_list args)759 int OS::VSNPrintF(Vector<char> str, const char* format, va_list args) {
760 int n = _vsnprintf_s(str.start(), str.length(), _TRUNCATE, format, args);
761 // Make sure to zero-terminate the string if the output was
762 // truncated or if there was an error.
763 if (n < 0 || n >= str.length()) {
764 str[str.length() - 1] = '\0';
765 return -1;
766 } else {
767 return n;
768 }
769 }
770
771
StrChr(char * str,int c)772 char* OS::StrChr(char* str, int c) {
773 return const_cast<char*>(strchr(str, c));
774 }
775
776
StrNCpy(Vector<char> dest,const char * src,size_t n)777 void OS::StrNCpy(Vector<char> dest, const char* src, size_t n) {
778 int result = strncpy_s(dest.start(), dest.length(), src, n);
779 USE(result);
780 ASSERT(result == 0);
781 }
782
783
784 // We keep the lowest and highest addresses mapped as a quick way of
785 // determining that pointers are outside the heap (used mostly in assertions
786 // and verification). The estimate is conservative, ie, not all addresses in
787 // 'allocated' space are actually allocated to our heap. The range is
788 // [lowest, highest), inclusive on the low and and exclusive on the high end.
789 static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
790 static void* highest_ever_allocated = reinterpret_cast<void*>(0);
791
792
UpdateAllocatedSpaceLimits(void * address,int size)793 static void UpdateAllocatedSpaceLimits(void* address, int size) {
794 lowest_ever_allocated = Min(lowest_ever_allocated, address);
795 highest_ever_allocated =
796 Max(highest_ever_allocated,
797 reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
798 }
799
800
IsOutsideAllocatedSpace(void * pointer)801 bool OS::IsOutsideAllocatedSpace(void* pointer) {
802 if (pointer < lowest_ever_allocated || pointer >= highest_ever_allocated)
803 return true;
804 // Ask the Windows API
805 if (IsBadWritePtr(pointer, 1))
806 return true;
807 return false;
808 }
809
810
811 // Get the system's page size used by VirtualAlloc() or the next power
812 // of two. The reason for always returning a power of two is that the
813 // rounding up in OS::Allocate expects that.
GetPageSize()814 static size_t GetPageSize() {
815 static size_t page_size = 0;
816 if (page_size == 0) {
817 SYSTEM_INFO info;
818 GetSystemInfo(&info);
819 page_size = RoundUpToPowerOf2(info.dwPageSize);
820 }
821 return page_size;
822 }
823
824
825 // The allocation alignment is the guaranteed alignment for
826 // VirtualAlloc'ed blocks of memory.
AllocateAlignment()827 size_t OS::AllocateAlignment() {
828 static size_t allocate_alignment = 0;
829 if (allocate_alignment == 0) {
830 SYSTEM_INFO info;
831 GetSystemInfo(&info);
832 allocate_alignment = info.dwAllocationGranularity;
833 }
834 return allocate_alignment;
835 }
836
837
Allocate(const size_t requested,size_t * allocated,bool is_executable)838 void* OS::Allocate(const size_t requested,
839 size_t* allocated,
840 bool is_executable) {
841 // VirtualAlloc rounds allocated size to page size automatically.
842 size_t msize = RoundUp(requested, static_cast<int>(GetPageSize()));
843
844 // Windows XP SP2 allows Data Excution Prevention (DEP).
845 int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
846 LPVOID mbase = VirtualAlloc(NULL, msize, MEM_COMMIT | MEM_RESERVE, prot);
847 if (mbase == NULL) {
848 LOG(StringEvent("OS::Allocate", "VirtualAlloc failed"));
849 return NULL;
850 }
851
852 ASSERT(IsAligned(reinterpret_cast<size_t>(mbase), OS::AllocateAlignment()));
853
854 *allocated = msize;
855 UpdateAllocatedSpaceLimits(mbase, static_cast<int>(msize));
856 return mbase;
857 }
858
859
Free(void * address,const size_t size)860 void OS::Free(void* address, const size_t size) {
861 // TODO(1240712): VirtualFree has a return value which is ignored here.
862 VirtualFree(address, 0, MEM_RELEASE);
863 USE(size);
864 }
865
866
867 #ifdef ENABLE_HEAP_PROTECTION
868
Protect(void * address,size_t size)869 void OS::Protect(void* address, size_t size) {
870 // TODO(1240712): VirtualProtect has a return value which is ignored here.
871 DWORD old_protect;
872 VirtualProtect(address, size, PAGE_READONLY, &old_protect);
873 }
874
875
Unprotect(void * address,size_t size,bool is_executable)876 void OS::Unprotect(void* address, size_t size, bool is_executable) {
877 // TODO(1240712): VirtualProtect has a return value which is ignored here.
878 DWORD new_protect = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
879 DWORD old_protect;
880 VirtualProtect(address, size, new_protect, &old_protect);
881 }
882
883 #endif
884
885
Sleep(int milliseconds)886 void OS::Sleep(int milliseconds) {
887 ::Sleep(milliseconds);
888 }
889
890
Abort()891 void OS::Abort() {
892 if (!IsDebuggerPresent()) {
893 #ifdef _MSC_VER
894 // Make the MSVCRT do a silent abort.
895 _set_abort_behavior(0, _WRITE_ABORT_MSG);
896 _set_abort_behavior(0, _CALL_REPORTFAULT);
897 #endif // _MSC_VER
898 abort();
899 } else {
900 DebugBreak();
901 }
902 }
903
904
DebugBreak()905 void OS::DebugBreak() {
906 #ifdef _MSC_VER
907 __debugbreak();
908 #else
909 ::DebugBreak();
910 #endif
911 }
912
913
914 class Win32MemoryMappedFile : public OS::MemoryMappedFile {
915 public:
Win32MemoryMappedFile(HANDLE file,HANDLE file_mapping,void * memory)916 Win32MemoryMappedFile(HANDLE file, HANDLE file_mapping, void* memory)
917 : file_(file), file_mapping_(file_mapping), memory_(memory) { }
918 virtual ~Win32MemoryMappedFile();
memory()919 virtual void* memory() { return memory_; }
920 private:
921 HANDLE file_;
922 HANDLE file_mapping_;
923 void* memory_;
924 };
925
926
create(const char * name,int size,void * initial)927 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
928 void* initial) {
929 // Open a physical file
930 HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
931 FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 0, NULL);
932 if (file == NULL) return NULL;
933 // Create a file mapping for the physical file
934 HANDLE file_mapping = CreateFileMapping(file, NULL,
935 PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
936 if (file_mapping == NULL) return NULL;
937 // Map a view of the file into memory
938 void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
939 if (memory) memmove(memory, initial, size);
940 return new Win32MemoryMappedFile(file, file_mapping, memory);
941 }
942
943
~Win32MemoryMappedFile()944 Win32MemoryMappedFile::~Win32MemoryMappedFile() {
945 if (memory_ != NULL)
946 UnmapViewOfFile(memory_);
947 CloseHandle(file_mapping_);
948 CloseHandle(file_);
949 }
950
951
952 // The following code loads functions defined in DbhHelp.h and TlHelp32.h
953 // dynamically. This is to avoid being depending on dbghelp.dll and
954 // tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
955 // kernel32.dll at some point so loading functions defines in TlHelp32.h
956 // dynamically might not be necessary any more - for some versions of Windows?).
957
958 // Function pointers to functions dynamically loaded from dbghelp.dll.
959 #define DBGHELP_FUNCTION_LIST(V) \
960 V(SymInitialize) \
961 V(SymGetOptions) \
962 V(SymSetOptions) \
963 V(SymGetSearchPath) \
964 V(SymLoadModule64) \
965 V(StackWalk64) \
966 V(SymGetSymFromAddr64) \
967 V(SymGetLineFromAddr64) \
968 V(SymFunctionTableAccess64) \
969 V(SymGetModuleBase64)
970
971 // Function pointers to functions dynamically loaded from dbghelp.dll.
972 #define TLHELP32_FUNCTION_LIST(V) \
973 V(CreateToolhelp32Snapshot) \
974 V(Module32FirstW) \
975 V(Module32NextW)
976
977 // Define the decoration to use for the type and variable name used for
978 // dynamically loaded DLL function..
979 #define DLL_FUNC_TYPE(name) _##name##_
980 #define DLL_FUNC_VAR(name) _##name
981
982 // Define the type for each dynamically loaded DLL function. The function
983 // definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
984 // from the Windows include files are redefined here to have the function
985 // definitions to be as close to the ones in the original .h files as possible.
986 #ifndef IN
987 #define IN
988 #endif
989 #ifndef VOID
990 #define VOID void
991 #endif
992
993 // DbgHelp isn't supported on MinGW yet
994 #ifndef __MINGW32__
995 // DbgHelp.h functions.
996 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess,
997 IN PSTR UserSearchPath,
998 IN BOOL fInvadeProcess);
999 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID);
1000 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions);
1001 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))(
1002 IN HANDLE hProcess,
1003 OUT PSTR SearchPath,
1004 IN DWORD SearchPathLength);
1005 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))(
1006 IN HANDLE hProcess,
1007 IN HANDLE hFile,
1008 IN PSTR ImageName,
1009 IN PSTR ModuleName,
1010 IN DWORD64 BaseOfDll,
1011 IN DWORD SizeOfDll);
1012 typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))(
1013 DWORD MachineType,
1014 HANDLE hProcess,
1015 HANDLE hThread,
1016 LPSTACKFRAME64 StackFrame,
1017 PVOID ContextRecord,
1018 PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
1019 PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
1020 PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
1021 PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
1022 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))(
1023 IN HANDLE hProcess,
1024 IN DWORD64 qwAddr,
1025 OUT PDWORD64 pdwDisplacement,
1026 OUT PIMAGEHLP_SYMBOL64 Symbol);
1027 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))(
1028 IN HANDLE hProcess,
1029 IN DWORD64 qwAddr,
1030 OUT PDWORD pdwDisplacement,
1031 OUT PIMAGEHLP_LINE64 Line64);
1032 // DbgHelp.h typedefs. Implementation found in dbghelp.dll.
1033 typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))(
1034 HANDLE hProcess,
1035 DWORD64 AddrBase); // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
1036 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))(
1037 HANDLE hProcess,
1038 DWORD64 AddrBase); // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
1039
1040 // TlHelp32.h functions.
1041 typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))(
1042 DWORD dwFlags,
1043 DWORD th32ProcessID);
1044 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot,
1045 LPMODULEENTRY32W lpme);
1046 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot,
1047 LPMODULEENTRY32W lpme);
1048
1049 #undef IN
1050 #undef VOID
1051
1052 // Declare a variable for each dynamically loaded DLL function.
1053 #define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL;
1054 DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)1055 TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
1056 #undef DEF_DLL_FUNCTION
1057
1058 // Load the functions. This function has a lot of "ugly" macros in order to
1059 // keep down code duplication.
1060
1061 static bool LoadDbgHelpAndTlHelp32() {
1062 static bool dbghelp_loaded = false;
1063
1064 if (dbghelp_loaded) return true;
1065
1066 HMODULE module;
1067
1068 // Load functions from the dbghelp.dll module.
1069 module = LoadLibrary(TEXT("dbghelp.dll"));
1070 if (module == NULL) {
1071 return false;
1072 }
1073
1074 #define LOAD_DLL_FUNC(name) \
1075 DLL_FUNC_VAR(name) = \
1076 reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1077
1078 DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
1079
1080 #undef LOAD_DLL_FUNC
1081
1082 // Load functions from the kernel32.dll module (the TlHelp32.h function used
1083 // to be in tlhelp32.dll but are now moved to kernel32.dll).
1084 module = LoadLibrary(TEXT("kernel32.dll"));
1085 if (module == NULL) {
1086 return false;
1087 }
1088
1089 #define LOAD_DLL_FUNC(name) \
1090 DLL_FUNC_VAR(name) = \
1091 reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1092
1093 TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
1094
1095 #undef LOAD_DLL_FUNC
1096
1097 // Check that all functions where loaded.
1098 bool result =
1099 #define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) &&
1100
1101 DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
1102 TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
1103
1104 #undef DLL_FUNC_LOADED
1105 true;
1106
1107 dbghelp_loaded = result;
1108 return result;
1109 // NOTE: The modules are never unloaded and will stay around until the
1110 // application is closed.
1111 }
1112
1113
1114 // Load the symbols for generating stack traces.
LoadSymbols(HANDLE process_handle)1115 static bool LoadSymbols(HANDLE process_handle) {
1116 static bool symbols_loaded = false;
1117
1118 if (symbols_loaded) return true;
1119
1120 BOOL ok;
1121
1122 // Initialize the symbol engine.
1123 ok = _SymInitialize(process_handle, // hProcess
1124 NULL, // UserSearchPath
1125 FALSE); // fInvadeProcess
1126 if (!ok) return false;
1127
1128 DWORD options = _SymGetOptions();
1129 options |= SYMOPT_LOAD_LINES;
1130 options |= SYMOPT_FAIL_CRITICAL_ERRORS;
1131 options = _SymSetOptions(options);
1132
1133 char buf[OS::kStackWalkMaxNameLen] = {0};
1134 ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
1135 if (!ok) {
1136 int err = GetLastError();
1137 PrintF("%d\n", err);
1138 return false;
1139 }
1140
1141 HANDLE snapshot = _CreateToolhelp32Snapshot(
1142 TH32CS_SNAPMODULE, // dwFlags
1143 GetCurrentProcessId()); // th32ProcessId
1144 if (snapshot == INVALID_HANDLE_VALUE) return false;
1145 MODULEENTRY32W module_entry;
1146 module_entry.dwSize = sizeof(module_entry); // Set the size of the structure.
1147 BOOL cont = _Module32FirstW(snapshot, &module_entry);
1148 while (cont) {
1149 DWORD64 base;
1150 // NOTE the SymLoadModule64 function has the peculiarity of accepting a
1151 // both unicode and ASCII strings even though the parameter is PSTR.
1152 base = _SymLoadModule64(
1153 process_handle, // hProcess
1154 0, // hFile
1155 reinterpret_cast<PSTR>(module_entry.szExePath), // ImageName
1156 reinterpret_cast<PSTR>(module_entry.szModule), // ModuleName
1157 reinterpret_cast<DWORD64>(module_entry.modBaseAddr), // BaseOfDll
1158 module_entry.modBaseSize); // SizeOfDll
1159 if (base == 0) {
1160 int err = GetLastError();
1161 if (err != ERROR_MOD_NOT_FOUND &&
1162 err != ERROR_INVALID_HANDLE) return false;
1163 }
1164 LOG(SharedLibraryEvent(
1165 module_entry.szExePath,
1166 reinterpret_cast<unsigned int>(module_entry.modBaseAddr),
1167 reinterpret_cast<unsigned int>(module_entry.modBaseAddr +
1168 module_entry.modBaseSize)));
1169 cont = _Module32NextW(snapshot, &module_entry);
1170 }
1171 CloseHandle(snapshot);
1172
1173 symbols_loaded = true;
1174 return true;
1175 }
1176
1177
LogSharedLibraryAddresses()1178 void OS::LogSharedLibraryAddresses() {
1179 // SharedLibraryEvents are logged when loading symbol information.
1180 // Only the shared libraries loaded at the time of the call to
1181 // LogSharedLibraryAddresses are logged. DLLs loaded after
1182 // initialization are not accounted for.
1183 if (!LoadDbgHelpAndTlHelp32()) return;
1184 HANDLE process_handle = GetCurrentProcess();
1185 LoadSymbols(process_handle);
1186 }
1187
1188
1189 // Walk the stack using the facilities in dbghelp.dll and tlhelp32.dll
1190
1191 // Switch off warning 4748 (/GS can not protect parameters and local variables
1192 // from local buffer overrun because optimizations are disabled in function) as
1193 // it is triggered by the use of inline assembler.
1194 #pragma warning(push)
1195 #pragma warning(disable : 4748)
StackWalk(Vector<OS::StackFrame> frames)1196 int OS::StackWalk(Vector<OS::StackFrame> frames) {
1197 BOOL ok;
1198
1199 // Load the required functions from DLL's.
1200 if (!LoadDbgHelpAndTlHelp32()) return kStackWalkError;
1201
1202 // Get the process and thread handles.
1203 HANDLE process_handle = GetCurrentProcess();
1204 HANDLE thread_handle = GetCurrentThread();
1205
1206 // Read the symbols.
1207 if (!LoadSymbols(process_handle)) return kStackWalkError;
1208
1209 // Capture current context.
1210 CONTEXT context;
1211 RtlCaptureContext(&context);
1212
1213 // Initialize the stack walking
1214 STACKFRAME64 stack_frame;
1215 memset(&stack_frame, 0, sizeof(stack_frame));
1216 #ifdef _WIN64
1217 stack_frame.AddrPC.Offset = context.Rip;
1218 stack_frame.AddrFrame.Offset = context.Rbp;
1219 stack_frame.AddrStack.Offset = context.Rsp;
1220 #else
1221 stack_frame.AddrPC.Offset = context.Eip;
1222 stack_frame.AddrFrame.Offset = context.Ebp;
1223 stack_frame.AddrStack.Offset = context.Esp;
1224 #endif
1225 stack_frame.AddrPC.Mode = AddrModeFlat;
1226 stack_frame.AddrFrame.Mode = AddrModeFlat;
1227 stack_frame.AddrStack.Mode = AddrModeFlat;
1228 int frames_count = 0;
1229
1230 // Collect stack frames.
1231 int frames_size = frames.length();
1232 while (frames_count < frames_size) {
1233 ok = _StackWalk64(
1234 IMAGE_FILE_MACHINE_I386, // MachineType
1235 process_handle, // hProcess
1236 thread_handle, // hThread
1237 &stack_frame, // StackFrame
1238 &context, // ContextRecord
1239 NULL, // ReadMemoryRoutine
1240 _SymFunctionTableAccess64, // FunctionTableAccessRoutine
1241 _SymGetModuleBase64, // GetModuleBaseRoutine
1242 NULL); // TranslateAddress
1243 if (!ok) break;
1244
1245 // Store the address.
1246 ASSERT((stack_frame.AddrPC.Offset >> 32) == 0); // 32-bit address.
1247 frames[frames_count].address =
1248 reinterpret_cast<void*>(stack_frame.AddrPC.Offset);
1249
1250 // Try to locate a symbol for this frame.
1251 DWORD64 symbol_displacement;
1252 IMAGEHLP_SYMBOL64* symbol = NULL;
1253 symbol = NewArray<IMAGEHLP_SYMBOL64>(kStackWalkMaxNameLen);
1254 if (!symbol) return kStackWalkError; // Out of memory.
1255 memset(symbol, 0, sizeof(IMAGEHLP_SYMBOL64) + kStackWalkMaxNameLen);
1256 symbol->SizeOfStruct = sizeof(IMAGEHLP_SYMBOL64);
1257 symbol->MaxNameLength = kStackWalkMaxNameLen;
1258 ok = _SymGetSymFromAddr64(process_handle, // hProcess
1259 stack_frame.AddrPC.Offset, // Address
1260 &symbol_displacement, // Displacement
1261 symbol); // Symbol
1262 if (ok) {
1263 // Try to locate more source information for the symbol.
1264 IMAGEHLP_LINE64 Line;
1265 memset(&Line, 0, sizeof(Line));
1266 Line.SizeOfStruct = sizeof(Line);
1267 DWORD line_displacement;
1268 ok = _SymGetLineFromAddr64(
1269 process_handle, // hProcess
1270 stack_frame.AddrPC.Offset, // dwAddr
1271 &line_displacement, // pdwDisplacement
1272 &Line); // Line
1273 // Format a text representation of the frame based on the information
1274 // available.
1275 if (ok) {
1276 SNPrintF(MutableCStrVector(frames[frames_count].text,
1277 kStackWalkMaxTextLen),
1278 "%s %s:%d:%d",
1279 symbol->Name, Line.FileName, Line.LineNumber,
1280 line_displacement);
1281 } else {
1282 SNPrintF(MutableCStrVector(frames[frames_count].text,
1283 kStackWalkMaxTextLen),
1284 "%s",
1285 symbol->Name);
1286 }
1287 // Make sure line termination is in place.
1288 frames[frames_count].text[kStackWalkMaxTextLen - 1] = '\0';
1289 } else {
1290 // No text representation of this frame
1291 frames[frames_count].text[0] = '\0';
1292
1293 // Continue if we are just missing a module (for non C/C++ frames a
1294 // module will never be found).
1295 int err = GetLastError();
1296 if (err != ERROR_MOD_NOT_FOUND) {
1297 DeleteArray(symbol);
1298 break;
1299 }
1300 }
1301 DeleteArray(symbol);
1302
1303 frames_count++;
1304 }
1305
1306 // Return the number of frames filled in.
1307 return frames_count;
1308 }
1309
1310 // Restore warnings to previous settings.
1311 #pragma warning(pop)
1312
1313 #else // __MINGW32__
LogSharedLibraryAddresses()1314 void OS::LogSharedLibraryAddresses() { }
StackWalk(Vector<OS::StackFrame> frames)1315 int OS::StackWalk(Vector<OS::StackFrame> frames) { return 0; }
1316 #endif // __MINGW32__
1317
1318
CpuFeaturesImpliedByPlatform()1319 uint64_t OS::CpuFeaturesImpliedByPlatform() {
1320 return 0; // Windows runs on anything.
1321 }
1322
1323
nan_value()1324 double OS::nan_value() {
1325 #ifdef _MSC_VER
1326 // Positive Quiet NaN with no payload (aka. Indeterminate) has all bits
1327 // in mask set, so value equals mask.
1328 static const __int64 nanval = kQuietNaNMask;
1329 return *reinterpret_cast<const double*>(&nanval);
1330 #else // _MSC_VER
1331 return NAN;
1332 #endif // _MSC_VER
1333 }
1334
1335
ActivationFrameAlignment()1336 int OS::ActivationFrameAlignment() {
1337 #ifdef _WIN64
1338 return 16; // Windows 64-bit ABI requires the stack to be 16-byte aligned.
1339 #else
1340 return 8; // Floating-point math runs faster with 8-byte alignment.
1341 #endif
1342 }
1343
1344
IsReserved()1345 bool VirtualMemory::IsReserved() {
1346 return address_ != NULL;
1347 }
1348
1349
VirtualMemory(size_t size)1350 VirtualMemory::VirtualMemory(size_t size) {
1351 address_ = VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS);
1352 size_ = size;
1353 }
1354
1355
~VirtualMemory()1356 VirtualMemory::~VirtualMemory() {
1357 if (IsReserved()) {
1358 if (0 == VirtualFree(address(), 0, MEM_RELEASE)) address_ = NULL;
1359 }
1360 }
1361
1362
Commit(void * address,size_t size,bool is_executable)1363 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
1364 int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
1365 if (NULL == VirtualAlloc(address, size, MEM_COMMIT, prot)) {
1366 return false;
1367 }
1368
1369 UpdateAllocatedSpaceLimits(address, static_cast<int>(size));
1370 return true;
1371 }
1372
1373
Uncommit(void * address,size_t size)1374 bool VirtualMemory::Uncommit(void* address, size_t size) {
1375 ASSERT(IsReserved());
1376 return VirtualFree(address, size, MEM_DECOMMIT) != FALSE;
1377 }
1378
1379
1380 // ----------------------------------------------------------------------------
1381 // Win32 thread support.
1382
1383 // Definition of invalid thread handle and id.
1384 static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
1385 static const DWORD kNoThreadId = 0;
1386
1387
1388 class ThreadHandle::PlatformData : public Malloced {
1389 public:
PlatformData(ThreadHandle::Kind kind)1390 explicit PlatformData(ThreadHandle::Kind kind) {
1391 Initialize(kind);
1392 }
1393
Initialize(ThreadHandle::Kind kind)1394 void Initialize(ThreadHandle::Kind kind) {
1395 switch (kind) {
1396 case ThreadHandle::SELF: tid_ = GetCurrentThreadId(); break;
1397 case ThreadHandle::INVALID: tid_ = kNoThreadId; break;
1398 }
1399 }
1400 DWORD tid_; // Win32 thread identifier.
1401 };
1402
1403
1404 // Entry point for threads. The supplied argument is a pointer to the thread
1405 // object. The entry function dispatches to the run method in the thread
1406 // object. It is important that this function has __stdcall calling
1407 // convention.
ThreadEntry(void * arg)1408 static unsigned int __stdcall ThreadEntry(void* arg) {
1409 Thread* thread = reinterpret_cast<Thread*>(arg);
1410 // This is also initialized by the last parameter to _beginthreadex() but we
1411 // don't know which thread will run first (the original thread or the new
1412 // one) so we initialize it here too.
1413 thread->thread_handle_data()->tid_ = GetCurrentThreadId();
1414 thread->Run();
1415 return 0;
1416 }
1417
1418
1419 // Initialize thread handle to invalid handle.
ThreadHandle(ThreadHandle::Kind kind)1420 ThreadHandle::ThreadHandle(ThreadHandle::Kind kind) {
1421 data_ = new PlatformData(kind);
1422 }
1423
1424
~ThreadHandle()1425 ThreadHandle::~ThreadHandle() {
1426 delete data_;
1427 }
1428
1429
1430 // The thread is running if it has the same id as the current thread.
IsSelf() const1431 bool ThreadHandle::IsSelf() const {
1432 return GetCurrentThreadId() == data_->tid_;
1433 }
1434
1435
1436 // Test for invalid thread handle.
IsValid() const1437 bool ThreadHandle::IsValid() const {
1438 return data_->tid_ != kNoThreadId;
1439 }
1440
1441
Initialize(ThreadHandle::Kind kind)1442 void ThreadHandle::Initialize(ThreadHandle::Kind kind) {
1443 data_->Initialize(kind);
1444 }
1445
1446
1447 class Thread::PlatformData : public Malloced {
1448 public:
PlatformData(HANDLE thread)1449 explicit PlatformData(HANDLE thread) : thread_(thread) {}
1450 HANDLE thread_;
1451 };
1452
1453
1454 // Initialize a Win32 thread object. The thread has an invalid thread
1455 // handle until it is started.
1456
Thread()1457 Thread::Thread() : ThreadHandle(ThreadHandle::INVALID) {
1458 data_ = new PlatformData(kNoThread);
1459 }
1460
1461
1462 // Close our own handle for the thread.
~Thread()1463 Thread::~Thread() {
1464 if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
1465 delete data_;
1466 }
1467
1468
1469 // Create a new thread. It is important to use _beginthreadex() instead of
1470 // the Win32 function CreateThread(), because the CreateThread() does not
1471 // initialize thread specific structures in the C runtime library.
Start()1472 void Thread::Start() {
1473 data_->thread_ = reinterpret_cast<HANDLE>(
1474 _beginthreadex(NULL,
1475 0,
1476 ThreadEntry,
1477 this,
1478 0,
1479 reinterpret_cast<unsigned int*>(
1480 &thread_handle_data()->tid_)));
1481 ASSERT(IsValid());
1482 }
1483
1484
1485 // Wait for thread to terminate.
Join()1486 void Thread::Join() {
1487 WaitForSingleObject(data_->thread_, INFINITE);
1488 }
1489
1490
CreateThreadLocalKey()1491 Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
1492 DWORD result = TlsAlloc();
1493 ASSERT(result != TLS_OUT_OF_INDEXES);
1494 return static_cast<LocalStorageKey>(result);
1495 }
1496
1497
DeleteThreadLocalKey(LocalStorageKey key)1498 void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
1499 BOOL result = TlsFree(static_cast<DWORD>(key));
1500 USE(result);
1501 ASSERT(result);
1502 }
1503
1504
GetThreadLocal(LocalStorageKey key)1505 void* Thread::GetThreadLocal(LocalStorageKey key) {
1506 return TlsGetValue(static_cast<DWORD>(key));
1507 }
1508
1509
SetThreadLocal(LocalStorageKey key,void * value)1510 void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
1511 BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
1512 USE(result);
1513 ASSERT(result);
1514 }
1515
1516
1517
YieldCPU()1518 void Thread::YieldCPU() {
1519 Sleep(0);
1520 }
1521
1522
1523 // ----------------------------------------------------------------------------
1524 // Win32 mutex support.
1525 //
1526 // On Win32 mutexes are implemented using CRITICAL_SECTION objects. These are
1527 // faster than Win32 Mutex objects because they are implemented using user mode
1528 // atomic instructions. Therefore we only do ring transitions if there is lock
1529 // contention.
1530
1531 class Win32Mutex : public Mutex {
1532 public:
1533
Win32Mutex()1534 Win32Mutex() { InitializeCriticalSection(&cs_); }
1535
~Win32Mutex()1536 ~Win32Mutex() { DeleteCriticalSection(&cs_); }
1537
Lock()1538 int Lock() {
1539 EnterCriticalSection(&cs_);
1540 return 0;
1541 }
1542
Unlock()1543 int Unlock() {
1544 LeaveCriticalSection(&cs_);
1545 return 0;
1546 }
1547
1548 private:
1549 CRITICAL_SECTION cs_; // Critical section used for mutex
1550 };
1551
1552
CreateMutex()1553 Mutex* OS::CreateMutex() {
1554 return new Win32Mutex();
1555 }
1556
1557
1558 // ----------------------------------------------------------------------------
1559 // Win32 semaphore support.
1560 //
1561 // On Win32 semaphores are implemented using Win32 Semaphore objects. The
1562 // semaphores are anonymous. Also, the semaphores are initialized to have
1563 // no upper limit on count.
1564
1565
1566 class Win32Semaphore : public Semaphore {
1567 public:
Win32Semaphore(int count)1568 explicit Win32Semaphore(int count) {
1569 sem = ::CreateSemaphoreA(NULL, count, 0x7fffffff, NULL);
1570 }
1571
~Win32Semaphore()1572 ~Win32Semaphore() {
1573 CloseHandle(sem);
1574 }
1575
Wait()1576 void Wait() {
1577 WaitForSingleObject(sem, INFINITE);
1578 }
1579
Wait(int timeout)1580 bool Wait(int timeout) {
1581 // Timeout in Windows API is in milliseconds.
1582 DWORD millis_timeout = timeout / 1000;
1583 return WaitForSingleObject(sem, millis_timeout) != WAIT_TIMEOUT;
1584 }
1585
Signal()1586 void Signal() {
1587 LONG dummy;
1588 ReleaseSemaphore(sem, 1, &dummy);
1589 }
1590
1591 private:
1592 HANDLE sem;
1593 };
1594
1595
CreateSemaphore(int count)1596 Semaphore* OS::CreateSemaphore(int count) {
1597 return new Win32Semaphore(count);
1598 }
1599
1600
1601 // ----------------------------------------------------------------------------
1602 // Win32 socket support.
1603 //
1604
1605 class Win32Socket : public Socket {
1606 public:
Win32Socket()1607 explicit Win32Socket() {
1608 // Create the socket.
1609 socket_ = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
1610 }
Win32Socket(SOCKET socket)1611 explicit Win32Socket(SOCKET socket): socket_(socket) { }
~Win32Socket()1612 virtual ~Win32Socket() { Shutdown(); }
1613
1614 // Server initialization.
1615 bool Bind(const int port);
1616 bool Listen(int backlog) const;
1617 Socket* Accept() const;
1618
1619 // Client initialization.
1620 bool Connect(const char* host, const char* port);
1621
1622 // Shutdown socket for both read and write.
1623 bool Shutdown();
1624
1625 // Data Transimission
1626 int Send(const char* data, int len) const;
1627 int Receive(char* data, int len) const;
1628
1629 bool SetReuseAddress(bool reuse_address);
1630
IsValid() const1631 bool IsValid() const { return socket_ != INVALID_SOCKET; }
1632
1633 private:
1634 SOCKET socket_;
1635 };
1636
1637
Bind(const int port)1638 bool Win32Socket::Bind(const int port) {
1639 if (!IsValid()) {
1640 return false;
1641 }
1642
1643 sockaddr_in addr;
1644 memset(&addr, 0, sizeof(addr));
1645 addr.sin_family = AF_INET;
1646 addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
1647 addr.sin_port = htons(port);
1648 int status = bind(socket_,
1649 reinterpret_cast<struct sockaddr *>(&addr),
1650 sizeof(addr));
1651 return status == 0;
1652 }
1653
1654
Listen(int backlog) const1655 bool Win32Socket::Listen(int backlog) const {
1656 if (!IsValid()) {
1657 return false;
1658 }
1659
1660 int status = listen(socket_, backlog);
1661 return status == 0;
1662 }
1663
1664
Accept() const1665 Socket* Win32Socket::Accept() const {
1666 if (!IsValid()) {
1667 return NULL;
1668 }
1669
1670 SOCKET socket = accept(socket_, NULL, NULL);
1671 if (socket == INVALID_SOCKET) {
1672 return NULL;
1673 } else {
1674 return new Win32Socket(socket);
1675 }
1676 }
1677
1678
Connect(const char * host,const char * port)1679 bool Win32Socket::Connect(const char* host, const char* port) {
1680 if (!IsValid()) {
1681 return false;
1682 }
1683
1684 // Lookup host and port.
1685 struct addrinfo *result = NULL;
1686 struct addrinfo hints;
1687 memset(&hints, 0, sizeof(addrinfo));
1688 hints.ai_family = AF_INET;
1689 hints.ai_socktype = SOCK_STREAM;
1690 hints.ai_protocol = IPPROTO_TCP;
1691 int status = getaddrinfo(host, port, &hints, &result);
1692 if (status != 0) {
1693 return false;
1694 }
1695
1696 // Connect.
1697 status = connect(socket_,
1698 result->ai_addr,
1699 static_cast<int>(result->ai_addrlen));
1700 freeaddrinfo(result);
1701 return status == 0;
1702 }
1703
1704
Shutdown()1705 bool Win32Socket::Shutdown() {
1706 if (IsValid()) {
1707 // Shutdown socket for both read and write.
1708 int status = shutdown(socket_, SD_BOTH);
1709 closesocket(socket_);
1710 socket_ = INVALID_SOCKET;
1711 return status == SOCKET_ERROR;
1712 }
1713 return true;
1714 }
1715
1716
Send(const char * data,int len) const1717 int Win32Socket::Send(const char* data, int len) const {
1718 int status = send(socket_, data, len, 0);
1719 return status;
1720 }
1721
1722
Receive(char * data,int len) const1723 int Win32Socket::Receive(char* data, int len) const {
1724 int status = recv(socket_, data, len, 0);
1725 return status;
1726 }
1727
1728
SetReuseAddress(bool reuse_address)1729 bool Win32Socket::SetReuseAddress(bool reuse_address) {
1730 BOOL on = reuse_address ? TRUE : FALSE;
1731 int status = setsockopt(socket_, SOL_SOCKET, SO_REUSEADDR,
1732 reinterpret_cast<char*>(&on), sizeof(on));
1733 return status == SOCKET_ERROR;
1734 }
1735
1736
Setup()1737 bool Socket::Setup() {
1738 // Initialize Winsock32
1739 int err;
1740 WSADATA winsock_data;
1741 WORD version_requested = MAKEWORD(1, 0);
1742 err = WSAStartup(version_requested, &winsock_data);
1743 if (err != 0) {
1744 PrintF("Unable to initialize Winsock, err = %d\n", Socket::LastError());
1745 }
1746
1747 return err == 0;
1748 }
1749
1750
LastError()1751 int Socket::LastError() {
1752 return WSAGetLastError();
1753 }
1754
1755
HToN(uint16_t value)1756 uint16_t Socket::HToN(uint16_t value) {
1757 return htons(value);
1758 }
1759
1760
NToH(uint16_t value)1761 uint16_t Socket::NToH(uint16_t value) {
1762 return ntohs(value);
1763 }
1764
1765
HToN(uint32_t value)1766 uint32_t Socket::HToN(uint32_t value) {
1767 return htonl(value);
1768 }
1769
1770
NToH(uint32_t value)1771 uint32_t Socket::NToH(uint32_t value) {
1772 return ntohl(value);
1773 }
1774
1775
CreateSocket()1776 Socket* OS::CreateSocket() {
1777 return new Win32Socket();
1778 }
1779
1780
1781 #ifdef ENABLE_LOGGING_AND_PROFILING
1782
1783 // ----------------------------------------------------------------------------
1784 // Win32 profiler support.
1785 //
1786 // On win32 we use a sampler thread with high priority to sample the program
1787 // counter for the profiled thread.
1788
1789 class Sampler::PlatformData : public Malloced {
1790 public:
PlatformData(Sampler * sampler)1791 explicit PlatformData(Sampler* sampler) {
1792 sampler_ = sampler;
1793 sampler_thread_ = INVALID_HANDLE_VALUE;
1794 profiled_thread_ = INVALID_HANDLE_VALUE;
1795 }
1796
1797 Sampler* sampler_;
1798 HANDLE sampler_thread_;
1799 HANDLE profiled_thread_;
1800
1801 // Sampler thread handler.
Runner()1802 void Runner() {
1803 // Context used for sampling the register state of the profiled thread.
1804 CONTEXT context;
1805 memset(&context, 0, sizeof(context));
1806 // Loop until the sampler is disengaged.
1807 while (sampler_->IsActive()) {
1808 TickSample sample;
1809
1810 // If profiling, we record the pc and sp of the profiled thread.
1811 if (sampler_->IsProfiling()
1812 && SuspendThread(profiled_thread_) != (DWORD)-1) {
1813 context.ContextFlags = CONTEXT_FULL;
1814 if (GetThreadContext(profiled_thread_, &context) != 0) {
1815 #if V8_HOST_ARCH_X64
1816 sample.pc = reinterpret_cast<Address>(context.Rip);
1817 sample.sp = reinterpret_cast<Address>(context.Rsp);
1818 sample.fp = reinterpret_cast<Address>(context.Rbp);
1819 #else
1820 sample.pc = reinterpret_cast<Address>(context.Eip);
1821 sample.sp = reinterpret_cast<Address>(context.Esp);
1822 sample.fp = reinterpret_cast<Address>(context.Ebp);
1823 #endif
1824 sampler_->SampleStack(&sample);
1825 }
1826 ResumeThread(profiled_thread_);
1827 }
1828
1829 // We always sample the VM state.
1830 sample.state = Logger::state();
1831 // Invoke tick handler with program counter and stack pointer.
1832 sampler_->Tick(&sample);
1833
1834 // Wait until next sampling.
1835 Sleep(sampler_->interval_);
1836 }
1837 }
1838 };
1839
1840
1841 // Entry point for sampler thread.
SamplerEntry(void * arg)1842 static unsigned int __stdcall SamplerEntry(void* arg) {
1843 Sampler::PlatformData* data =
1844 reinterpret_cast<Sampler::PlatformData*>(arg);
1845 data->Runner();
1846 return 0;
1847 }
1848
1849
1850 // Initialize a profile sampler.
Sampler(int interval,bool profiling)1851 Sampler::Sampler(int interval, bool profiling)
1852 : interval_(interval), profiling_(profiling), active_(false) {
1853 data_ = new PlatformData(this);
1854 }
1855
1856
~Sampler()1857 Sampler::~Sampler() {
1858 delete data_;
1859 }
1860
1861
1862 // Start profiling.
Start()1863 void Sampler::Start() {
1864 // If we are profiling, we need to be able to access the calling
1865 // thread.
1866 if (IsProfiling()) {
1867 // Get a handle to the calling thread. This is the thread that we are
1868 // going to profile. We need to make a copy of the handle because we are
1869 // going to use it in the sampler thread. Using GetThreadHandle() will
1870 // not work in this case. We're using OpenThread because DuplicateHandle
1871 // for some reason doesn't work in Chrome's sandbox.
1872 data_->profiled_thread_ = OpenThread(THREAD_GET_CONTEXT |
1873 THREAD_SUSPEND_RESUME |
1874 THREAD_QUERY_INFORMATION,
1875 FALSE,
1876 GetCurrentThreadId());
1877 BOOL ok = data_->profiled_thread_ != NULL;
1878 if (!ok) return;
1879 }
1880
1881 // Start sampler thread.
1882 unsigned int tid;
1883 active_ = true;
1884 data_->sampler_thread_ = reinterpret_cast<HANDLE>(
1885 _beginthreadex(NULL, 0, SamplerEntry, data_, 0, &tid));
1886 // Set thread to high priority to increase sampling accuracy.
1887 SetThreadPriority(data_->sampler_thread_, THREAD_PRIORITY_TIME_CRITICAL);
1888 }
1889
1890
1891 // Stop profiling.
Stop()1892 void Sampler::Stop() {
1893 // Seting active to false triggers termination of the sampler
1894 // thread.
1895 active_ = false;
1896
1897 // Wait for sampler thread to terminate.
1898 WaitForSingleObject(data_->sampler_thread_, INFINITE);
1899
1900 // Release the thread handles
1901 CloseHandle(data_->sampler_thread_);
1902 CloseHandle(data_->profiled_thread_);
1903 }
1904
1905
1906 #endif // ENABLE_LOGGING_AND_PROFILING
1907
1908 } } // namespace v8::internal
1909