• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2006-2008 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 // Platform specific code for Win32.
29 #ifndef WIN32_LEAN_AND_MEAN
30 // WIN32_LEAN_AND_MEAN implies NOCRYPT and NOGDI.
31 #define WIN32_LEAN_AND_MEAN
32 #endif
33 #ifndef NOMINMAX
34 #define NOMINMAX
35 #endif
36 #ifndef NOKERNEL
37 #define NOKERNEL
38 #endif
39 #ifndef NOUSER
40 #define NOUSER
41 #endif
42 #ifndef NOSERVICE
43 #define NOSERVICE
44 #endif
45 #ifndef NOSOUND
46 #define NOSOUND
47 #endif
48 #ifndef NOMCX
49 #define NOMCX
50 #endif
51 // Require Windows XP or higher (this is required for the RtlCaptureContext
52 // function to be present).
53 #ifndef _WIN32_WINNT
54 #define _WIN32_WINNT 0x501
55 #endif
56 
57 #include <windows.h>
58 
59 #include <time.h>  // For LocalOffset() implementation.
60 #include <mmsystem.h>  // For timeGetTime().
61 #ifdef __MINGW32__
62 // Require Windows XP or higher when compiling with MinGW. This is for MinGW
63 // header files to expose getaddrinfo.
64 #undef _WIN32_WINNT
65 #define _WIN32_WINNT 0x501
66 #endif  // __MINGW32__
67 #ifndef __MINGW32__
68 #include <dbghelp.h>  // For SymLoadModule64 and al.
69 #endif  // __MINGW32__
70 #include <limits.h>  // For INT_MAX and al.
71 #include <tlhelp32.h>  // For Module32First and al.
72 
73 // These additional WIN32 includes have to be right here as the #undef's below
74 // makes it impossible to have them elsewhere.
75 #include <winsock2.h>
76 #include <ws2tcpip.h>
77 #include <process.h>  // for _beginthreadex()
78 #include <stdlib.h>
79 
80 #undef VOID
81 #undef DELETE
82 #undef IN
83 #undef THIS
84 #undef CONST
85 #undef NAN
86 #undef GetObject
87 #undef CreateMutex
88 #undef CreateSemaphore
89 
90 #include "v8.h"
91 
92 #include "platform.h"
93 
94 // Extra POSIX/ANSI routines for Win32 when when using Visual Studio C++. Please
95 // refer to The Open Group Base Specification for specification of the correct
96 // semantics for these functions.
97 // (http://www.opengroup.org/onlinepubs/000095399/)
98 #ifdef _MSC_VER
99 
100 namespace v8 {
101 namespace internal {
102 
103 // Test for finite value - usually defined in math.h
isfinite(double x)104 int isfinite(double x) {
105   return _finite(x);
106 }
107 
108 }  // namespace v8
109 }  // namespace internal
110 
111 // Test for a NaN (not a number) value - usually defined in math.h
isnan(double x)112 int isnan(double x) {
113   return _isnan(x);
114 }
115 
116 
117 // Test for infinity - usually defined in math.h
isinf(double x)118 int isinf(double x) {
119   return (_fpclass(x) & (_FPCLASS_PINF | _FPCLASS_NINF)) != 0;
120 }
121 
122 
123 // Test if x is less than y and both nominal - usually defined in math.h
isless(double x,double y)124 int isless(double x, double y) {
125   return isnan(x) || isnan(y) ? 0 : x < y;
126 }
127 
128 
129 // Test if x is greater than y and both nominal - usually defined in math.h
isgreater(double x,double y)130 int isgreater(double x, double y) {
131   return isnan(x) || isnan(y) ? 0 : x > y;
132 }
133 
134 
135 // Classify floating point number - usually defined in math.h
fpclassify(double x)136 int fpclassify(double x) {
137   // Use the MS-specific _fpclass() for classification.
138   int flags = _fpclass(x);
139 
140   // Determine class. We cannot use a switch statement because
141   // the _FPCLASS_ constants are defined as flags.
142   if (flags & (_FPCLASS_PN | _FPCLASS_NN)) return FP_NORMAL;
143   if (flags & (_FPCLASS_PZ | _FPCLASS_NZ)) return FP_ZERO;
144   if (flags & (_FPCLASS_PD | _FPCLASS_ND)) return FP_SUBNORMAL;
145   if (flags & (_FPCLASS_PINF | _FPCLASS_NINF)) return FP_INFINITE;
146 
147   // All cases should be covered by the code above.
148   ASSERT(flags & (_FPCLASS_SNAN | _FPCLASS_QNAN));
149   return FP_NAN;
150 }
151 
152 
153 // Test sign - usually defined in math.h
signbit(double x)154 int signbit(double x) {
155   // We need to take care of the special case of both positive
156   // and negative versions of zero.
157   if (x == 0)
158     return _fpclass(x) & _FPCLASS_NZ;
159   else
160     return x < 0;
161 }
162 
163 
164 // Case-insensitive bounded string comparisons. Use stricmp() on Win32. Usually
165 // defined in strings.h.
strncasecmp(const char * s1,const char * s2,int n)166 int strncasecmp(const char* s1, const char* s2, int n) {
167   return _strnicmp(s1, s2, n);
168 }
169 
170 #endif  // _MSC_VER
171 
172 
173 // Extra functions for MinGW. Most of these are the _s functions which are in
174 // the Microsoft Visual Studio C++ CRT.
175 #ifdef __MINGW32__
176 
localtime_s(tm * out_tm,const time_t * time)177 int localtime_s(tm* out_tm, const time_t* time) {
178   tm* posix_local_time_struct = localtime(time);
179   if (posix_local_time_struct == NULL) return 1;
180   *out_tm = *posix_local_time_struct;
181   return 0;
182 }
183 
184 
185 // Not sure this the correct interpretation of _mkgmtime
_mkgmtime(tm * timeptr)186 time_t _mkgmtime(tm* timeptr) {
187   return mktime(timeptr);
188 }
189 
190 
fopen_s(FILE ** pFile,const char * filename,const char * mode)191 int fopen_s(FILE** pFile, const char* filename, const char* mode) {
192   *pFile = fopen(filename, mode);
193   return *pFile != NULL ? 0 : 1;
194 }
195 
196 
_vsnprintf_s(char * buffer,size_t sizeOfBuffer,size_t count,const char * format,va_list argptr)197 int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
198                  const char* format, va_list argptr) {
199   return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
200 }
201 #define _TRUNCATE 0
202 
203 
strncpy_s(char * strDest,size_t numberOfElements,const char * strSource,size_t count)204 int strncpy_s(char* strDest, size_t numberOfElements,
205               const char* strSource, size_t count) {
206   strncpy(strDest, strSource, count);
207   return 0;
208 }
209 
210 #endif  // __MINGW32__
211 
212 // Generate a pseudo-random number in the range 0-2^31-1. Usually
213 // defined in stdlib.h. Missing in both Microsoft Visual Studio C++ and MinGW.
random()214 int random() {
215   return rand();
216 }
217 
218 
219 namespace v8 {
220 namespace internal {
221 
ceiling(double x)222 double ceiling(double x) {
223   return ceil(x);
224 }
225 
226 #ifdef _WIN64
227 typedef double (*ModuloFunction)(double, double);
228 
229 // Defined in codegen-x64.cc.
230 ModuloFunction CreateModuloFunction();
231 
modulo(double x,double y)232 double modulo(double x, double y) {
233   static ModuloFunction function = CreateModuloFunction();
234   return function(x, y);
235 }
236 #else  // Win32
237 
modulo(double x,double y)238 double modulo(double x, double y) {
239   // Workaround MS fmod bugs. ECMA-262 says:
240   // dividend is finite and divisor is an infinity => result equals dividend
241   // dividend is a zero and divisor is nonzero finite => result equals dividend
242   if (!(isfinite(x) && (!isfinite(y) && !isnan(y))) &&
243       !(x == 0 && (y != 0 && isfinite(y)))) {
244     x = fmod(x, y);
245   }
246   return x;
247 }
248 
249 #endif  // _WIN64
250 
251 // ----------------------------------------------------------------------------
252 // The Time class represents time on win32. A timestamp is represented as
253 // a 64-bit integer in 100 nano-seconds since January 1, 1601 (UTC). JavaScript
254 // timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
255 // January 1, 1970.
256 
257 class Time {
258  public:
259   // Constructors.
260   Time();
261   explicit Time(double jstime);
262   Time(int year, int mon, int day, int hour, int min, int sec);
263 
264   // Convert timestamp to JavaScript representation.
265   double ToJSTime();
266 
267   // Set timestamp to current time.
268   void SetToCurrentTime();
269 
270   // Returns the local timezone offset in milliseconds east of UTC. This is
271   // the number of milliseconds you must add to UTC to get local time, i.e.
272   // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
273   // routine also takes into account whether daylight saving is effect
274   // at the time.
275   int64_t LocalOffset();
276 
277   // Returns the daylight savings time offset for the time in milliseconds.
278   int64_t DaylightSavingsOffset();
279 
280   // Returns a string identifying the current timezone for the
281   // timestamp taking into account daylight saving.
282   char* LocalTimezone();
283 
284  private:
285   // Constants for time conversion.
286   static const int64_t kTimeEpoc = 116444736000000000LL;
287   static const int64_t kTimeScaler = 10000;
288   static const int64_t kMsPerMinute = 60000;
289 
290   // Constants for timezone information.
291   static const int kTzNameSize = 128;
292   static const bool kShortTzNames = false;
293 
294   // Timezone information. We need to have static buffers for the
295   // timezone names because we return pointers to these in
296   // LocalTimezone().
297   static bool tz_initialized_;
298   static TIME_ZONE_INFORMATION tzinfo_;
299   static char std_tz_name_[kTzNameSize];
300   static char dst_tz_name_[kTzNameSize];
301 
302   // Initialize the timezone information (if not already done).
303   static void TzSet();
304 
305   // Guess the name of the timezone from the bias.
306   static const char* GuessTimezoneNameFromBias(int bias);
307 
308   // Return whether or not daylight savings time is in effect at this time.
309   bool InDST();
310 
311   // Return the difference (in milliseconds) between this timestamp and
312   // another timestamp.
313   int64_t Diff(Time* other);
314 
315   // Accessor for FILETIME representation.
ft()316   FILETIME& ft() { return time_.ft_; }
317 
318   // Accessor for integer representation.
t()319   int64_t& t() { return time_.t_; }
320 
321   // Although win32 uses 64-bit integers for representing timestamps,
322   // these are packed into a FILETIME structure. The FILETIME structure
323   // is just a struct representing a 64-bit integer. The TimeStamp union
324   // allows access to both a FILETIME and an integer representation of
325   // the timestamp.
326   union TimeStamp {
327     FILETIME ft_;
328     int64_t t_;
329   };
330 
331   TimeStamp time_;
332 };
333 
334 // Static variables.
335 bool Time::tz_initialized_ = false;
336 TIME_ZONE_INFORMATION Time::tzinfo_;
337 char Time::std_tz_name_[kTzNameSize];
338 char Time::dst_tz_name_[kTzNameSize];
339 
340 
341 // Initialize timestamp to start of epoc.
Time()342 Time::Time() {
343   t() = 0;
344 }
345 
346 
347 // Initialize timestamp from a JavaScript timestamp.
Time(double jstime)348 Time::Time(double jstime) {
349   t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
350 }
351 
352 
353 // Initialize timestamp from date/time components.
Time(int year,int mon,int day,int hour,int min,int sec)354 Time::Time(int year, int mon, int day, int hour, int min, int sec) {
355   SYSTEMTIME st;
356   st.wYear = year;
357   st.wMonth = mon;
358   st.wDay = day;
359   st.wHour = hour;
360   st.wMinute = min;
361   st.wSecond = sec;
362   st.wMilliseconds = 0;
363   SystemTimeToFileTime(&st, &ft());
364 }
365 
366 
367 // Convert timestamp to JavaScript timestamp.
ToJSTime()368 double Time::ToJSTime() {
369   return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
370 }
371 
372 
373 // Guess the name of the timezone from the bias.
374 // The guess is very biased towards the northern hemisphere.
GuessTimezoneNameFromBias(int bias)375 const char* Time::GuessTimezoneNameFromBias(int bias) {
376   static const int kHour = 60;
377   switch (-bias) {
378     case -9*kHour: return "Alaska";
379     case -8*kHour: return "Pacific";
380     case -7*kHour: return "Mountain";
381     case -6*kHour: return "Central";
382     case -5*kHour: return "Eastern";
383     case -4*kHour: return "Atlantic";
384     case  0*kHour: return "GMT";
385     case +1*kHour: return "Central Europe";
386     case +2*kHour: return "Eastern Europe";
387     case +3*kHour: return "Russia";
388     case +5*kHour + 30: return "India";
389     case +8*kHour: return "China";
390     case +9*kHour: return "Japan";
391     case +12*kHour: return "New Zealand";
392     default: return "Local";
393   }
394 }
395 
396 
397 // Initialize timezone information. The timezone information is obtained from
398 // windows. If we cannot get the timezone information we fall back to CET.
399 // Please notice that this code is not thread-safe.
TzSet()400 void Time::TzSet() {
401   // Just return if timezone information has already been initialized.
402   if (tz_initialized_) return;
403 
404   // Initialize POSIX time zone data.
405   _tzset();
406   // Obtain timezone information from operating system.
407   memset(&tzinfo_, 0, sizeof(tzinfo_));
408   if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
409     // If we cannot get timezone information we fall back to CET.
410     tzinfo_.Bias = -60;
411     tzinfo_.StandardDate.wMonth = 10;
412     tzinfo_.StandardDate.wDay = 5;
413     tzinfo_.StandardDate.wHour = 3;
414     tzinfo_.StandardBias = 0;
415     tzinfo_.DaylightDate.wMonth = 3;
416     tzinfo_.DaylightDate.wDay = 5;
417     tzinfo_.DaylightDate.wHour = 2;
418     tzinfo_.DaylightBias = -60;
419   }
420 
421   // Make standard and DST timezone names.
422   OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize),
423                "%S",
424                tzinfo_.StandardName);
425   std_tz_name_[kTzNameSize - 1] = '\0';
426   OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize),
427                "%S",
428                tzinfo_.DaylightName);
429   dst_tz_name_[kTzNameSize - 1] = '\0';
430 
431   // If OS returned empty string or resource id (like "@tzres.dll,-211")
432   // simply guess the name from the UTC bias of the timezone.
433   // To properly resolve the resource identifier requires a library load,
434   // which is not possible in a sandbox.
435   if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
436     OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize - 1),
437                  "%s Standard Time",
438                  GuessTimezoneNameFromBias(tzinfo_.Bias));
439   }
440   if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
441     OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize - 1),
442                  "%s Daylight Time",
443                  GuessTimezoneNameFromBias(tzinfo_.Bias));
444   }
445 
446   // Timezone information initialized.
447   tz_initialized_ = true;
448 }
449 
450 
451 // Return the difference in milliseconds between this and another timestamp.
Diff(Time * other)452 int64_t Time::Diff(Time* other) {
453   return (t() - other->t()) / kTimeScaler;
454 }
455 
456 
457 // Set timestamp to current time.
SetToCurrentTime()458 void Time::SetToCurrentTime() {
459   // The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
460   // Because we're fast, we like fast timers which have at least a
461   // 1ms resolution.
462   //
463   // timeGetTime() provides 1ms granularity when combined with
464   // timeBeginPeriod().  If the host application for v8 wants fast
465   // timers, it can use timeBeginPeriod to increase the resolution.
466   //
467   // Using timeGetTime() has a drawback because it is a 32bit value
468   // and hence rolls-over every ~49days.
469   //
470   // To use the clock, we use GetSystemTimeAsFileTime as our base;
471   // and then use timeGetTime to extrapolate current time from the
472   // start time.  To deal with rollovers, we resync the clock
473   // any time when more than kMaxClockElapsedTime has passed or
474   // whenever timeGetTime creates a rollover.
475 
476   static bool initialized = false;
477   static TimeStamp init_time;
478   static DWORD init_ticks;
479   static const int64_t kHundredNanosecondsPerSecond = 10000000;
480   static const int64_t kMaxClockElapsedTime =
481       60*kHundredNanosecondsPerSecond;  // 1 minute
482 
483   // If we are uninitialized, we need to resync the clock.
484   bool needs_resync = !initialized;
485 
486   // Get the current time.
487   TimeStamp time_now;
488   GetSystemTimeAsFileTime(&time_now.ft_);
489   DWORD ticks_now = timeGetTime();
490 
491   // Check if we need to resync due to clock rollover.
492   needs_resync |= ticks_now < init_ticks;
493 
494   // Check if we need to resync due to elapsed time.
495   needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
496 
497   // Resync the clock if necessary.
498   if (needs_resync) {
499     GetSystemTimeAsFileTime(&init_time.ft_);
500     init_ticks = ticks_now = timeGetTime();
501     initialized = true;
502   }
503 
504   // Finally, compute the actual time.  Why is this so hard.
505   DWORD elapsed = ticks_now - init_ticks;
506   this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
507 }
508 
509 
510 // Return the local timezone offset in milliseconds east of UTC. This
511 // takes into account whether daylight saving is in effect at the time.
512 // Only times in the 32-bit Unix range may be passed to this function.
513 // Also, adding the time-zone offset to the input must not overflow.
514 // The function EquivalentTime() in date.js guarantees this.
LocalOffset()515 int64_t Time::LocalOffset() {
516   // Initialize timezone information, if needed.
517   TzSet();
518 
519   Time rounded_to_second(*this);
520   rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler *
521       1000 * kTimeScaler;
522   // Convert to local time using POSIX localtime function.
523   // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
524   // very slow.  Other browsers use localtime().
525 
526   // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
527   // POSIX seconds past 1/1/1970 0:00:00.
528   double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
529   if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
530     return 0;
531   }
532   // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
533   time_t posix_time = static_cast<time_t>(unchecked_posix_time);
534 
535   // Convert to local time, as struct with fields for day, hour, year, etc.
536   tm posix_local_time_struct;
537   if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
538   // Convert local time in struct to POSIX time as if it were a UTC time.
539   time_t local_posix_time = _mkgmtime(&posix_local_time_struct);
540   Time localtime(1000.0 * local_posix_time);
541 
542   return localtime.Diff(&rounded_to_second);
543 }
544 
545 
546 // Return whether or not daylight savings time is in effect at this time.
InDST()547 bool Time::InDST() {
548   // Initialize timezone information, if needed.
549   TzSet();
550 
551   // Determine if DST is in effect at the specified time.
552   bool in_dst = false;
553   if (tzinfo_.StandardDate.wMonth != 0 || tzinfo_.DaylightDate.wMonth != 0) {
554     // Get the local timezone offset for the timestamp in milliseconds.
555     int64_t offset = LocalOffset();
556 
557     // Compute the offset for DST. The bias parameters in the timezone info
558     // are specified in minutes. These must be converted to milliseconds.
559     int64_t dstofs = -(tzinfo_.Bias + tzinfo_.DaylightBias) * kMsPerMinute;
560 
561     // If the local time offset equals the timezone bias plus the daylight
562     // bias then DST is in effect.
563     in_dst = offset == dstofs;
564   }
565 
566   return in_dst;
567 }
568 
569 
570 // Return the daylight savings time offset for this time.
DaylightSavingsOffset()571 int64_t Time::DaylightSavingsOffset() {
572   return InDST() ? 60 * kMsPerMinute : 0;
573 }
574 
575 
576 // Returns a string identifying the current timezone for the
577 // timestamp taking into account daylight saving.
LocalTimezone()578 char* Time::LocalTimezone() {
579   // Return the standard or DST time zone name based on whether daylight
580   // saving is in effect at the given time.
581   return InDST() ? dst_tz_name_ : std_tz_name_;
582 }
583 
584 
Setup()585 void OS::Setup() {
586   // Seed the random number generator.
587   // Convert the current time to a 64-bit integer first, before converting it
588   // to an unsigned. Going directly can cause an overflow and the seed to be
589   // set to all ones. The seed will be identical for different instances that
590   // call this setup code within the same millisecond.
591   uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
592   srand(static_cast<unsigned int>(seed));
593 }
594 
595 
596 // Returns the accumulated user time for thread.
GetUserTime(uint32_t * secs,uint32_t * usecs)597 int OS::GetUserTime(uint32_t* secs,  uint32_t* usecs) {
598   FILETIME dummy;
599   uint64_t usertime;
600 
601   // Get the amount of time that the thread has executed in user mode.
602   if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
603                       reinterpret_cast<FILETIME*>(&usertime))) return -1;
604 
605   // Adjust the resolution to micro-seconds.
606   usertime /= 10;
607 
608   // Convert to seconds and microseconds
609   *secs = static_cast<uint32_t>(usertime / 1000000);
610   *usecs = static_cast<uint32_t>(usertime % 1000000);
611   return 0;
612 }
613 
614 
615 // Returns current time as the number of milliseconds since
616 // 00:00:00 UTC, January 1, 1970.
TimeCurrentMillis()617 double OS::TimeCurrentMillis() {
618   Time t;
619   t.SetToCurrentTime();
620   return t.ToJSTime();
621 }
622 
623 // Returns the tickcounter based on timeGetTime.
Ticks()624 int64_t OS::Ticks() {
625   return timeGetTime() * 1000;  // Convert to microseconds.
626 }
627 
628 
629 // Returns a string identifying the current timezone taking into
630 // account daylight saving.
LocalTimezone(double time)631 const char* OS::LocalTimezone(double time) {
632   return Time(time).LocalTimezone();
633 }
634 
635 
636 // Returns the local time offset in milliseconds east of UTC without
637 // taking daylight savings time into account.
LocalTimeOffset()638 double OS::LocalTimeOffset() {
639   // Use current time, rounded to the millisecond.
640   Time t(TimeCurrentMillis());
641   // Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
642   return static_cast<double>(t.LocalOffset() - t.DaylightSavingsOffset());
643 }
644 
645 
646 // Returns the daylight savings offset in milliseconds for the given
647 // time.
DaylightSavingsOffset(double time)648 double OS::DaylightSavingsOffset(double time) {
649   int64_t offset = Time(time).DaylightSavingsOffset();
650   return static_cast<double>(offset);
651 }
652 
653 
654 // ----------------------------------------------------------------------------
655 // Win32 console output.
656 //
657 // If a Win32 application is linked as a console application it has a normal
658 // standard output and standard error. In this case normal printf works fine
659 // for output. However, if the application is linked as a GUI application,
660 // the process doesn't have a console, and therefore (debugging) output is lost.
661 // This is the case if we are embedded in a windows program (like a browser).
662 // In order to be able to get debug output in this case the the debugging
663 // facility using OutputDebugString. This output goes to the active debugger
664 // for the process (if any). Else the output can be monitored using DBMON.EXE.
665 
666 enum OutputMode {
667   UNKNOWN,  // Output method has not yet been determined.
668   CONSOLE,  // Output is written to stdout.
669   ODS       // Output is written to debug facility.
670 };
671 
672 static OutputMode output_mode = UNKNOWN;  // Current output mode.
673 
674 
675 // Determine if the process has a console for output.
HasConsole()676 static bool HasConsole() {
677   // Only check the first time. Eventual race conditions are not a problem,
678   // because all threads will eventually determine the same mode.
679   if (output_mode == UNKNOWN) {
680     // We cannot just check that the standard output is attached to a console
681     // because this would fail if output is redirected to a file. Therefore we
682     // say that a process does not have an output console if either the
683     // standard output handle is invalid or its file type is unknown.
684     if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
685         GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
686       output_mode = CONSOLE;
687     else
688       output_mode = ODS;
689   }
690   return output_mode == CONSOLE;
691 }
692 
693 
VPrintHelper(FILE * stream,const char * format,va_list args)694 static void VPrintHelper(FILE* stream, const char* format, va_list args) {
695   if (HasConsole()) {
696     vfprintf(stream, format, args);
697   } else {
698     // It is important to use safe print here in order to avoid
699     // overflowing the buffer. We might truncate the output, but this
700     // does not crash.
701     EmbeddedVector<char, 4096> buffer;
702     OS::VSNPrintF(buffer, format, args);
703     OutputDebugStringA(buffer.start());
704   }
705 }
706 
707 
FOpen(const char * path,const char * mode)708 FILE* OS::FOpen(const char* path, const char* mode) {
709   FILE* result;
710   if (fopen_s(&result, path, mode) == 0) {
711     return result;
712   } else {
713     return NULL;
714   }
715 }
716 
717 
718 // Open log file in binary mode to avoid /n -> /r/n conversion.
719 const char* OS::LogFileOpenMode = "wb";
720 
721 
722 // Print (debug) message to console.
Print(const char * format,...)723 void OS::Print(const char* format, ...) {
724   va_list args;
725   va_start(args, format);
726   VPrint(format, args);
727   va_end(args);
728 }
729 
730 
VPrint(const char * format,va_list args)731 void OS::VPrint(const char* format, va_list args) {
732   VPrintHelper(stdout, format, args);
733 }
734 
735 
736 // Print error message to console.
PrintError(const char * format,...)737 void OS::PrintError(const char* format, ...) {
738   va_list args;
739   va_start(args, format);
740   VPrintError(format, args);
741   va_end(args);
742 }
743 
744 
VPrintError(const char * format,va_list args)745 void OS::VPrintError(const char* format, va_list args) {
746   VPrintHelper(stderr, format, args);
747 }
748 
749 
SNPrintF(Vector<char> str,const char * format,...)750 int OS::SNPrintF(Vector<char> str, const char* format, ...) {
751   va_list args;
752   va_start(args, format);
753   int result = VSNPrintF(str, format, args);
754   va_end(args);
755   return result;
756 }
757 
758 
VSNPrintF(Vector<char> str,const char * format,va_list args)759 int OS::VSNPrintF(Vector<char> str, const char* format, va_list args) {
760   int n = _vsnprintf_s(str.start(), str.length(), _TRUNCATE, format, args);
761   // Make sure to zero-terminate the string if the output was
762   // truncated or if there was an error.
763   if (n < 0 || n >= str.length()) {
764     str[str.length() - 1] = '\0';
765     return -1;
766   } else {
767     return n;
768   }
769 }
770 
771 
StrChr(char * str,int c)772 char* OS::StrChr(char* str, int c) {
773   return const_cast<char*>(strchr(str, c));
774 }
775 
776 
StrNCpy(Vector<char> dest,const char * src,size_t n)777 void OS::StrNCpy(Vector<char> dest, const char* src, size_t n) {
778   int result = strncpy_s(dest.start(), dest.length(), src, n);
779   USE(result);
780   ASSERT(result == 0);
781 }
782 
783 
784 // We keep the lowest and highest addresses mapped as a quick way of
785 // determining that pointers are outside the heap (used mostly in assertions
786 // and verification).  The estimate is conservative, ie, not all addresses in
787 // 'allocated' space are actually allocated to our heap.  The range is
788 // [lowest, highest), inclusive on the low and and exclusive on the high end.
789 static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
790 static void* highest_ever_allocated = reinterpret_cast<void*>(0);
791 
792 
UpdateAllocatedSpaceLimits(void * address,int size)793 static void UpdateAllocatedSpaceLimits(void* address, int size) {
794   lowest_ever_allocated = Min(lowest_ever_allocated, address);
795   highest_ever_allocated =
796       Max(highest_ever_allocated,
797           reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
798 }
799 
800 
IsOutsideAllocatedSpace(void * pointer)801 bool OS::IsOutsideAllocatedSpace(void* pointer) {
802   if (pointer < lowest_ever_allocated || pointer >= highest_ever_allocated)
803     return true;
804   // Ask the Windows API
805   if (IsBadWritePtr(pointer, 1))
806     return true;
807   return false;
808 }
809 
810 
811 // Get the system's page size used by VirtualAlloc() or the next power
812 // of two. The reason for always returning a power of two is that the
813 // rounding up in OS::Allocate expects that.
GetPageSize()814 static size_t GetPageSize() {
815   static size_t page_size = 0;
816   if (page_size == 0) {
817     SYSTEM_INFO info;
818     GetSystemInfo(&info);
819     page_size = RoundUpToPowerOf2(info.dwPageSize);
820   }
821   return page_size;
822 }
823 
824 
825 // The allocation alignment is the guaranteed alignment for
826 // VirtualAlloc'ed blocks of memory.
AllocateAlignment()827 size_t OS::AllocateAlignment() {
828   static size_t allocate_alignment = 0;
829   if (allocate_alignment == 0) {
830     SYSTEM_INFO info;
831     GetSystemInfo(&info);
832     allocate_alignment = info.dwAllocationGranularity;
833   }
834   return allocate_alignment;
835 }
836 
837 
Allocate(const size_t requested,size_t * allocated,bool is_executable)838 void* OS::Allocate(const size_t requested,
839                    size_t* allocated,
840                    bool is_executable) {
841   // VirtualAlloc rounds allocated size to page size automatically.
842   size_t msize = RoundUp(requested, static_cast<int>(GetPageSize()));
843 
844   // Windows XP SP2 allows Data Excution Prevention (DEP).
845   int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
846   LPVOID mbase = VirtualAlloc(NULL, msize, MEM_COMMIT | MEM_RESERVE, prot);
847   if (mbase == NULL) {
848     LOG(StringEvent("OS::Allocate", "VirtualAlloc failed"));
849     return NULL;
850   }
851 
852   ASSERT(IsAligned(reinterpret_cast<size_t>(mbase), OS::AllocateAlignment()));
853 
854   *allocated = msize;
855   UpdateAllocatedSpaceLimits(mbase, static_cast<int>(msize));
856   return mbase;
857 }
858 
859 
Free(void * address,const size_t size)860 void OS::Free(void* address, const size_t size) {
861   // TODO(1240712): VirtualFree has a return value which is ignored here.
862   VirtualFree(address, 0, MEM_RELEASE);
863   USE(size);
864 }
865 
866 
867 #ifdef ENABLE_HEAP_PROTECTION
868 
Protect(void * address,size_t size)869 void OS::Protect(void* address, size_t size) {
870   // TODO(1240712): VirtualProtect has a return value which is ignored here.
871   DWORD old_protect;
872   VirtualProtect(address, size, PAGE_READONLY, &old_protect);
873 }
874 
875 
Unprotect(void * address,size_t size,bool is_executable)876 void OS::Unprotect(void* address, size_t size, bool is_executable) {
877   // TODO(1240712): VirtualProtect has a return value which is ignored here.
878   DWORD new_protect = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
879   DWORD old_protect;
880   VirtualProtect(address, size, new_protect, &old_protect);
881 }
882 
883 #endif
884 
885 
Sleep(int milliseconds)886 void OS::Sleep(int milliseconds) {
887   ::Sleep(milliseconds);
888 }
889 
890 
Abort()891 void OS::Abort() {
892   if (!IsDebuggerPresent()) {
893 #ifdef _MSC_VER
894     // Make the MSVCRT do a silent abort.
895     _set_abort_behavior(0, _WRITE_ABORT_MSG);
896     _set_abort_behavior(0, _CALL_REPORTFAULT);
897 #endif  // _MSC_VER
898     abort();
899   } else {
900     DebugBreak();
901   }
902 }
903 
904 
DebugBreak()905 void OS::DebugBreak() {
906 #ifdef _MSC_VER
907   __debugbreak();
908 #else
909   ::DebugBreak();
910 #endif
911 }
912 
913 
914 class Win32MemoryMappedFile : public OS::MemoryMappedFile {
915  public:
Win32MemoryMappedFile(HANDLE file,HANDLE file_mapping,void * memory)916   Win32MemoryMappedFile(HANDLE file, HANDLE file_mapping, void* memory)
917     : file_(file), file_mapping_(file_mapping), memory_(memory) { }
918   virtual ~Win32MemoryMappedFile();
memory()919   virtual void* memory() { return memory_; }
920  private:
921   HANDLE file_;
922   HANDLE file_mapping_;
923   void* memory_;
924 };
925 
926 
create(const char * name,int size,void * initial)927 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
928     void* initial) {
929   // Open a physical file
930   HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
931       FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 0, NULL);
932   if (file == NULL) return NULL;
933   // Create a file mapping for the physical file
934   HANDLE file_mapping = CreateFileMapping(file, NULL,
935       PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
936   if (file_mapping == NULL) return NULL;
937   // Map a view of the file into memory
938   void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
939   if (memory) memmove(memory, initial, size);
940   return new Win32MemoryMappedFile(file, file_mapping, memory);
941 }
942 
943 
~Win32MemoryMappedFile()944 Win32MemoryMappedFile::~Win32MemoryMappedFile() {
945   if (memory_ != NULL)
946     UnmapViewOfFile(memory_);
947   CloseHandle(file_mapping_);
948   CloseHandle(file_);
949 }
950 
951 
952 // The following code loads functions defined in DbhHelp.h and TlHelp32.h
953 // dynamically. This is to avoid being depending on dbghelp.dll and
954 // tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
955 // kernel32.dll at some point so loading functions defines in TlHelp32.h
956 // dynamically might not be necessary any more - for some versions of Windows?).
957 
958 // Function pointers to functions dynamically loaded from dbghelp.dll.
959 #define DBGHELP_FUNCTION_LIST(V)  \
960   V(SymInitialize)                \
961   V(SymGetOptions)                \
962   V(SymSetOptions)                \
963   V(SymGetSearchPath)             \
964   V(SymLoadModule64)              \
965   V(StackWalk64)                  \
966   V(SymGetSymFromAddr64)          \
967   V(SymGetLineFromAddr64)         \
968   V(SymFunctionTableAccess64)     \
969   V(SymGetModuleBase64)
970 
971 // Function pointers to functions dynamically loaded from dbghelp.dll.
972 #define TLHELP32_FUNCTION_LIST(V)  \
973   V(CreateToolhelp32Snapshot)      \
974   V(Module32FirstW)                \
975   V(Module32NextW)
976 
977 // Define the decoration to use for the type and variable name used for
978 // dynamically loaded DLL function..
979 #define DLL_FUNC_TYPE(name) _##name##_
980 #define DLL_FUNC_VAR(name) _##name
981 
982 // Define the type for each dynamically loaded DLL function. The function
983 // definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
984 // from the Windows include files are redefined here to have the function
985 // definitions to be as close to the ones in the original .h files as possible.
986 #ifndef IN
987 #define IN
988 #endif
989 #ifndef VOID
990 #define VOID void
991 #endif
992 
993 // DbgHelp isn't supported on MinGW yet
994 #ifndef __MINGW32__
995 // DbgHelp.h functions.
996 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess,
997                                                        IN PSTR UserSearchPath,
998                                                        IN BOOL fInvadeProcess);
999 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID);
1000 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions);
1001 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))(
1002     IN HANDLE hProcess,
1003     OUT PSTR SearchPath,
1004     IN DWORD SearchPathLength);
1005 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))(
1006     IN HANDLE hProcess,
1007     IN HANDLE hFile,
1008     IN PSTR ImageName,
1009     IN PSTR ModuleName,
1010     IN DWORD64 BaseOfDll,
1011     IN DWORD SizeOfDll);
1012 typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))(
1013     DWORD MachineType,
1014     HANDLE hProcess,
1015     HANDLE hThread,
1016     LPSTACKFRAME64 StackFrame,
1017     PVOID ContextRecord,
1018     PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
1019     PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
1020     PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
1021     PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
1022 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))(
1023     IN HANDLE hProcess,
1024     IN DWORD64 qwAddr,
1025     OUT PDWORD64 pdwDisplacement,
1026     OUT PIMAGEHLP_SYMBOL64 Symbol);
1027 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))(
1028     IN HANDLE hProcess,
1029     IN DWORD64 qwAddr,
1030     OUT PDWORD pdwDisplacement,
1031     OUT PIMAGEHLP_LINE64 Line64);
1032 // DbgHelp.h typedefs. Implementation found in dbghelp.dll.
1033 typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))(
1034     HANDLE hProcess,
1035     DWORD64 AddrBase);  // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
1036 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))(
1037     HANDLE hProcess,
1038     DWORD64 AddrBase);  // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
1039 
1040 // TlHelp32.h functions.
1041 typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))(
1042     DWORD dwFlags,
1043     DWORD th32ProcessID);
1044 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot,
1045                                                         LPMODULEENTRY32W lpme);
1046 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot,
1047                                                        LPMODULEENTRY32W lpme);
1048 
1049 #undef IN
1050 #undef VOID
1051 
1052 // Declare a variable for each dynamically loaded DLL function.
1053 #define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL;
1054 DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)1055 TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
1056 #undef DEF_DLL_FUNCTION
1057 
1058 // Load the functions. This function has a lot of "ugly" macros in order to
1059 // keep down code duplication.
1060 
1061 static bool LoadDbgHelpAndTlHelp32() {
1062   static bool dbghelp_loaded = false;
1063 
1064   if (dbghelp_loaded) return true;
1065 
1066   HMODULE module;
1067 
1068   // Load functions from the dbghelp.dll module.
1069   module = LoadLibrary(TEXT("dbghelp.dll"));
1070   if (module == NULL) {
1071     return false;
1072   }
1073 
1074 #define LOAD_DLL_FUNC(name)                                                 \
1075   DLL_FUNC_VAR(name) =                                                      \
1076       reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1077 
1078 DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
1079 
1080 #undef LOAD_DLL_FUNC
1081 
1082   // Load functions from the kernel32.dll module (the TlHelp32.h function used
1083   // to be in tlhelp32.dll but are now moved to kernel32.dll).
1084   module = LoadLibrary(TEXT("kernel32.dll"));
1085   if (module == NULL) {
1086     return false;
1087   }
1088 
1089 #define LOAD_DLL_FUNC(name)                                                 \
1090   DLL_FUNC_VAR(name) =                                                      \
1091       reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1092 
1093 TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
1094 
1095 #undef LOAD_DLL_FUNC
1096 
1097   // Check that all functions where loaded.
1098   bool result =
1099 #define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) &&
1100 
1101 DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
1102 TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
1103 
1104 #undef DLL_FUNC_LOADED
1105   true;
1106 
1107   dbghelp_loaded = result;
1108   return result;
1109   // NOTE: The modules are never unloaded and will stay around until the
1110   // application is closed.
1111 }
1112 
1113 
1114 // Load the symbols for generating stack traces.
LoadSymbols(HANDLE process_handle)1115 static bool LoadSymbols(HANDLE process_handle) {
1116   static bool symbols_loaded = false;
1117 
1118   if (symbols_loaded) return true;
1119 
1120   BOOL ok;
1121 
1122   // Initialize the symbol engine.
1123   ok = _SymInitialize(process_handle,  // hProcess
1124                       NULL,            // UserSearchPath
1125                       FALSE);          // fInvadeProcess
1126   if (!ok) return false;
1127 
1128   DWORD options = _SymGetOptions();
1129   options |= SYMOPT_LOAD_LINES;
1130   options |= SYMOPT_FAIL_CRITICAL_ERRORS;
1131   options = _SymSetOptions(options);
1132 
1133   char buf[OS::kStackWalkMaxNameLen] = {0};
1134   ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
1135   if (!ok) {
1136     int err = GetLastError();
1137     PrintF("%d\n", err);
1138     return false;
1139   }
1140 
1141   HANDLE snapshot = _CreateToolhelp32Snapshot(
1142       TH32CS_SNAPMODULE,       // dwFlags
1143       GetCurrentProcessId());  // th32ProcessId
1144   if (snapshot == INVALID_HANDLE_VALUE) return false;
1145   MODULEENTRY32W module_entry;
1146   module_entry.dwSize = sizeof(module_entry);  // Set the size of the structure.
1147   BOOL cont = _Module32FirstW(snapshot, &module_entry);
1148   while (cont) {
1149     DWORD64 base;
1150     // NOTE the SymLoadModule64 function has the peculiarity of accepting a
1151     // both unicode and ASCII strings even though the parameter is PSTR.
1152     base = _SymLoadModule64(
1153         process_handle,                                       // hProcess
1154         0,                                                    // hFile
1155         reinterpret_cast<PSTR>(module_entry.szExePath),       // ImageName
1156         reinterpret_cast<PSTR>(module_entry.szModule),        // ModuleName
1157         reinterpret_cast<DWORD64>(module_entry.modBaseAddr),  // BaseOfDll
1158         module_entry.modBaseSize);                            // SizeOfDll
1159     if (base == 0) {
1160       int err = GetLastError();
1161       if (err != ERROR_MOD_NOT_FOUND &&
1162           err != ERROR_INVALID_HANDLE) return false;
1163     }
1164     LOG(SharedLibraryEvent(
1165             module_entry.szExePath,
1166             reinterpret_cast<unsigned int>(module_entry.modBaseAddr),
1167             reinterpret_cast<unsigned int>(module_entry.modBaseAddr +
1168                                            module_entry.modBaseSize)));
1169     cont = _Module32NextW(snapshot, &module_entry);
1170   }
1171   CloseHandle(snapshot);
1172 
1173   symbols_loaded = true;
1174   return true;
1175 }
1176 
1177 
LogSharedLibraryAddresses()1178 void OS::LogSharedLibraryAddresses() {
1179   // SharedLibraryEvents are logged when loading symbol information.
1180   // Only the shared libraries loaded at the time of the call to
1181   // LogSharedLibraryAddresses are logged.  DLLs loaded after
1182   // initialization are not accounted for.
1183   if (!LoadDbgHelpAndTlHelp32()) return;
1184   HANDLE process_handle = GetCurrentProcess();
1185   LoadSymbols(process_handle);
1186 }
1187 
1188 
1189 // Walk the stack using the facilities in dbghelp.dll and tlhelp32.dll
1190 
1191 // Switch off warning 4748 (/GS can not protect parameters and local variables
1192 // from local buffer overrun because optimizations are disabled in function) as
1193 // it is triggered by the use of inline assembler.
1194 #pragma warning(push)
1195 #pragma warning(disable : 4748)
StackWalk(Vector<OS::StackFrame> frames)1196 int OS::StackWalk(Vector<OS::StackFrame> frames) {
1197   BOOL ok;
1198 
1199   // Load the required functions from DLL's.
1200   if (!LoadDbgHelpAndTlHelp32()) return kStackWalkError;
1201 
1202   // Get the process and thread handles.
1203   HANDLE process_handle = GetCurrentProcess();
1204   HANDLE thread_handle = GetCurrentThread();
1205 
1206   // Read the symbols.
1207   if (!LoadSymbols(process_handle)) return kStackWalkError;
1208 
1209   // Capture current context.
1210   CONTEXT context;
1211   RtlCaptureContext(&context);
1212 
1213   // Initialize the stack walking
1214   STACKFRAME64 stack_frame;
1215   memset(&stack_frame, 0, sizeof(stack_frame));
1216 #ifdef  _WIN64
1217   stack_frame.AddrPC.Offset = context.Rip;
1218   stack_frame.AddrFrame.Offset = context.Rbp;
1219   stack_frame.AddrStack.Offset = context.Rsp;
1220 #else
1221   stack_frame.AddrPC.Offset = context.Eip;
1222   stack_frame.AddrFrame.Offset = context.Ebp;
1223   stack_frame.AddrStack.Offset = context.Esp;
1224 #endif
1225   stack_frame.AddrPC.Mode = AddrModeFlat;
1226   stack_frame.AddrFrame.Mode = AddrModeFlat;
1227   stack_frame.AddrStack.Mode = AddrModeFlat;
1228   int frames_count = 0;
1229 
1230   // Collect stack frames.
1231   int frames_size = frames.length();
1232   while (frames_count < frames_size) {
1233     ok = _StackWalk64(
1234         IMAGE_FILE_MACHINE_I386,    // MachineType
1235         process_handle,             // hProcess
1236         thread_handle,              // hThread
1237         &stack_frame,               // StackFrame
1238         &context,                   // ContextRecord
1239         NULL,                       // ReadMemoryRoutine
1240         _SymFunctionTableAccess64,  // FunctionTableAccessRoutine
1241         _SymGetModuleBase64,        // GetModuleBaseRoutine
1242         NULL);                      // TranslateAddress
1243     if (!ok) break;
1244 
1245     // Store the address.
1246     ASSERT((stack_frame.AddrPC.Offset >> 32) == 0);  // 32-bit address.
1247     frames[frames_count].address =
1248         reinterpret_cast<void*>(stack_frame.AddrPC.Offset);
1249 
1250     // Try to locate a symbol for this frame.
1251     DWORD64 symbol_displacement;
1252     IMAGEHLP_SYMBOL64* symbol = NULL;
1253     symbol = NewArray<IMAGEHLP_SYMBOL64>(kStackWalkMaxNameLen);
1254     if (!symbol) return kStackWalkError;  // Out of memory.
1255     memset(symbol, 0, sizeof(IMAGEHLP_SYMBOL64) + kStackWalkMaxNameLen);
1256     symbol->SizeOfStruct = sizeof(IMAGEHLP_SYMBOL64);
1257     symbol->MaxNameLength = kStackWalkMaxNameLen;
1258     ok = _SymGetSymFromAddr64(process_handle,             // hProcess
1259                               stack_frame.AddrPC.Offset,  // Address
1260                               &symbol_displacement,       // Displacement
1261                               symbol);                    // Symbol
1262     if (ok) {
1263       // Try to locate more source information for the symbol.
1264       IMAGEHLP_LINE64 Line;
1265       memset(&Line, 0, sizeof(Line));
1266       Line.SizeOfStruct = sizeof(Line);
1267       DWORD line_displacement;
1268       ok = _SymGetLineFromAddr64(
1269           process_handle,             // hProcess
1270           stack_frame.AddrPC.Offset,  // dwAddr
1271           &line_displacement,         // pdwDisplacement
1272           &Line);                     // Line
1273       // Format a text representation of the frame based on the information
1274       // available.
1275       if (ok) {
1276         SNPrintF(MutableCStrVector(frames[frames_count].text,
1277                                    kStackWalkMaxTextLen),
1278                  "%s %s:%d:%d",
1279                  symbol->Name, Line.FileName, Line.LineNumber,
1280                  line_displacement);
1281       } else {
1282         SNPrintF(MutableCStrVector(frames[frames_count].text,
1283                                    kStackWalkMaxTextLen),
1284                  "%s",
1285                  symbol->Name);
1286       }
1287       // Make sure line termination is in place.
1288       frames[frames_count].text[kStackWalkMaxTextLen - 1] = '\0';
1289     } else {
1290       // No text representation of this frame
1291       frames[frames_count].text[0] = '\0';
1292 
1293       // Continue if we are just missing a module (for non C/C++ frames a
1294       // module will never be found).
1295       int err = GetLastError();
1296       if (err != ERROR_MOD_NOT_FOUND) {
1297         DeleteArray(symbol);
1298         break;
1299       }
1300     }
1301     DeleteArray(symbol);
1302 
1303     frames_count++;
1304   }
1305 
1306   // Return the number of frames filled in.
1307   return frames_count;
1308 }
1309 
1310 // Restore warnings to previous settings.
1311 #pragma warning(pop)
1312 
1313 #else  // __MINGW32__
LogSharedLibraryAddresses()1314 void OS::LogSharedLibraryAddresses() { }
StackWalk(Vector<OS::StackFrame> frames)1315 int OS::StackWalk(Vector<OS::StackFrame> frames) { return 0; }
1316 #endif  // __MINGW32__
1317 
1318 
CpuFeaturesImpliedByPlatform()1319 uint64_t OS::CpuFeaturesImpliedByPlatform() {
1320   return 0;  // Windows runs on anything.
1321 }
1322 
1323 
nan_value()1324 double OS::nan_value() {
1325 #ifdef _MSC_VER
1326   // Positive Quiet NaN with no payload (aka. Indeterminate) has all bits
1327   // in mask set, so value equals mask.
1328   static const __int64 nanval = kQuietNaNMask;
1329   return *reinterpret_cast<const double*>(&nanval);
1330 #else  // _MSC_VER
1331   return NAN;
1332 #endif  // _MSC_VER
1333 }
1334 
1335 
ActivationFrameAlignment()1336 int OS::ActivationFrameAlignment() {
1337 #ifdef _WIN64
1338   return 16;  // Windows 64-bit ABI requires the stack to be 16-byte aligned.
1339 #else
1340   return 8;  // Floating-point math runs faster with 8-byte alignment.
1341 #endif
1342 }
1343 
1344 
IsReserved()1345 bool VirtualMemory::IsReserved() {
1346   return address_ != NULL;
1347 }
1348 
1349 
VirtualMemory(size_t size)1350 VirtualMemory::VirtualMemory(size_t size) {
1351   address_ = VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS);
1352   size_ = size;
1353 }
1354 
1355 
~VirtualMemory()1356 VirtualMemory::~VirtualMemory() {
1357   if (IsReserved()) {
1358     if (0 == VirtualFree(address(), 0, MEM_RELEASE)) address_ = NULL;
1359   }
1360 }
1361 
1362 
Commit(void * address,size_t size,bool is_executable)1363 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
1364   int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
1365   if (NULL == VirtualAlloc(address, size, MEM_COMMIT, prot)) {
1366     return false;
1367   }
1368 
1369   UpdateAllocatedSpaceLimits(address, static_cast<int>(size));
1370   return true;
1371 }
1372 
1373 
Uncommit(void * address,size_t size)1374 bool VirtualMemory::Uncommit(void* address, size_t size) {
1375   ASSERT(IsReserved());
1376   return VirtualFree(address, size, MEM_DECOMMIT) != FALSE;
1377 }
1378 
1379 
1380 // ----------------------------------------------------------------------------
1381 // Win32 thread support.
1382 
1383 // Definition of invalid thread handle and id.
1384 static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
1385 static const DWORD kNoThreadId = 0;
1386 
1387 
1388 class ThreadHandle::PlatformData : public Malloced {
1389  public:
PlatformData(ThreadHandle::Kind kind)1390   explicit PlatformData(ThreadHandle::Kind kind) {
1391     Initialize(kind);
1392   }
1393 
Initialize(ThreadHandle::Kind kind)1394   void Initialize(ThreadHandle::Kind kind) {
1395     switch (kind) {
1396       case ThreadHandle::SELF: tid_ = GetCurrentThreadId(); break;
1397       case ThreadHandle::INVALID: tid_ = kNoThreadId; break;
1398     }
1399   }
1400   DWORD tid_;  // Win32 thread identifier.
1401 };
1402 
1403 
1404 // Entry point for threads. The supplied argument is a pointer to the thread
1405 // object. The entry function dispatches to the run method in the thread
1406 // object. It is important that this function has __stdcall calling
1407 // convention.
ThreadEntry(void * arg)1408 static unsigned int __stdcall ThreadEntry(void* arg) {
1409   Thread* thread = reinterpret_cast<Thread*>(arg);
1410   // This is also initialized by the last parameter to _beginthreadex() but we
1411   // don't know which thread will run first (the original thread or the new
1412   // one) so we initialize it here too.
1413   thread->thread_handle_data()->tid_ = GetCurrentThreadId();
1414   thread->Run();
1415   return 0;
1416 }
1417 
1418 
1419 // Initialize thread handle to invalid handle.
ThreadHandle(ThreadHandle::Kind kind)1420 ThreadHandle::ThreadHandle(ThreadHandle::Kind kind) {
1421   data_ = new PlatformData(kind);
1422 }
1423 
1424 
~ThreadHandle()1425 ThreadHandle::~ThreadHandle() {
1426   delete data_;
1427 }
1428 
1429 
1430 // The thread is running if it has the same id as the current thread.
IsSelf() const1431 bool ThreadHandle::IsSelf() const {
1432   return GetCurrentThreadId() == data_->tid_;
1433 }
1434 
1435 
1436 // Test for invalid thread handle.
IsValid() const1437 bool ThreadHandle::IsValid() const {
1438   return data_->tid_ != kNoThreadId;
1439 }
1440 
1441 
Initialize(ThreadHandle::Kind kind)1442 void ThreadHandle::Initialize(ThreadHandle::Kind kind) {
1443   data_->Initialize(kind);
1444 }
1445 
1446 
1447 class Thread::PlatformData : public Malloced {
1448  public:
PlatformData(HANDLE thread)1449   explicit PlatformData(HANDLE thread) : thread_(thread) {}
1450   HANDLE thread_;
1451 };
1452 
1453 
1454 // Initialize a Win32 thread object. The thread has an invalid thread
1455 // handle until it is started.
1456 
Thread()1457 Thread::Thread() : ThreadHandle(ThreadHandle::INVALID) {
1458   data_ = new PlatformData(kNoThread);
1459 }
1460 
1461 
1462 // Close our own handle for the thread.
~Thread()1463 Thread::~Thread() {
1464   if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
1465   delete data_;
1466 }
1467 
1468 
1469 // Create a new thread. It is important to use _beginthreadex() instead of
1470 // the Win32 function CreateThread(), because the CreateThread() does not
1471 // initialize thread specific structures in the C runtime library.
Start()1472 void Thread::Start() {
1473   data_->thread_ = reinterpret_cast<HANDLE>(
1474       _beginthreadex(NULL,
1475                      0,
1476                      ThreadEntry,
1477                      this,
1478                      0,
1479                      reinterpret_cast<unsigned int*>(
1480                          &thread_handle_data()->tid_)));
1481   ASSERT(IsValid());
1482 }
1483 
1484 
1485 // Wait for thread to terminate.
Join()1486 void Thread::Join() {
1487   WaitForSingleObject(data_->thread_, INFINITE);
1488 }
1489 
1490 
CreateThreadLocalKey()1491 Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
1492   DWORD result = TlsAlloc();
1493   ASSERT(result != TLS_OUT_OF_INDEXES);
1494   return static_cast<LocalStorageKey>(result);
1495 }
1496 
1497 
DeleteThreadLocalKey(LocalStorageKey key)1498 void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
1499   BOOL result = TlsFree(static_cast<DWORD>(key));
1500   USE(result);
1501   ASSERT(result);
1502 }
1503 
1504 
GetThreadLocal(LocalStorageKey key)1505 void* Thread::GetThreadLocal(LocalStorageKey key) {
1506   return TlsGetValue(static_cast<DWORD>(key));
1507 }
1508 
1509 
SetThreadLocal(LocalStorageKey key,void * value)1510 void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
1511   BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
1512   USE(result);
1513   ASSERT(result);
1514 }
1515 
1516 
1517 
YieldCPU()1518 void Thread::YieldCPU() {
1519   Sleep(0);
1520 }
1521 
1522 
1523 // ----------------------------------------------------------------------------
1524 // Win32 mutex support.
1525 //
1526 // On Win32 mutexes are implemented using CRITICAL_SECTION objects. These are
1527 // faster than Win32 Mutex objects because they are implemented using user mode
1528 // atomic instructions. Therefore we only do ring transitions if there is lock
1529 // contention.
1530 
1531 class Win32Mutex : public Mutex {
1532  public:
1533 
Win32Mutex()1534   Win32Mutex() { InitializeCriticalSection(&cs_); }
1535 
~Win32Mutex()1536   ~Win32Mutex() { DeleteCriticalSection(&cs_); }
1537 
Lock()1538   int Lock() {
1539     EnterCriticalSection(&cs_);
1540     return 0;
1541   }
1542 
Unlock()1543   int Unlock() {
1544     LeaveCriticalSection(&cs_);
1545     return 0;
1546   }
1547 
1548  private:
1549   CRITICAL_SECTION cs_;  // Critical section used for mutex
1550 };
1551 
1552 
CreateMutex()1553 Mutex* OS::CreateMutex() {
1554   return new Win32Mutex();
1555 }
1556 
1557 
1558 // ----------------------------------------------------------------------------
1559 // Win32 semaphore support.
1560 //
1561 // On Win32 semaphores are implemented using Win32 Semaphore objects. The
1562 // semaphores are anonymous. Also, the semaphores are initialized to have
1563 // no upper limit on count.
1564 
1565 
1566 class Win32Semaphore : public Semaphore {
1567  public:
Win32Semaphore(int count)1568   explicit Win32Semaphore(int count) {
1569     sem = ::CreateSemaphoreA(NULL, count, 0x7fffffff, NULL);
1570   }
1571 
~Win32Semaphore()1572   ~Win32Semaphore() {
1573     CloseHandle(sem);
1574   }
1575 
Wait()1576   void Wait() {
1577     WaitForSingleObject(sem, INFINITE);
1578   }
1579 
Wait(int timeout)1580   bool Wait(int timeout) {
1581     // Timeout in Windows API is in milliseconds.
1582     DWORD millis_timeout = timeout / 1000;
1583     return WaitForSingleObject(sem, millis_timeout) != WAIT_TIMEOUT;
1584   }
1585 
Signal()1586   void Signal() {
1587     LONG dummy;
1588     ReleaseSemaphore(sem, 1, &dummy);
1589   }
1590 
1591  private:
1592   HANDLE sem;
1593 };
1594 
1595 
CreateSemaphore(int count)1596 Semaphore* OS::CreateSemaphore(int count) {
1597   return new Win32Semaphore(count);
1598 }
1599 
1600 
1601 // ----------------------------------------------------------------------------
1602 // Win32 socket support.
1603 //
1604 
1605 class Win32Socket : public Socket {
1606  public:
Win32Socket()1607   explicit Win32Socket() {
1608     // Create the socket.
1609     socket_ = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
1610   }
Win32Socket(SOCKET socket)1611   explicit Win32Socket(SOCKET socket): socket_(socket) { }
~Win32Socket()1612   virtual ~Win32Socket() { Shutdown(); }
1613 
1614   // Server initialization.
1615   bool Bind(const int port);
1616   bool Listen(int backlog) const;
1617   Socket* Accept() const;
1618 
1619   // Client initialization.
1620   bool Connect(const char* host, const char* port);
1621 
1622   // Shutdown socket for both read and write.
1623   bool Shutdown();
1624 
1625   // Data Transimission
1626   int Send(const char* data, int len) const;
1627   int Receive(char* data, int len) const;
1628 
1629   bool SetReuseAddress(bool reuse_address);
1630 
IsValid() const1631   bool IsValid() const { return socket_ != INVALID_SOCKET; }
1632 
1633  private:
1634   SOCKET socket_;
1635 };
1636 
1637 
Bind(const int port)1638 bool Win32Socket::Bind(const int port) {
1639   if (!IsValid())  {
1640     return false;
1641   }
1642 
1643   sockaddr_in addr;
1644   memset(&addr, 0, sizeof(addr));
1645   addr.sin_family = AF_INET;
1646   addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
1647   addr.sin_port = htons(port);
1648   int status = bind(socket_,
1649                     reinterpret_cast<struct sockaddr *>(&addr),
1650                     sizeof(addr));
1651   return status == 0;
1652 }
1653 
1654 
Listen(int backlog) const1655 bool Win32Socket::Listen(int backlog) const {
1656   if (!IsValid()) {
1657     return false;
1658   }
1659 
1660   int status = listen(socket_, backlog);
1661   return status == 0;
1662 }
1663 
1664 
Accept() const1665 Socket* Win32Socket::Accept() const {
1666   if (!IsValid()) {
1667     return NULL;
1668   }
1669 
1670   SOCKET socket = accept(socket_, NULL, NULL);
1671   if (socket == INVALID_SOCKET) {
1672     return NULL;
1673   } else {
1674     return new Win32Socket(socket);
1675   }
1676 }
1677 
1678 
Connect(const char * host,const char * port)1679 bool Win32Socket::Connect(const char* host, const char* port) {
1680   if (!IsValid()) {
1681     return false;
1682   }
1683 
1684   // Lookup host and port.
1685   struct addrinfo *result = NULL;
1686   struct addrinfo hints;
1687   memset(&hints, 0, sizeof(addrinfo));
1688   hints.ai_family = AF_INET;
1689   hints.ai_socktype = SOCK_STREAM;
1690   hints.ai_protocol = IPPROTO_TCP;
1691   int status = getaddrinfo(host, port, &hints, &result);
1692   if (status != 0) {
1693     return false;
1694   }
1695 
1696   // Connect.
1697   status = connect(socket_,
1698                    result->ai_addr,
1699                    static_cast<int>(result->ai_addrlen));
1700   freeaddrinfo(result);
1701   return status == 0;
1702 }
1703 
1704 
Shutdown()1705 bool Win32Socket::Shutdown() {
1706   if (IsValid()) {
1707     // Shutdown socket for both read and write.
1708     int status = shutdown(socket_, SD_BOTH);
1709     closesocket(socket_);
1710     socket_ = INVALID_SOCKET;
1711     return status == SOCKET_ERROR;
1712   }
1713   return true;
1714 }
1715 
1716 
Send(const char * data,int len) const1717 int Win32Socket::Send(const char* data, int len) const {
1718   int status = send(socket_, data, len, 0);
1719   return status;
1720 }
1721 
1722 
Receive(char * data,int len) const1723 int Win32Socket::Receive(char* data, int len) const {
1724   int status = recv(socket_, data, len, 0);
1725   return status;
1726 }
1727 
1728 
SetReuseAddress(bool reuse_address)1729 bool Win32Socket::SetReuseAddress(bool reuse_address) {
1730   BOOL on = reuse_address ? TRUE : FALSE;
1731   int status = setsockopt(socket_, SOL_SOCKET, SO_REUSEADDR,
1732                           reinterpret_cast<char*>(&on), sizeof(on));
1733   return status == SOCKET_ERROR;
1734 }
1735 
1736 
Setup()1737 bool Socket::Setup() {
1738   // Initialize Winsock32
1739   int err;
1740   WSADATA winsock_data;
1741   WORD version_requested = MAKEWORD(1, 0);
1742   err = WSAStartup(version_requested, &winsock_data);
1743   if (err != 0) {
1744     PrintF("Unable to initialize Winsock, err = %d\n", Socket::LastError());
1745   }
1746 
1747   return err == 0;
1748 }
1749 
1750 
LastError()1751 int Socket::LastError() {
1752   return WSAGetLastError();
1753 }
1754 
1755 
HToN(uint16_t value)1756 uint16_t Socket::HToN(uint16_t value) {
1757   return htons(value);
1758 }
1759 
1760 
NToH(uint16_t value)1761 uint16_t Socket::NToH(uint16_t value) {
1762   return ntohs(value);
1763 }
1764 
1765 
HToN(uint32_t value)1766 uint32_t Socket::HToN(uint32_t value) {
1767   return htonl(value);
1768 }
1769 
1770 
NToH(uint32_t value)1771 uint32_t Socket::NToH(uint32_t value) {
1772   return ntohl(value);
1773 }
1774 
1775 
CreateSocket()1776 Socket* OS::CreateSocket() {
1777   return new Win32Socket();
1778 }
1779 
1780 
1781 #ifdef ENABLE_LOGGING_AND_PROFILING
1782 
1783 // ----------------------------------------------------------------------------
1784 // Win32 profiler support.
1785 //
1786 // On win32 we use a sampler thread with high priority to sample the program
1787 // counter for the profiled thread.
1788 
1789 class Sampler::PlatformData : public Malloced {
1790  public:
PlatformData(Sampler * sampler)1791   explicit PlatformData(Sampler* sampler) {
1792     sampler_ = sampler;
1793     sampler_thread_ = INVALID_HANDLE_VALUE;
1794     profiled_thread_ = INVALID_HANDLE_VALUE;
1795   }
1796 
1797   Sampler* sampler_;
1798   HANDLE sampler_thread_;
1799   HANDLE profiled_thread_;
1800 
1801   // Sampler thread handler.
Runner()1802   void Runner() {
1803     // Context used for sampling the register state of the profiled thread.
1804     CONTEXT context;
1805     memset(&context, 0, sizeof(context));
1806     // Loop until the sampler is disengaged.
1807     while (sampler_->IsActive()) {
1808       TickSample sample;
1809 
1810       // If profiling, we record the pc and sp of the profiled thread.
1811       if (sampler_->IsProfiling()
1812           && SuspendThread(profiled_thread_) != (DWORD)-1) {
1813         context.ContextFlags = CONTEXT_FULL;
1814         if (GetThreadContext(profiled_thread_, &context) != 0) {
1815 #if V8_HOST_ARCH_X64
1816           sample.pc = reinterpret_cast<Address>(context.Rip);
1817           sample.sp = reinterpret_cast<Address>(context.Rsp);
1818           sample.fp = reinterpret_cast<Address>(context.Rbp);
1819 #else
1820           sample.pc = reinterpret_cast<Address>(context.Eip);
1821           sample.sp = reinterpret_cast<Address>(context.Esp);
1822           sample.fp = reinterpret_cast<Address>(context.Ebp);
1823 #endif
1824           sampler_->SampleStack(&sample);
1825         }
1826         ResumeThread(profiled_thread_);
1827       }
1828 
1829       // We always sample the VM state.
1830       sample.state = Logger::state();
1831       // Invoke tick handler with program counter and stack pointer.
1832       sampler_->Tick(&sample);
1833 
1834       // Wait until next sampling.
1835       Sleep(sampler_->interval_);
1836     }
1837   }
1838 };
1839 
1840 
1841 // Entry point for sampler thread.
SamplerEntry(void * arg)1842 static unsigned int __stdcall SamplerEntry(void* arg) {
1843   Sampler::PlatformData* data =
1844       reinterpret_cast<Sampler::PlatformData*>(arg);
1845   data->Runner();
1846   return 0;
1847 }
1848 
1849 
1850 // Initialize a profile sampler.
Sampler(int interval,bool profiling)1851 Sampler::Sampler(int interval, bool profiling)
1852     : interval_(interval), profiling_(profiling), active_(false) {
1853   data_ = new PlatformData(this);
1854 }
1855 
1856 
~Sampler()1857 Sampler::~Sampler() {
1858   delete data_;
1859 }
1860 
1861 
1862 // Start profiling.
Start()1863 void Sampler::Start() {
1864   // If we are profiling, we need to be able to access the calling
1865   // thread.
1866   if (IsProfiling()) {
1867     // Get a handle to the calling thread. This is the thread that we are
1868     // going to profile. We need to make a copy of the handle because we are
1869     // going to use it in the sampler thread. Using GetThreadHandle() will
1870     // not work in this case. We're using OpenThread because DuplicateHandle
1871     // for some reason doesn't work in Chrome's sandbox.
1872     data_->profiled_thread_ = OpenThread(THREAD_GET_CONTEXT |
1873                                          THREAD_SUSPEND_RESUME |
1874                                          THREAD_QUERY_INFORMATION,
1875                                          FALSE,
1876                                          GetCurrentThreadId());
1877     BOOL ok = data_->profiled_thread_ != NULL;
1878     if (!ok) return;
1879   }
1880 
1881   // Start sampler thread.
1882   unsigned int tid;
1883   active_ = true;
1884   data_->sampler_thread_ = reinterpret_cast<HANDLE>(
1885       _beginthreadex(NULL, 0, SamplerEntry, data_, 0, &tid));
1886   // Set thread to high priority to increase sampling accuracy.
1887   SetThreadPriority(data_->sampler_thread_, THREAD_PRIORITY_TIME_CRITICAL);
1888 }
1889 
1890 
1891 // Stop profiling.
Stop()1892 void Sampler::Stop() {
1893   // Seting active to false triggers termination of the sampler
1894   // thread.
1895   active_ = false;
1896 
1897   // Wait for sampler thread to terminate.
1898   WaitForSingleObject(data_->sampler_thread_, INFINITE);
1899 
1900   // Release the thread handles
1901   CloseHandle(data_->sampler_thread_);
1902   CloseHandle(data_->profiled_thread_);
1903 }
1904 
1905 
1906 #endif  // ENABLE_LOGGING_AND_PROFILING
1907 
1908 } }  // namespace v8::internal
1909