• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis
2  *
3  * LibTomCrypt is a library that provides various cryptographic
4  * algorithms in a highly modular and flexible manner.
5  *
6  * The library is free for all purposes without any express
7  * guarantee it works.
8  *
9  * Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com
10  */
11 
12  /**
13    @file twofish.c
14    Implementation of Twofish by Tom St Denis
15  */
16 #include "tomcrypt.h"
17 
18 #ifdef TWOFISH
19 
20 /* first TWOFISH_ALL_TABLES must ensure TWOFISH_TABLES is defined */
21 #ifdef TWOFISH_ALL_TABLES
22 #ifndef TWOFISH_TABLES
23 #define TWOFISH_TABLES
24 #endif
25 #endif
26 
27 const struct ltc_cipher_descriptor twofish_desc =
28 {
29     "twofish",
30     7,
31     16, 32, 16, 16,
32     &twofish_setup,
33     &twofish_ecb_encrypt,
34     &twofish_ecb_decrypt,
35     &twofish_test,
36     &twofish_done,
37     &twofish_keysize,
38     NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
39 };
40 
41 /* the two polynomials */
42 #define MDS_POLY          0x169
43 #define RS_POLY           0x14D
44 
45 /* The 4x4 MDS Linear Transform */
46 #if 0
47 static const unsigned char MDS[4][4] = {
48     { 0x01, 0xEF, 0x5B, 0x5B },
49     { 0x5B, 0xEF, 0xEF, 0x01 },
50     { 0xEF, 0x5B, 0x01, 0xEF },
51     { 0xEF, 0x01, 0xEF, 0x5B }
52 };
53 #endif
54 
55 /* The 4x8 RS Linear Transform */
56 static const unsigned char RS[4][8] = {
57     { 0x01, 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E },
58     { 0xA4, 0x56, 0x82, 0xF3, 0X1E, 0XC6, 0X68, 0XE5 },
59     { 0X02, 0XA1, 0XFC, 0XC1, 0X47, 0XAE, 0X3D, 0X19 },
60     { 0XA4, 0X55, 0X87, 0X5A, 0X58, 0XDB, 0X9E, 0X03 }
61 };
62 
63 /* sbox usage orderings */
64 static const unsigned char qord[4][5] = {
65    { 1, 1, 0, 0, 1 },
66    { 0, 1, 1, 0, 0 },
67    { 0, 0, 0, 1, 1 },
68    { 1, 0, 1, 1, 0 }
69 };
70 
71 #ifdef TWOFISH_TABLES
72 
73 #include "twofish_tab.c"
74 
75 #define sbox(i, x) ((ulong32)SBOX[i][(x)&255])
76 
77 #else
78 
79 /* The Q-box tables */
80 static const unsigned char qbox[2][4][16] = {
81 {
82    { 0x8, 0x1, 0x7, 0xD, 0x6, 0xF, 0x3, 0x2, 0x0, 0xB, 0x5, 0x9, 0xE, 0xC, 0xA, 0x4 },
83    { 0xE, 0XC, 0XB, 0X8, 0X1, 0X2, 0X3, 0X5, 0XF, 0X4, 0XA, 0X6, 0X7, 0X0, 0X9, 0XD },
84    { 0XB, 0XA, 0X5, 0XE, 0X6, 0XD, 0X9, 0X0, 0XC, 0X8, 0XF, 0X3, 0X2, 0X4, 0X7, 0X1 },
85    { 0XD, 0X7, 0XF, 0X4, 0X1, 0X2, 0X6, 0XE, 0X9, 0XB, 0X3, 0X0, 0X8, 0X5, 0XC, 0XA }
86 },
87 {
88    { 0X2, 0X8, 0XB, 0XD, 0XF, 0X7, 0X6, 0XE, 0X3, 0X1, 0X9, 0X4, 0X0, 0XA, 0XC, 0X5 },
89    { 0X1, 0XE, 0X2, 0XB, 0X4, 0XC, 0X3, 0X7, 0X6, 0XD, 0XA, 0X5, 0XF, 0X9, 0X0, 0X8 },
90    { 0X4, 0XC, 0X7, 0X5, 0X1, 0X6, 0X9, 0XA, 0X0, 0XE, 0XD, 0X8, 0X2, 0XB, 0X3, 0XF },
91    { 0xB, 0X9, 0X5, 0X1, 0XC, 0X3, 0XD, 0XE, 0X6, 0X4, 0X7, 0XF, 0X2, 0X0, 0X8, 0XA }
92 }
93 };
94 
95 /* computes S_i[x] */
96 #ifdef LTC_CLEAN_STACK
_sbox(int i,ulong32 x)97 static ulong32 _sbox(int i, ulong32 x)
98 #else
99 static ulong32 sbox(int i, ulong32 x)
100 #endif
101 {
102    unsigned char a0,b0,a1,b1,a2,b2,a3,b3,a4,b4,y;
103 
104    /* a0,b0 = [x/16], x mod 16 */
105    a0 = (unsigned char)((x>>4)&15);
106    b0 = (unsigned char)((x)&15);
107 
108    /* a1 = a0 ^ b0 */
109    a1 = a0 ^ b0;
110 
111    /* b1 = a0 ^ ROR(b0, 1) ^ 8a0 */
112    b1 = (a0 ^ ((b0<<3)|(b0>>1)) ^ (a0<<3)) & 15;
113 
114    /* a2,b2 = t0[a1], t1[b1] */
115    a2 = qbox[i][0][(int)a1];
116    b2 = qbox[i][1][(int)b1];
117 
118    /* a3 = a2 ^ b2 */
119    a3 = a2 ^ b2;
120 
121    /* b3 = a2 ^ ROR(b2, 1) ^ 8a2 */
122    b3 = (a2 ^ ((b2<<3)|(b2>>1)) ^ (a2<<3)) & 15;
123 
124    /* a4,b4 = t2[a3], t3[b3] */
125    a4 = qbox[i][2][(int)a3];
126    b4 = qbox[i][3][(int)b3];
127 
128    /* y = 16b4 + a4 */
129    y = (b4 << 4) + a4;
130 
131    /* return result */
132    return (ulong32)y;
133 }
134 
135 #ifdef LTC_CLEAN_STACK
sbox(int i,ulong32 x)136 static ulong32 sbox(int i, ulong32 x)
137 {
138    ulong32 y;
139    y = _sbox(i, x);
140    burn_stack(sizeof(unsigned char) * 11);
141    return y;
142 }
143 #endif /* LTC_CLEAN_STACK */
144 
145 #endif /* TWOFISH_TABLES */
146 
147 /* computes ab mod p */
gf_mult(ulong32 a,ulong32 b,ulong32 p)148 static ulong32 gf_mult(ulong32 a, ulong32 b, ulong32 p)
149 {
150    ulong32 result, B[2], P[2];
151 
152    P[1] = p;
153    B[1] = b;
154    result = P[0] = B[0] = 0;
155 
156    /* unrolled branchless GF multiplier */
157    result ^= B[a&1]; a >>= 1;  B[1] = P[B[1]>>7] ^ (B[1] << 1);
158    result ^= B[a&1]; a >>= 1;  B[1] = P[B[1]>>7] ^ (B[1] << 1);
159    result ^= B[a&1]; a >>= 1;  B[1] = P[B[1]>>7] ^ (B[1] << 1);
160    result ^= B[a&1]; a >>= 1;  B[1] = P[B[1]>>7] ^ (B[1] << 1);
161    result ^= B[a&1]; a >>= 1;  B[1] = P[B[1]>>7] ^ (B[1] << 1);
162    result ^= B[a&1]; a >>= 1;  B[1] = P[B[1]>>7] ^ (B[1] << 1);
163    result ^= B[a&1]; a >>= 1;  B[1] = P[B[1]>>7] ^ (B[1] << 1);
164    result ^= B[a&1];
165 
166    return result;
167 }
168 
169 /* computes [y0 y1 y2 y3] = MDS . [x0] */
170 #ifndef TWOFISH_TABLES
mds_column_mult(unsigned char in,int col)171 static ulong32 mds_column_mult(unsigned char in, int col)
172 {
173    ulong32 x01, x5B, xEF;
174 
175    x01 = in;
176    x5B = gf_mult(in, 0x5B, MDS_POLY);
177    xEF = gf_mult(in, 0xEF, MDS_POLY);
178 
179    switch (col) {
180        case 0:
181           return (x01 << 0 ) |
182                  (x5B << 8 ) |
183                  (xEF << 16) |
184                  (xEF << 24);
185        case 1:
186           return (xEF << 0 ) |
187                  (xEF << 8 ) |
188                  (x5B << 16) |
189                  (x01 << 24);
190        case 2:
191           return (x5B << 0 ) |
192                  (xEF << 8 ) |
193                  (x01 << 16) |
194                  (xEF << 24);
195        case 3:
196           return (x5B << 0 ) |
197                  (x01 << 8 ) |
198                  (xEF << 16) |
199                  (x5B << 24);
200    }
201    /* avoid warnings, we'd never get here normally but just to calm compiler warnings... */
202    return 0;
203 }
204 
205 #else /* !TWOFISH_TABLES */
206 
207 #define mds_column_mult(x, i) mds_tab[i][x]
208 
209 #endif /* TWOFISH_TABLES */
210 
211 /* Computes [y0 y1 y2 y3] = MDS . [x0 x1 x2 x3] */
mds_mult(const unsigned char * in,unsigned char * out)212 static void mds_mult(const unsigned char *in, unsigned char *out)
213 {
214   int x;
215   ulong32 tmp;
216   for (tmp = x = 0; x < 4; x++) {
217       tmp ^= mds_column_mult(in[x], x);
218   }
219   STORE32L(tmp, out);
220 }
221 
222 #ifdef TWOFISH_ALL_TABLES
223 /* computes [y0 y1 y2 y3] = RS . [x0 x1 x2 x3 x4 x5 x6 x7] */
rs_mult(const unsigned char * in,unsigned char * out)224 static void rs_mult(const unsigned char *in, unsigned char *out)
225 {
226    ulong32 tmp;
227    tmp = rs_tab0[in[0]] ^ rs_tab1[in[1]] ^ rs_tab2[in[2]] ^ rs_tab3[in[3]] ^
228          rs_tab4[in[4]] ^ rs_tab5[in[5]] ^ rs_tab6[in[6]] ^ rs_tab7[in[7]];
229    STORE32L(tmp, out);
230 }
231 
232 #else /* !TWOFISH_ALL_TABLES */
233 
234 /* computes [y0 y1 y2 y3] = RS . [x0 x1 x2 x3 x4 x5 x6 x7] */
rs_mult(const unsigned char * in,unsigned char * out)235 static void rs_mult(const unsigned char *in, unsigned char *out)
236 {
237   int x, y;
238   for (x = 0; x < 4; x++) {
239       out[x] = 0;
240       for (y = 0; y < 8; y++) {
241           out[x] ^= gf_mult(in[y], RS[x][y], RS_POLY);
242       }
243   }
244 }
245 
246 #endif
247 
248 /* computes h(x) */
h_func(const unsigned char * in,unsigned char * out,unsigned char * M,int k,int offset)249 static void h_func(const unsigned char *in, unsigned char *out, unsigned char *M, int k, int offset)
250 {
251   int x;
252   unsigned char y[4];
253   for (x = 0; x < 4; x++) {
254       y[x] = in[x];
255  }
256   switch (k) {
257      case 4:
258             y[0] = (unsigned char)(sbox(1, (ulong32)y[0]) ^ M[4 * (6 + offset) + 0]);
259             y[1] = (unsigned char)(sbox(0, (ulong32)y[1]) ^ M[4 * (6 + offset) + 1]);
260             y[2] = (unsigned char)(sbox(0, (ulong32)y[2]) ^ M[4 * (6 + offset) + 2]);
261             y[3] = (unsigned char)(sbox(1, (ulong32)y[3]) ^ M[4 * (6 + offset) + 3]);
262      case 3:
263             y[0] = (unsigned char)(sbox(1, (ulong32)y[0]) ^ M[4 * (4 + offset) + 0]);
264             y[1] = (unsigned char)(sbox(1, (ulong32)y[1]) ^ M[4 * (4 + offset) + 1]);
265             y[2] = (unsigned char)(sbox(0, (ulong32)y[2]) ^ M[4 * (4 + offset) + 2]);
266             y[3] = (unsigned char)(sbox(0, (ulong32)y[3]) ^ M[4 * (4 + offset) + 3]);
267      case 2:
268             y[0] = (unsigned char)(sbox(1, sbox(0, sbox(0, (ulong32)y[0]) ^ M[4 * (2 + offset) + 0]) ^ M[4 * (0 + offset) + 0]));
269             y[1] = (unsigned char)(sbox(0, sbox(0, sbox(1, (ulong32)y[1]) ^ M[4 * (2 + offset) + 1]) ^ M[4 * (0 + offset) + 1]));
270             y[2] = (unsigned char)(sbox(1, sbox(1, sbox(0, (ulong32)y[2]) ^ M[4 * (2 + offset) + 2]) ^ M[4 * (0 + offset) + 2]));
271             y[3] = (unsigned char)(sbox(0, sbox(1, sbox(1, (ulong32)y[3]) ^ M[4 * (2 + offset) + 3]) ^ M[4 * (0 + offset) + 3]));
272   }
273   mds_mult(y, out);
274 }
275 
276 #ifndef TWOFISH_SMALL
277 
278 /* for GCC we don't use pointer aliases */
279 #if defined(__GNUC__)
280     #define S1 skey->twofish.S[0]
281     #define S2 skey->twofish.S[1]
282     #define S3 skey->twofish.S[2]
283     #define S4 skey->twofish.S[3]
284 #endif
285 
286 /* the G function */
287 #define g_func(x, dum)  (S1[byte(x,0)] ^ S2[byte(x,1)] ^ S3[byte(x,2)] ^ S4[byte(x,3)])
288 #define g1_func(x, dum) (S2[byte(x,0)] ^ S3[byte(x,1)] ^ S4[byte(x,2)] ^ S1[byte(x,3)])
289 
290 #else
291 
292 #ifdef LTC_CLEAN_STACK
_g_func(ulong32 x,symmetric_key * key)293 static ulong32 _g_func(ulong32 x, symmetric_key *key)
294 #else
295 static ulong32 g_func(ulong32 x, symmetric_key *key)
296 #endif
297 {
298    unsigned char g, i, y, z;
299    ulong32 res;
300 
301    res = 0;
302    for (y = 0; y < 4; y++) {
303        z = key->twofish.start;
304 
305        /* do unkeyed substitution */
306        g = sbox(qord[y][z++], (x >> (8*y)) & 255);
307 
308        /* first subkey */
309        i = 0;
310 
311        /* do key mixing+sbox until z==5 */
312        while (z != 5) {
313           g = g ^ key->twofish.S[4*i++ + y];
314           g = sbox(qord[y][z++], g);
315        }
316 
317        /* multiply g by a column of the MDS */
318        res ^= mds_column_mult(g, y);
319    }
320    return res;
321 }
322 
323 #define g1_func(x, key) g_func(ROLc(x, 8), key)
324 
325 #ifdef LTC_CLEAN_STACK
g_func(ulong32 x,symmetric_key * key)326 static ulong32 g_func(ulong32 x, symmetric_key *key)
327 {
328     ulong32 y;
329     y = _g_func(x, key);
330     burn_stack(sizeof(unsigned char) * 4 + sizeof(ulong32));
331     return y;
332 }
333 #endif /* LTC_CLEAN_STACK */
334 
335 #endif /* TWOFISH_SMALL */
336 
337  /**
338     Initialize the Twofish block cipher
339     @param key The symmetric key you wish to pass
340     @param keylen The key length in bytes
341     @param num_rounds The number of rounds desired (0 for default)
342     @param skey The key in as scheduled by this function.
343     @return CRYPT_OK if successful
344  */
345 #ifdef LTC_CLEAN_STACK
_twofish_setup(const unsigned char * key,int keylen,int num_rounds,symmetric_key * skey)346 static int _twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
347 #else
348 int twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
349 #endif
350 {
351 #ifndef TWOFISH_SMALL
352    unsigned char S[4*4], tmpx0, tmpx1;
353 #endif
354    int k, x, y;
355    unsigned char tmp[4], tmp2[4], M[8*4];
356    ulong32 A, B;
357 
358    LTC_ARGCHK(key  != NULL);
359    LTC_ARGCHK(skey != NULL);
360 
361    /* invalid arguments? */
362    if (num_rounds != 16 && num_rounds != 0) {
363       return CRYPT_INVALID_ROUNDS;
364    }
365 
366    if (keylen != 16 && keylen != 24 && keylen != 32) {
367       return CRYPT_INVALID_KEYSIZE;
368    }
369 
370    /* k = keysize/64 [but since our keysize is in bytes...] */
371    k = keylen / 8;
372 
373    /* copy the key into M */
374    for (x = 0; x < keylen; x++) {
375        M[x] = key[x] & 255;
376    }
377 
378    /* create the S[..] words */
379 #ifndef TWOFISH_SMALL
380    for (x = 0; x < k; x++) {
381        rs_mult(M+(x*8), S+(x*4));
382    }
383 #else
384    for (x = 0; x < k; x++) {
385        rs_mult(M+(x*8), skey->twofish.S+(x*4));
386    }
387 #endif
388 
389    /* make subkeys */
390    for (x = 0; x < 20; x++) {
391        /* A = h(p * 2x, Me) */
392        for (y = 0; y < 4; y++) {
393            tmp[y] = x+x;
394        }
395        h_func(tmp, tmp2, M, k, 0);
396        LOAD32L(A, tmp2);
397 
398        /* B = ROL(h(p * (2x + 1), Mo), 8) */
399        for (y = 0; y < 4; y++) {
400            tmp[y] = (unsigned char)(x+x+1);
401        }
402        h_func(tmp, tmp2, M, k, 1);
403        LOAD32L(B, tmp2);
404        B = ROLc(B, 8);
405 
406        /* K[2i]   = A + B */
407        skey->twofish.K[x+x] = (A + B) & 0xFFFFFFFFUL;
408 
409        /* K[2i+1] = (A + 2B) <<< 9 */
410        skey->twofish.K[x+x+1] = ROLc(B + B + A, 9);
411    }
412 
413 #ifndef TWOFISH_SMALL
414    /* make the sboxes (large ram variant) */
415    if (k == 2) {
416         for (x = 0; x < 256; x++) {
417            tmpx0 = (unsigned char)sbox(0, x);
418            tmpx1 = (unsigned char)sbox(1, x);
419            skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, tmpx0 ^ S[0]) ^ S[4])),0);
420            skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, tmpx1 ^ S[1]) ^ S[5])),1);
421            skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, tmpx0 ^ S[2]) ^ S[6])),2);
422            skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, tmpx1 ^ S[3]) ^ S[7])),3);
423         }
424    } else if (k == 3) {
425         for (x = 0; x < 256; x++) {
426            tmpx0 = (unsigned char)sbox(0, x);
427            tmpx1 = (unsigned char)sbox(1, x);
428            skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, sbox(0, tmpx1 ^ S[0]) ^ S[4]) ^ S[8])),0);
429            skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, sbox(1, tmpx1 ^ S[1]) ^ S[5]) ^ S[9])),1);
430            skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, sbox(0, tmpx0 ^ S[2]) ^ S[6]) ^ S[10])),2);
431            skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, sbox(1, tmpx0 ^ S[3]) ^ S[7]) ^ S[11])),3);
432         }
433    } else {
434         for (x = 0; x < 256; x++) {
435            tmpx0 = (unsigned char)sbox(0, x);
436            tmpx1 = (unsigned char)sbox(1, x);
437            skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, sbox(0, sbox(1, tmpx1 ^ S[0]) ^ S[4]) ^ S[8]) ^ S[12])),0);
438            skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, sbox(1, sbox(1, tmpx0 ^ S[1]) ^ S[5]) ^ S[9]) ^ S[13])),1);
439            skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, sbox(0, sbox(0, tmpx0 ^ S[2]) ^ S[6]) ^ S[10]) ^ S[14])),2);
440            skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, sbox(1, sbox(0, tmpx1 ^ S[3]) ^ S[7]) ^ S[11]) ^ S[15])),3);
441         }
442    }
443 #else
444    /* where to start in the sbox layers */
445    /* small ram variant */
446    switch (k) {
447          case 4 : skey->twofish.start = 0; break;
448          case 3 : skey->twofish.start = 1; break;
449          default: skey->twofish.start = 2; break;
450    }
451 #endif
452    return CRYPT_OK;
453 }
454 
455 #ifdef LTC_CLEAN_STACK
twofish_setup(const unsigned char * key,int keylen,int num_rounds,symmetric_key * skey)456 int twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
457 {
458    int x;
459    x = _twofish_setup(key, keylen, num_rounds, skey);
460    burn_stack(sizeof(int) * 7 + sizeof(unsigned char) * 56 + sizeof(ulong32) * 2);
461    return x;
462 }
463 #endif
464 
465 /**
466   Encrypts a block of text with Twofish
467   @param pt The input plaintext (16 bytes)
468   @param ct The output ciphertext (16 bytes)
469   @param skey The key as scheduled
470   @return CRYPT_OK if successful
471 */
472 #ifdef LTC_CLEAN_STACK
_twofish_ecb_encrypt(const unsigned char * pt,unsigned char * ct,symmetric_key * skey)473 static int _twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
474 #else
475 int twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
476 #endif
477 {
478     ulong32 a,b,c,d,ta,tb,tc,td,t1,t2, *k;
479     int r;
480 #if !defined(TWOFISH_SMALL) && !defined(__GNUC__)
481     ulong32 *S1, *S2, *S3, *S4;
482 #endif
483 
484     LTC_ARGCHK(pt   != NULL);
485     LTC_ARGCHK(ct   != NULL);
486     LTC_ARGCHK(skey != NULL);
487 
488 #if !defined(TWOFISH_SMALL) && !defined(__GNUC__)
489     S1 = skey->twofish.S[0];
490     S2 = skey->twofish.S[1];
491     S3 = skey->twofish.S[2];
492     S4 = skey->twofish.S[3];
493 #endif
494 
495     LOAD32L(a,&pt[0]); LOAD32L(b,&pt[4]);
496     LOAD32L(c,&pt[8]); LOAD32L(d,&pt[12]);
497     a ^= skey->twofish.K[0];
498     b ^= skey->twofish.K[1];
499     c ^= skey->twofish.K[2];
500     d ^= skey->twofish.K[3];
501 
502     k  = skey->twofish.K + 8;
503     for (r = 8; r != 0; --r) {
504         t2 = g1_func(b, skey);
505         t1 = g_func(a, skey) + t2;
506         c  = RORc(c ^ (t1 + k[0]), 1);
507         d  = ROLc(d, 1) ^ (t2 + t1 + k[1]);
508 
509         t2 = g1_func(d, skey);
510         t1 = g_func(c, skey) + t2;
511         a  = RORc(a ^ (t1 + k[2]), 1);
512         b  = ROLc(b, 1) ^ (t2 + t1 + k[3]);
513         k += 4;
514    }
515 
516     /* output with "undo last swap" */
517     ta = c ^ skey->twofish.K[4];
518     tb = d ^ skey->twofish.K[5];
519     tc = a ^ skey->twofish.K[6];
520     td = b ^ skey->twofish.K[7];
521 
522     /* store output */
523     STORE32L(ta,&ct[0]); STORE32L(tb,&ct[4]);
524     STORE32L(tc,&ct[8]); STORE32L(td,&ct[12]);
525 
526     return CRYPT_OK;
527 }
528 
529 #ifdef LTC_CLEAN_STACK
twofish_ecb_encrypt(const unsigned char * pt,unsigned char * ct,symmetric_key * skey)530 int twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
531 {
532    int err = _twofish_ecb_encrypt(pt, ct, skey);
533    burn_stack(sizeof(ulong32) * 10 + sizeof(int));
534    return err;
535 }
536 #endif
537 
538 /**
539   Decrypts a block of text with Twofish
540   @param ct The input ciphertext (16 bytes)
541   @param pt The output plaintext (16 bytes)
542   @param skey The key as scheduled
543   @return CRYPT_OK if successful
544 */
545 #ifdef LTC_CLEAN_STACK
_twofish_ecb_decrypt(const unsigned char * ct,unsigned char * pt,symmetric_key * skey)546 static int _twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
547 #else
548 int twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
549 #endif
550 {
551     ulong32 a,b,c,d,ta,tb,tc,td,t1,t2, *k;
552     int r;
553 #if !defined(TWOFISH_SMALL) && !defined(__GNUC__)
554     ulong32 *S1, *S2, *S3, *S4;
555 #endif
556 
557     LTC_ARGCHK(pt   != NULL);
558     LTC_ARGCHK(ct   != NULL);
559     LTC_ARGCHK(skey != NULL);
560 
561 #if !defined(TWOFISH_SMALL) && !defined(__GNUC__)
562     S1 = skey->twofish.S[0];
563     S2 = skey->twofish.S[1];
564     S3 = skey->twofish.S[2];
565     S4 = skey->twofish.S[3];
566 #endif
567 
568     /* load input */
569     LOAD32L(ta,&ct[0]); LOAD32L(tb,&ct[4]);
570     LOAD32L(tc,&ct[8]); LOAD32L(td,&ct[12]);
571 
572     /* undo undo final swap */
573     a = tc ^ skey->twofish.K[6];
574     b = td ^ skey->twofish.K[7];
575     c = ta ^ skey->twofish.K[4];
576     d = tb ^ skey->twofish.K[5];
577 
578     k = skey->twofish.K + 36;
579     for (r = 8; r != 0; --r) {
580         t2 = g1_func(d, skey);
581         t1 = g_func(c, skey) + t2;
582         a = ROLc(a, 1) ^ (t1 + k[2]);
583         b = RORc(b ^ (t2 + t1 + k[3]), 1);
584 
585         t2 = g1_func(b, skey);
586         t1 = g_func(a, skey) + t2;
587         c = ROLc(c, 1) ^ (t1 + k[0]);
588         d = RORc(d ^ (t2 +  t1 + k[1]), 1);
589         k -= 4;
590     }
591 
592     /* pre-white */
593     a ^= skey->twofish.K[0];
594     b ^= skey->twofish.K[1];
595     c ^= skey->twofish.K[2];
596     d ^= skey->twofish.K[3];
597 
598     /* store */
599     STORE32L(a, &pt[0]); STORE32L(b, &pt[4]);
600     STORE32L(c, &pt[8]); STORE32L(d, &pt[12]);
601     return CRYPT_OK;
602 }
603 
604 #ifdef LTC_CLEAN_STACK
twofish_ecb_decrypt(const unsigned char * ct,unsigned char * pt,symmetric_key * skey)605 int twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
606 {
607    int err =_twofish_ecb_decrypt(ct, pt, skey);
608    burn_stack(sizeof(ulong32) * 10 + sizeof(int));
609    return err;
610 }
611 #endif
612 
613 /**
614   Performs a self-test of the Twofish block cipher
615   @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
616 */
twofish_test(void)617 int twofish_test(void)
618 {
619  #ifndef LTC_TEST
620     return CRYPT_NOP;
621  #else
622  static const struct {
623      int keylen;
624      unsigned char key[32], pt[16], ct[16];
625  } tests[] = {
626    { 16,
627      { 0x9F, 0x58, 0x9F, 0x5C, 0xF6, 0x12, 0x2C, 0x32,
628        0xB6, 0xBF, 0xEC, 0x2F, 0x2A, 0xE8, 0xC3, 0x5A },
629      { 0xD4, 0x91, 0xDB, 0x16, 0xE7, 0xB1, 0xC3, 0x9E,
630        0x86, 0xCB, 0x08, 0x6B, 0x78, 0x9F, 0x54, 0x19 },
631      { 0x01, 0x9F, 0x98, 0x09, 0xDE, 0x17, 0x11, 0x85,
632        0x8F, 0xAA, 0xC3, 0xA3, 0xBA, 0x20, 0xFB, 0xC3 }
633    }, {
634      24,
635      { 0x88, 0xB2, 0xB2, 0x70, 0x6B, 0x10, 0x5E, 0x36,
636        0xB4, 0x46, 0xBB, 0x6D, 0x73, 0x1A, 0x1E, 0x88,
637        0xEF, 0xA7, 0x1F, 0x78, 0x89, 0x65, 0xBD, 0x44 },
638      { 0x39, 0xDA, 0x69, 0xD6, 0xBA, 0x49, 0x97, 0xD5,
639        0x85, 0xB6, 0xDC, 0x07, 0x3C, 0xA3, 0x41, 0xB2 },
640      { 0x18, 0x2B, 0x02, 0xD8, 0x14, 0x97, 0xEA, 0x45,
641        0xF9, 0xDA, 0xAC, 0xDC, 0x29, 0x19, 0x3A, 0x65 }
642    }, {
643      32,
644      { 0xD4, 0x3B, 0xB7, 0x55, 0x6E, 0xA3, 0x2E, 0x46,
645        0xF2, 0xA2, 0x82, 0xB7, 0xD4, 0x5B, 0x4E, 0x0D,
646        0x57, 0xFF, 0x73, 0x9D, 0x4D, 0xC9, 0x2C, 0x1B,
647        0xD7, 0xFC, 0x01, 0x70, 0x0C, 0xC8, 0x21, 0x6F },
648      { 0x90, 0xAF, 0xE9, 0x1B, 0xB2, 0x88, 0x54, 0x4F,
649        0x2C, 0x32, 0xDC, 0x23, 0x9B, 0x26, 0x35, 0xE6 },
650      { 0x6C, 0xB4, 0x56, 0x1C, 0x40, 0xBF, 0x0A, 0x97,
651        0x05, 0x93, 0x1C, 0xB6, 0xD4, 0x08, 0xE7, 0xFA }
652    }
653 };
654 
655 
656  symmetric_key key;
657  unsigned char tmp[2][16];
658  int err, i, y;
659 
660  for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
661     if ((err = twofish_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
662        return err;
663     }
664     twofish_ecb_encrypt(tests[i].pt, tmp[0], &key);
665     twofish_ecb_decrypt(tmp[0], tmp[1], &key);
666     if (XMEMCMP(tmp[0], tests[i].ct, 16) != 0 || XMEMCMP(tmp[1], tests[i].pt, 16) != 0) {
667 #if 0
668        printf("Twofish failed test %d, %d, %d\n", i, XMEMCMP(tmp[0], tests[i].ct, 16), XMEMCMP(tmp[1], tests[i].pt, 16));
669 #endif
670        return CRYPT_FAIL_TESTVECTOR;
671     }
672       /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
673       for (y = 0; y < 16; y++) tmp[0][y] = 0;
674       for (y = 0; y < 1000; y++) twofish_ecb_encrypt(tmp[0], tmp[0], &key);
675       for (y = 0; y < 1000; y++) twofish_ecb_decrypt(tmp[0], tmp[0], &key);
676       for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
677  }
678  return CRYPT_OK;
679 #endif
680 }
681 
682 /** Terminate the context
683    @param skey    The scheduled key
684 */
twofish_done(symmetric_key * skey)685 void twofish_done(symmetric_key *skey)
686 {
687 }
688 
689 /**
690   Gets suitable key size
691   @param keysize [in/out] The length of the recommended key (in bytes).  This function will store the suitable size back in this variable.
692   @return CRYPT_OK if the input key size is acceptable.
693 */
twofish_keysize(int * keysize)694 int twofish_keysize(int *keysize)
695 {
696    LTC_ARGCHK(keysize);
697    if (*keysize < 16)
698       return CRYPT_INVALID_KEYSIZE;
699    if (*keysize < 24) {
700       *keysize = 16;
701       return CRYPT_OK;
702    } else if (*keysize < 32) {
703       *keysize = 24;
704       return CRYPT_OK;
705    } else {
706       *keysize = 32;
707       return CRYPT_OK;
708    }
709 }
710 
711 #endif
712 
713 
714 
715 
716 /* $Source: /cvs/libtom/libtomcrypt/src/ciphers/twofish/twofish.c,v $ */
717 /* $Revision: 1.14 $ */
718 /* $Date: 2006/12/04 21:34:03 $ */
719