1 // Copyright 2006-2008 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 // Platform specific code for Linux goes here. For the POSIX comaptible parts
29 // the implementation is in platform-posix.cc.
30
31 #include <pthread.h>
32 #include <semaphore.h>
33 #include <signal.h>
34 #include <sys/time.h>
35 #include <sys/resource.h>
36 #include <sys/types.h>
37 #include <stdlib.h>
38
39 // Ubuntu Dapper requires memory pages to be marked as
40 // executable. Otherwise, OS raises an exception when executing code
41 // in that page.
42 #include <sys/types.h> // mmap & munmap
43 #include <sys/mman.h> // mmap & munmap
44 #include <sys/stat.h> // open
45 #include <fcntl.h> // open
46 #include <unistd.h> // sysconf
47 #ifdef __GLIBC__
48 #include <execinfo.h> // backtrace, backtrace_symbols
49 #endif // def __GLIBC__
50 #include <strings.h> // index
51 #include <errno.h>
52 #include <stdarg.h>
53
54 #undef MAP_TYPE
55
56 #include "v8.h"
57
58 #include "platform.h"
59 #include "top.h"
60 #include "v8threads.h"
61
62
63 namespace v8 {
64 namespace internal {
65
66 // 0 is never a valid thread id on Linux since tids and pids share a
67 // name space and pid 0 is reserved (see man 2 kill).
68 static const pthread_t kNoThread = (pthread_t) 0;
69
70
ceiling(double x)71 double ceiling(double x) {
72 return ceil(x);
73 }
74
75
Setup()76 void OS::Setup() {
77 // Seed the random number generator.
78 // Convert the current time to a 64-bit integer first, before converting it
79 // to an unsigned. Going directly can cause an overflow and the seed to be
80 // set to all ones. The seed will be identical for different instances that
81 // call this setup code within the same millisecond.
82 uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
83 srandom(static_cast<unsigned int>(seed));
84 }
85
86
CpuFeaturesImpliedByPlatform()87 uint64_t OS::CpuFeaturesImpliedByPlatform() {
88 #if (defined(__VFP_FP__) && !defined(__SOFTFP__))
89 // Here gcc is telling us that we are on an ARM and gcc is assuming that we
90 // have VFP3 instructions. If gcc can assume it then so can we.
91 return 1u << VFP3;
92 #elif CAN_USE_ARMV7_INSTRUCTIONS
93 return 1u << ARMv7;
94 #else
95 return 0; // Linux runs on anything.
96 #endif
97 }
98
99
100 #ifdef __arm__
ArmCpuHasFeature(CpuFeature feature)101 bool OS::ArmCpuHasFeature(CpuFeature feature) {
102 const char* search_string = NULL;
103 const char* file_name = "/proc/cpuinfo";
104 // Simple detection of VFP at runtime for Linux.
105 // It is based on /proc/cpuinfo, which reveals hardware configuration
106 // to user-space applications. According to ARM (mid 2009), no similar
107 // facility is universally available on the ARM architectures,
108 // so it's up to individual OSes to provide such.
109 //
110 // This is written as a straight shot one pass parser
111 // and not using STL string and ifstream because,
112 // on Linux, it's reading from a (non-mmap-able)
113 // character special device.
114 switch (feature) {
115 case VFP3:
116 search_string = "vfp";
117 break;
118 case ARMv7:
119 search_string = "ARMv7";
120 break;
121 default:
122 UNREACHABLE();
123 }
124
125 FILE* f = NULL;
126 const char* what = search_string;
127
128 if (NULL == (f = fopen(file_name, "r")))
129 return false;
130
131 int k;
132 while (EOF != (k = fgetc(f))) {
133 if (k == *what) {
134 ++what;
135 while ((*what != '\0') && (*what == fgetc(f))) {
136 ++what;
137 }
138 if (*what == '\0') {
139 fclose(f);
140 return true;
141 } else {
142 what = search_string;
143 }
144 }
145 }
146 fclose(f);
147
148 // Did not find string in the proc file.
149 return false;
150 }
151 #endif // def __arm__
152
153
ActivationFrameAlignment()154 int OS::ActivationFrameAlignment() {
155 #ifdef V8_TARGET_ARCH_ARM
156 // On EABI ARM targets this is required for fp correctness in the
157 // runtime system.
158 return 8;
159 #elif V8_TARGET_ARCH_MIPS
160 return 8;
161 #endif
162 // With gcc 4.4 the tree vectorization optimiser can generate code
163 // that requires 16 byte alignment such as movdqa on x86.
164 return 16;
165 }
166
167
LocalTimezone(double time)168 const char* OS::LocalTimezone(double time) {
169 if (isnan(time)) return "";
170 time_t tv = static_cast<time_t>(floor(time/msPerSecond));
171 struct tm* t = localtime(&tv);
172 if (NULL == t) return "";
173 return t->tm_zone;
174 }
175
176
LocalTimeOffset()177 double OS::LocalTimeOffset() {
178 time_t tv = time(NULL);
179 struct tm* t = localtime(&tv);
180 // tm_gmtoff includes any daylight savings offset, so subtract it.
181 return static_cast<double>(t->tm_gmtoff * msPerSecond -
182 (t->tm_isdst > 0 ? 3600 * msPerSecond : 0));
183 }
184
185
186 // We keep the lowest and highest addresses mapped as a quick way of
187 // determining that pointers are outside the heap (used mostly in assertions
188 // and verification). The estimate is conservative, ie, not all addresses in
189 // 'allocated' space are actually allocated to our heap. The range is
190 // [lowest, highest), inclusive on the low and and exclusive on the high end.
191 static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
192 static void* highest_ever_allocated = reinterpret_cast<void*>(0);
193
194
UpdateAllocatedSpaceLimits(void * address,int size)195 static void UpdateAllocatedSpaceLimits(void* address, int size) {
196 lowest_ever_allocated = Min(lowest_ever_allocated, address);
197 highest_ever_allocated =
198 Max(highest_ever_allocated,
199 reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
200 }
201
202
IsOutsideAllocatedSpace(void * address)203 bool OS::IsOutsideAllocatedSpace(void* address) {
204 return address < lowest_ever_allocated || address >= highest_ever_allocated;
205 }
206
207
AllocateAlignment()208 size_t OS::AllocateAlignment() {
209 return sysconf(_SC_PAGESIZE);
210 }
211
212
Allocate(const size_t requested,size_t * allocated,bool is_executable)213 void* OS::Allocate(const size_t requested,
214 size_t* allocated,
215 bool is_executable) {
216 const size_t msize = RoundUp(requested, sysconf(_SC_PAGESIZE));
217 int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
218 void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
219 if (mbase == MAP_FAILED) {
220 LOG(StringEvent("OS::Allocate", "mmap failed"));
221 return NULL;
222 }
223 *allocated = msize;
224 UpdateAllocatedSpaceLimits(mbase, msize);
225 return mbase;
226 }
227
228
Free(void * address,const size_t size)229 void OS::Free(void* address, const size_t size) {
230 // TODO(1240712): munmap has a return value which is ignored here.
231 int result = munmap(address, size);
232 USE(result);
233 ASSERT(result == 0);
234 }
235
236
237 #ifdef ENABLE_HEAP_PROTECTION
238
Protect(void * address,size_t size)239 void OS::Protect(void* address, size_t size) {
240 // TODO(1240712): mprotect has a return value which is ignored here.
241 mprotect(address, size, PROT_READ);
242 }
243
244
Unprotect(void * address,size_t size,bool is_executable)245 void OS::Unprotect(void* address, size_t size, bool is_executable) {
246 // TODO(1240712): mprotect has a return value which is ignored here.
247 int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
248 mprotect(address, size, prot);
249 }
250
251 #endif
252
253
Sleep(int milliseconds)254 void OS::Sleep(int milliseconds) {
255 unsigned int ms = static_cast<unsigned int>(milliseconds);
256 usleep(1000 * ms);
257 }
258
259
Abort()260 void OS::Abort() {
261 // Redirect to std abort to signal abnormal program termination.
262 abort();
263 }
264
265
DebugBreak()266 void OS::DebugBreak() {
267 // TODO(lrn): Introduce processor define for runtime system (!= V8_ARCH_x,
268 // which is the architecture of generated code).
269 #if (defined(__arm__) || defined(__thumb__)) && \
270 defined(CAN_USE_ARMV5_INSTRUCTIONS)
271 asm("bkpt 0");
272 #elif defined(__mips__)
273 asm("break");
274 #else
275 asm("int $3");
276 #endif
277 }
278
279
280 class PosixMemoryMappedFile : public OS::MemoryMappedFile {
281 public:
PosixMemoryMappedFile(FILE * file,void * memory,int size)282 PosixMemoryMappedFile(FILE* file, void* memory, int size)
283 : file_(file), memory_(memory), size_(size) { }
284 virtual ~PosixMemoryMappedFile();
memory()285 virtual void* memory() { return memory_; }
286 private:
287 FILE* file_;
288 void* memory_;
289 int size_;
290 };
291
292
create(const char * name,int size,void * initial)293 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
294 void* initial) {
295 FILE* file = fopen(name, "w+");
296 if (file == NULL) return NULL;
297 int result = fwrite(initial, size, 1, file);
298 if (result < 1) {
299 fclose(file);
300 return NULL;
301 }
302 void* memory =
303 mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
304 return new PosixMemoryMappedFile(file, memory, size);
305 }
306
307
~PosixMemoryMappedFile()308 PosixMemoryMappedFile::~PosixMemoryMappedFile() {
309 if (memory_) munmap(memory_, size_);
310 fclose(file_);
311 }
312
313
LogSharedLibraryAddresses()314 void OS::LogSharedLibraryAddresses() {
315 #ifdef ENABLE_LOGGING_AND_PROFILING
316 // This function assumes that the layout of the file is as follows:
317 // hex_start_addr-hex_end_addr rwxp <unused data> [binary_file_name]
318 // If we encounter an unexpected situation we abort scanning further entries.
319 FILE* fp = fopen("/proc/self/maps", "r");
320 if (fp == NULL) return;
321
322 // Allocate enough room to be able to store a full file name.
323 const int kLibNameLen = FILENAME_MAX + 1;
324 char* lib_name = reinterpret_cast<char*>(malloc(kLibNameLen));
325
326 // This loop will terminate once the scanning hits an EOF.
327 while (true) {
328 uintptr_t start, end;
329 char attr_r, attr_w, attr_x, attr_p;
330 // Parse the addresses and permission bits at the beginning of the line.
331 if (fscanf(fp, "%" V8PRIxPTR "-%" V8PRIxPTR, &start, &end) != 2) break;
332 if (fscanf(fp, " %c%c%c%c", &attr_r, &attr_w, &attr_x, &attr_p) != 4) break;
333
334 int c;
335 if (attr_r == 'r' && attr_x == 'x') {
336 // Found a readable and executable entry. Skip characters until we reach
337 // the beginning of the filename or the end of the line.
338 do {
339 c = getc(fp);
340 } while ((c != EOF) && (c != '\n') && (c != '/'));
341 if (c == EOF) break; // EOF: Was unexpected, just exit.
342
343 // Process the filename if found.
344 if (c == '/') {
345 ungetc(c, fp); // Push the '/' back into the stream to be read below.
346
347 // Read to the end of the line. Exit if the read fails.
348 if (fgets(lib_name, kLibNameLen, fp) == NULL) break;
349
350 // Drop the newline character read by fgets. We do not need to check
351 // for a zero-length string because we know that we at least read the
352 // '/' character.
353 lib_name[strlen(lib_name) - 1] = '\0';
354 } else {
355 // No library name found, just record the raw address range.
356 snprintf(lib_name, kLibNameLen,
357 "%08" V8PRIxPTR "-%08" V8PRIxPTR, start, end);
358 }
359 LOG(SharedLibraryEvent(lib_name, start, end));
360 } else {
361 // Entry not describing executable data. Skip to end of line to setup
362 // reading the next entry.
363 do {
364 c = getc(fp);
365 } while ((c != EOF) && (c != '\n'));
366 if (c == EOF) break;
367 }
368 }
369 free(lib_name);
370 fclose(fp);
371 #endif
372 }
373
374
StackWalk(Vector<OS::StackFrame> frames)375 int OS::StackWalk(Vector<OS::StackFrame> frames) {
376 // backtrace is a glibc extension.
377 #ifdef __GLIBC__
378 int frames_size = frames.length();
379 void** addresses = NewArray<void*>(frames_size);
380
381 int frames_count = backtrace(addresses, frames_size);
382
383 char** symbols;
384 symbols = backtrace_symbols(addresses, frames_count);
385 if (symbols == NULL) {
386 DeleteArray(addresses);
387 return kStackWalkError;
388 }
389
390 for (int i = 0; i < frames_count; i++) {
391 frames[i].address = addresses[i];
392 // Format a text representation of the frame based on the information
393 // available.
394 SNPrintF(MutableCStrVector(frames[i].text, kStackWalkMaxTextLen),
395 "%s",
396 symbols[i]);
397 // Make sure line termination is in place.
398 frames[i].text[kStackWalkMaxTextLen - 1] = '\0';
399 }
400
401 DeleteArray(addresses);
402 free(symbols);
403
404 return frames_count;
405 #else // ndef __GLIBC__
406 return 0;
407 #endif // ndef __GLIBC__
408 }
409
410
411 // Constants used for mmap.
412 static const int kMmapFd = -1;
413 static const int kMmapFdOffset = 0;
414
415
VirtualMemory(size_t size)416 VirtualMemory::VirtualMemory(size_t size) {
417 address_ = mmap(NULL, size, PROT_NONE,
418 MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
419 kMmapFd, kMmapFdOffset);
420 size_ = size;
421 }
422
423
~VirtualMemory()424 VirtualMemory::~VirtualMemory() {
425 if (IsReserved()) {
426 if (0 == munmap(address(), size())) address_ = MAP_FAILED;
427 }
428 }
429
430
IsReserved()431 bool VirtualMemory::IsReserved() {
432 return address_ != MAP_FAILED;
433 }
434
435
Commit(void * address,size_t size,bool is_executable)436 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
437 int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
438 if (MAP_FAILED == mmap(address, size, prot,
439 MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED,
440 kMmapFd, kMmapFdOffset)) {
441 return false;
442 }
443
444 UpdateAllocatedSpaceLimits(address, size);
445 return true;
446 }
447
448
Uncommit(void * address,size_t size)449 bool VirtualMemory::Uncommit(void* address, size_t size) {
450 return mmap(address, size, PROT_NONE,
451 MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE | MAP_FIXED,
452 kMmapFd, kMmapFdOffset) != MAP_FAILED;
453 }
454
455
456 class ThreadHandle::PlatformData : public Malloced {
457 public:
PlatformData(ThreadHandle::Kind kind)458 explicit PlatformData(ThreadHandle::Kind kind) {
459 Initialize(kind);
460 }
461
Initialize(ThreadHandle::Kind kind)462 void Initialize(ThreadHandle::Kind kind) {
463 switch (kind) {
464 case ThreadHandle::SELF: thread_ = pthread_self(); break;
465 case ThreadHandle::INVALID: thread_ = kNoThread; break;
466 }
467 }
468
469 pthread_t thread_; // Thread handle for pthread.
470 };
471
472
ThreadHandle(Kind kind)473 ThreadHandle::ThreadHandle(Kind kind) {
474 data_ = new PlatformData(kind);
475 }
476
477
Initialize(ThreadHandle::Kind kind)478 void ThreadHandle::Initialize(ThreadHandle::Kind kind) {
479 data_->Initialize(kind);
480 }
481
482
~ThreadHandle()483 ThreadHandle::~ThreadHandle() {
484 delete data_;
485 }
486
487
IsSelf() const488 bool ThreadHandle::IsSelf() const {
489 return pthread_equal(data_->thread_, pthread_self());
490 }
491
492
IsValid() const493 bool ThreadHandle::IsValid() const {
494 return data_->thread_ != kNoThread;
495 }
496
497
Thread()498 Thread::Thread() : ThreadHandle(ThreadHandle::INVALID) {
499 }
500
501
~Thread()502 Thread::~Thread() {
503 }
504
505
ThreadEntry(void * arg)506 static void* ThreadEntry(void* arg) {
507 Thread* thread = reinterpret_cast<Thread*>(arg);
508 // This is also initialized by the first argument to pthread_create() but we
509 // don't know which thread will run first (the original thread or the new
510 // one) so we initialize it here too.
511 thread->thread_handle_data()->thread_ = pthread_self();
512 ASSERT(thread->IsValid());
513 thread->Run();
514 return NULL;
515 }
516
517
Start()518 void Thread::Start() {
519 pthread_create(&thread_handle_data()->thread_, NULL, ThreadEntry, this);
520 ASSERT(IsValid());
521 }
522
523
Join()524 void Thread::Join() {
525 pthread_join(thread_handle_data()->thread_, NULL);
526 }
527
528
CreateThreadLocalKey()529 Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
530 pthread_key_t key;
531 int result = pthread_key_create(&key, NULL);
532 USE(result);
533 ASSERT(result == 0);
534 return static_cast<LocalStorageKey>(key);
535 }
536
537
DeleteThreadLocalKey(LocalStorageKey key)538 void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
539 pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
540 int result = pthread_key_delete(pthread_key);
541 USE(result);
542 ASSERT(result == 0);
543 }
544
545
GetThreadLocal(LocalStorageKey key)546 void* Thread::GetThreadLocal(LocalStorageKey key) {
547 pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
548 return pthread_getspecific(pthread_key);
549 }
550
551
SetThreadLocal(LocalStorageKey key,void * value)552 void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
553 pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
554 pthread_setspecific(pthread_key, value);
555 }
556
557
YieldCPU()558 void Thread::YieldCPU() {
559 sched_yield();
560 }
561
562
563 class LinuxMutex : public Mutex {
564 public:
565
LinuxMutex()566 LinuxMutex() {
567 pthread_mutexattr_t attrs;
568 int result = pthread_mutexattr_init(&attrs);
569 ASSERT(result == 0);
570 result = pthread_mutexattr_settype(&attrs, PTHREAD_MUTEX_RECURSIVE);
571 ASSERT(result == 0);
572 result = pthread_mutex_init(&mutex_, &attrs);
573 ASSERT(result == 0);
574 }
575
~LinuxMutex()576 virtual ~LinuxMutex() { pthread_mutex_destroy(&mutex_); }
577
Lock()578 virtual int Lock() {
579 int result = pthread_mutex_lock(&mutex_);
580 return result;
581 }
582
Unlock()583 virtual int Unlock() {
584 int result = pthread_mutex_unlock(&mutex_);
585 return result;
586 }
587
588 private:
589 pthread_mutex_t mutex_; // Pthread mutex for POSIX platforms.
590 };
591
592
CreateMutex()593 Mutex* OS::CreateMutex() {
594 return new LinuxMutex();
595 }
596
597
598 class LinuxSemaphore : public Semaphore {
599 public:
LinuxSemaphore(int count)600 explicit LinuxSemaphore(int count) { sem_init(&sem_, 0, count); }
~LinuxSemaphore()601 virtual ~LinuxSemaphore() { sem_destroy(&sem_); }
602
603 virtual void Wait();
604 virtual bool Wait(int timeout);
Signal()605 virtual void Signal() { sem_post(&sem_); }
606 private:
607 sem_t sem_;
608 };
609
610
Wait()611 void LinuxSemaphore::Wait() {
612 while (true) {
613 int result = sem_wait(&sem_);
614 if (result == 0) return; // Successfully got semaphore.
615 CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
616 }
617 }
618
619
620 #ifndef TIMEVAL_TO_TIMESPEC
621 #define TIMEVAL_TO_TIMESPEC(tv, ts) do { \
622 (ts)->tv_sec = (tv)->tv_sec; \
623 (ts)->tv_nsec = (tv)->tv_usec * 1000; \
624 } while (false)
625 #endif
626
627
Wait(int timeout)628 bool LinuxSemaphore::Wait(int timeout) {
629 const long kOneSecondMicros = 1000000; // NOLINT
630
631 // Split timeout into second and nanosecond parts.
632 struct timeval delta;
633 delta.tv_usec = timeout % kOneSecondMicros;
634 delta.tv_sec = timeout / kOneSecondMicros;
635
636 struct timeval current_time;
637 // Get the current time.
638 if (gettimeofday(¤t_time, NULL) == -1) {
639 return false;
640 }
641
642 // Calculate time for end of timeout.
643 struct timeval end_time;
644 timeradd(¤t_time, &delta, &end_time);
645
646 struct timespec ts;
647 TIMEVAL_TO_TIMESPEC(&end_time, &ts);
648 // Wait for semaphore signalled or timeout.
649 while (true) {
650 int result = sem_timedwait(&sem_, &ts);
651 if (result == 0) return true; // Successfully got semaphore.
652 if (result > 0) {
653 // For glibc prior to 2.3.4 sem_timedwait returns the error instead of -1.
654 errno = result;
655 result = -1;
656 }
657 if (result == -1 && errno == ETIMEDOUT) return false; // Timeout.
658 CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
659 }
660 }
661
662
CreateSemaphore(int count)663 Semaphore* OS::CreateSemaphore(int count) {
664 return new LinuxSemaphore(count);
665 }
666
667
668 #ifdef ENABLE_LOGGING_AND_PROFILING
669
670 static Sampler* active_sampler_ = NULL;
671 static pthread_t vm_thread_ = 0;
672
673
674 #if !defined(__GLIBC__) && (defined(__arm__) || defined(__thumb__))
675 // Android runs a fairly new Linux kernel, so signal info is there,
676 // but the C library doesn't have the structs defined.
677
678 struct sigcontext {
679 uint32_t trap_no;
680 uint32_t error_code;
681 uint32_t oldmask;
682 uint32_t gregs[16];
683 uint32_t arm_cpsr;
684 uint32_t fault_address;
685 };
686 typedef uint32_t __sigset_t;
687 typedef struct sigcontext mcontext_t;
688 typedef struct ucontext {
689 uint32_t uc_flags;
690 struct ucontext* uc_link;
691 stack_t uc_stack;
692 mcontext_t uc_mcontext;
693 __sigset_t uc_sigmask;
694 } ucontext_t;
695 enum ArmRegisters {R15 = 15, R13 = 13, R11 = 11};
696
697 #endif
698
699
700 // A function that determines if a signal handler is called in the context
701 // of a VM thread.
702 //
703 // The problem is that SIGPROF signal can be delivered to an arbitrary thread
704 // (see http://code.google.com/p/google-perftools/issues/detail?id=106#c2)
705 // So, if the signal is being handled in the context of a non-VM thread,
706 // it means that the VM thread is running, and trying to sample its stack can
707 // cause a crash.
IsVmThread()708 static inline bool IsVmThread() {
709 // In the case of a single VM thread, this check is enough.
710 if (pthread_equal(pthread_self(), vm_thread_)) return true;
711 // If there are multiple threads that use VM, they must have a thread id
712 // stored in TLS. To verify that the thread is really executing VM,
713 // we check Top's data. Having that ThreadManager::RestoreThread first
714 // restores ThreadLocalTop from TLS, and only then erases the TLS value,
715 // reading Top::thread_id() should not be affected by races.
716 if (ThreadManager::HasId() && !ThreadManager::IsArchived() &&
717 ThreadManager::CurrentId() == Top::thread_id()) {
718 return true;
719 }
720 return false;
721 }
722
723
ProfilerSignalHandler(int signal,siginfo_t * info,void * context)724 static void ProfilerSignalHandler(int signal, siginfo_t* info, void* context) {
725 #ifndef V8_HOST_ARCH_MIPS
726 USE(info);
727 if (signal != SIGPROF) return;
728 if (active_sampler_ == NULL) return;
729
730 TickSample sample;
731
732 // If profiling, we extract the current pc and sp.
733 if (active_sampler_->IsProfiling()) {
734 // Extracting the sample from the context is extremely machine dependent.
735 ucontext_t* ucontext = reinterpret_cast<ucontext_t*>(context);
736 mcontext_t& mcontext = ucontext->uc_mcontext;
737 #if V8_HOST_ARCH_IA32
738 sample.pc = reinterpret_cast<Address>(mcontext.gregs[REG_EIP]);
739 sample.sp = reinterpret_cast<Address>(mcontext.gregs[REG_ESP]);
740 sample.fp = reinterpret_cast<Address>(mcontext.gregs[REG_EBP]);
741 #elif V8_HOST_ARCH_X64
742 sample.pc = reinterpret_cast<Address>(mcontext.gregs[REG_RIP]);
743 sample.sp = reinterpret_cast<Address>(mcontext.gregs[REG_RSP]);
744 sample.fp = reinterpret_cast<Address>(mcontext.gregs[REG_RBP]);
745 #elif V8_HOST_ARCH_ARM
746 // An undefined macro evaluates to 0, so this applies to Android's Bionic also.
747 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
748 sample.pc = reinterpret_cast<Address>(mcontext.gregs[R15]);
749 sample.sp = reinterpret_cast<Address>(mcontext.gregs[R13]);
750 sample.fp = reinterpret_cast<Address>(mcontext.gregs[R11]);
751 #else
752 sample.pc = reinterpret_cast<Address>(mcontext.arm_pc);
753 sample.sp = reinterpret_cast<Address>(mcontext.arm_sp);
754 sample.fp = reinterpret_cast<Address>(mcontext.arm_fp);
755 #endif
756 #elif V8_HOST_ARCH_MIPS
757 // Implement this on MIPS.
758 UNIMPLEMENTED();
759 #endif
760 if (IsVmThread())
761 active_sampler_->SampleStack(&sample);
762 }
763
764 // We always sample the VM state.
765 sample.state = Logger::state();
766
767 active_sampler_->Tick(&sample);
768 #endif
769 }
770
771
772 class Sampler::PlatformData : public Malloced {
773 public:
PlatformData()774 PlatformData() {
775 signal_handler_installed_ = false;
776 }
777
778 bool signal_handler_installed_;
779 struct sigaction old_signal_handler_;
780 struct itimerval old_timer_value_;
781 };
782
783
Sampler(int interval,bool profiling)784 Sampler::Sampler(int interval, bool profiling)
785 : interval_(interval), profiling_(profiling), active_(false) {
786 data_ = new PlatformData();
787 }
788
789
~Sampler()790 Sampler::~Sampler() {
791 delete data_;
792 }
793
794
Start()795 void Sampler::Start() {
796 // There can only be one active sampler at the time on POSIX
797 // platforms.
798 if (active_sampler_ != NULL) return;
799
800 vm_thread_ = pthread_self();
801
802 // Request profiling signals.
803 struct sigaction sa;
804 sa.sa_sigaction = ProfilerSignalHandler;
805 sigemptyset(&sa.sa_mask);
806 sa.sa_flags = SA_SIGINFO;
807 if (sigaction(SIGPROF, &sa, &data_->old_signal_handler_) != 0) return;
808 data_->signal_handler_installed_ = true;
809
810 // Set the itimer to generate a tick for each interval.
811 itimerval itimer;
812 itimer.it_interval.tv_sec = interval_ / 1000;
813 itimer.it_interval.tv_usec = (interval_ % 1000) * 1000;
814 itimer.it_value.tv_sec = itimer.it_interval.tv_sec;
815 itimer.it_value.tv_usec = itimer.it_interval.tv_usec;
816 setitimer(ITIMER_PROF, &itimer, &data_->old_timer_value_);
817
818 // Set this sampler as the active sampler.
819 active_sampler_ = this;
820 active_ = true;
821 }
822
823
Stop()824 void Sampler::Stop() {
825 // Restore old signal handler
826 if (data_->signal_handler_installed_) {
827 setitimer(ITIMER_PROF, &data_->old_timer_value_, NULL);
828 sigaction(SIGPROF, &data_->old_signal_handler_, 0);
829 data_->signal_handler_installed_ = false;
830 }
831
832 // This sampler is no longer the active sampler.
833 active_sampler_ = NULL;
834 active_ = false;
835 }
836
837
838 #endif // ENABLE_LOGGING_AND_PROFILING
839
840 } } // namespace v8::internal
841