• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis
2  *
3  * LibTomCrypt is a library that provides various cryptographic
4  * algorithms in a highly modular and flexible manner.
5  *
6  * The library is free for all purposes without any express
7  * guarantee it works.
8  *
9  * Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com
10  */
11 
12 /**
13   @file xtea.c
14   Implementation of XTEA, Tom St Denis
15 */
16 #include "tomcrypt.h"
17 
18 #ifdef XTEA
19 
20 const struct ltc_cipher_descriptor xtea_desc =
21 {
22     "xtea",
23     1,
24     16, 16, 8, 32,
25     &xtea_setup,
26     &xtea_ecb_encrypt,
27     &xtea_ecb_decrypt,
28     &xtea_test,
29     &xtea_done,
30     &xtea_keysize,
31     NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
32 };
33 
xtea_setup(const unsigned char * key,int keylen,int num_rounds,symmetric_key * skey)34 int xtea_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
35 {
36    unsigned long x, sum, K[4];
37 
38    LTC_ARGCHK(key != NULL);
39    LTC_ARGCHK(skey != NULL);
40 
41    /* check arguments */
42    if (keylen != 16) {
43       return CRYPT_INVALID_KEYSIZE;
44    }
45 
46    if (num_rounds != 0 && num_rounds != 32) {
47       return CRYPT_INVALID_ROUNDS;
48    }
49 
50    /* load key */
51    LOAD32L(K[0], key+0);
52    LOAD32L(K[1], key+4);
53    LOAD32L(K[2], key+8);
54    LOAD32L(K[3], key+12);
55 
56    for (x = sum = 0; x < 32; x++) {
57        skey->xtea.A[x] = (sum + K[sum&3]) & 0xFFFFFFFFUL;
58        sum = (sum + 0x9E3779B9UL) & 0xFFFFFFFFUL;
59        skey->xtea.B[x] = (sum + K[(sum>>11)&3]) & 0xFFFFFFFFUL;
60    }
61 
62 #ifdef LTC_CLEAN_STACK
63    zeromem(&K, sizeof(K));
64 #endif
65 
66    return CRYPT_OK;
67 }
68 
69 /**
70   Encrypts a block of text with XTEA
71   @param pt The input plaintext (8 bytes)
72   @param ct The output ciphertext (8 bytes)
73   @param skey The key as scheduled
74   @return CRYPT_OK if successful
75 */
xtea_ecb_encrypt(const unsigned char * pt,unsigned char * ct,symmetric_key * skey)76 int xtea_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
77 {
78    unsigned long y, z;
79    int r;
80 
81    LTC_ARGCHK(pt   != NULL);
82    LTC_ARGCHK(ct   != NULL);
83    LTC_ARGCHK(skey != NULL);
84 
85    LOAD32L(y, &pt[0]);
86    LOAD32L(z, &pt[4]);
87    for (r = 0; r < 32; r += 4) {
88        y = (y + ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r])) & 0xFFFFFFFFUL;
89        z = (z + ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r])) & 0xFFFFFFFFUL;
90 
91        y = (y + ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r+1])) & 0xFFFFFFFFUL;
92        z = (z + ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r+1])) & 0xFFFFFFFFUL;
93 
94        y = (y + ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r+2])) & 0xFFFFFFFFUL;
95        z = (z + ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r+2])) & 0xFFFFFFFFUL;
96 
97        y = (y + ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r+3])) & 0xFFFFFFFFUL;
98        z = (z + ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r+3])) & 0xFFFFFFFFUL;
99    }
100    STORE32L(y, &ct[0]);
101    STORE32L(z, &ct[4]);
102    return CRYPT_OK;
103 }
104 
105 /**
106   Decrypts a block of text with XTEA
107   @param ct The input ciphertext (8 bytes)
108   @param pt The output plaintext (8 bytes)
109   @param skey The key as scheduled
110   @return CRYPT_OK if successful
111 */
xtea_ecb_decrypt(const unsigned char * ct,unsigned char * pt,symmetric_key * skey)112 int xtea_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
113 {
114    unsigned long y, z;
115    int r;
116 
117    LTC_ARGCHK(pt   != NULL);
118    LTC_ARGCHK(ct   != NULL);
119    LTC_ARGCHK(skey != NULL);
120 
121    LOAD32L(y, &ct[0]);
122    LOAD32L(z, &ct[4]);
123    for (r = 31; r >= 0; r -= 4) {
124        z = (z - ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r])) & 0xFFFFFFFFUL;
125        y = (y - ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r])) & 0xFFFFFFFFUL;
126 
127        z = (z - ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r-1])) & 0xFFFFFFFFUL;
128        y = (y - ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r-1])) & 0xFFFFFFFFUL;
129 
130        z = (z - ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r-2])) & 0xFFFFFFFFUL;
131        y = (y - ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r-2])) & 0xFFFFFFFFUL;
132 
133        z = (z - ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r-3])) & 0xFFFFFFFFUL;
134        y = (y - ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r-3])) & 0xFFFFFFFFUL;
135    }
136    STORE32L(y, &pt[0]);
137    STORE32L(z, &pt[4]);
138    return CRYPT_OK;
139 }
140 
141 /**
142   Performs a self-test of the XTEA block cipher
143   @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
144 */
xtea_test(void)145 int xtea_test(void)
146 {
147  #ifndef LTC_TEST
148     return CRYPT_NOP;
149  #else
150    static const unsigned char key[16] =
151       { 0x78, 0x56, 0x34, 0x12, 0xf0, 0xcd, 0xcb, 0x9a,
152         0x48, 0x37, 0x26, 0x15, 0xc0, 0xbf, 0xae, 0x9d };
153    static const unsigned char pt[8] =
154       { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08 };
155    static const unsigned char ct[8] =
156       { 0x75, 0xd7, 0xc5, 0xbf, 0xcf, 0x58, 0xc9, 0x3f };
157    unsigned char tmp[2][8];
158    symmetric_key skey;
159    int err, y;
160 
161    if ((err = xtea_setup(key, 16, 0, &skey)) != CRYPT_OK)  {
162       return err;
163    }
164    xtea_ecb_encrypt(pt, tmp[0], &skey);
165    xtea_ecb_decrypt(tmp[0], tmp[1], &skey);
166 
167    if (XMEMCMP(tmp[0], ct, 8) != 0 || XMEMCMP(tmp[1], pt, 8) != 0) {
168       return CRYPT_FAIL_TESTVECTOR;
169    }
170 
171       /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
172       for (y = 0; y < 8; y++) tmp[0][y] = 0;
173       for (y = 0; y < 1000; y++) xtea_ecb_encrypt(tmp[0], tmp[0], &skey);
174       for (y = 0; y < 1000; y++) xtea_ecb_decrypt(tmp[0], tmp[0], &skey);
175       for (y = 0; y < 8; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
176 
177    return CRYPT_OK;
178  #endif
179 }
180 
181 /** Terminate the context
182    @param skey    The scheduled key
183 */
xtea_done(symmetric_key * skey)184 void xtea_done(symmetric_key *skey)
185 {
186 }
187 
188 /**
189   Gets suitable key size
190   @param keysize [in/out] The length of the recommended key (in bytes).  This function will store the suitable size back in this variable.
191   @return CRYPT_OK if the input key size is acceptable.
192 */
xtea_keysize(int * keysize)193 int xtea_keysize(int *keysize)
194 {
195    LTC_ARGCHK(keysize != NULL);
196    if (*keysize < 16) {
197       return CRYPT_INVALID_KEYSIZE;
198    }
199    *keysize = 16;
200    return CRYPT_OK;
201 }
202 
203 
204 #endif
205 
206 
207 
208 
209 /* $Source: /cvs/libtom/libtomcrypt/src/ciphers/xtea.c,v $ */
210 /* $Revision: 1.12 $ */
211 /* $Date: 2006/11/08 23:01:06 $ */
212