• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2009 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "Dalvik.h"
18 #include "libdex/OpCode.h"
19 #include "libdex/OpCodeNames.h"
20 
21 #include "../../CompilerInternals.h"
22 #include "ArmLIR.h"
23 #include "Codegen.h"
24 #include <unistd.h>             /* for cacheflush */
25 #include <sys/mman.h>           /* for protection change */
26 
27 #define MAX_ASSEMBLER_RETRIES 10
28 
29 /*
30  * opcode: ArmOpCode enum
31  * skeleton: pre-designated bit-pattern for this opcode
32  * k0: key to applying ds/de
33  * ds: dest start bit position
34  * de: dest end bit position
35  * k1: key to applying s1s/s1e
36  * s1s: src1 start bit position
37  * s1e: src1 end bit position
38  * k2: key to applying s2s/s2e
39  * s2s: src2 start bit position
40  * s2e: src2 end bit position
41  * operands: number of operands (for sanity check purposes)
42  * name: mnemonic name
43  * fmt: for pretty-printing
44  */
45 #define ENCODING_MAP(opcode, skeleton, k0, ds, de, k1, s1s, s1e, k2, s2s, s2e, \
46                      k3, k3s, k3e, flags, name, fmt, size) \
47         {skeleton, {{k0, ds, de}, {k1, s1s, s1e}, {k2, s2s, s2e}, \
48                     {k3, k3s, k3e}}, opcode, flags, name, fmt, size}
49 
50 /* Instruction dump string format keys: !pf, where "!" is the start
51  * of the key, "p" is which numeric operand to use and "f" is the
52  * print format.
53  *
54  * [p]ositions:
55  *     0 -> operands[0] (dest)
56  *     1 -> operands[1] (src1)
57  *     2 -> operands[2] (src2)
58  *     3 -> operands[3] (extra)
59  *
60  * [f]ormats:
61  *     h -> 4-digit hex
62  *     d -> decimal
63  *     E -> decimal*4
64  *     F -> decimal*2
65  *     c -> branch condition (beq, bne, etc.)
66  *     t -> pc-relative target
67  *     u -> 1st half of bl[x] target
68  *     v -> 2nd half ob bl[x] target
69  *     R -> register list
70  *     s -> single precision floating point register
71  *     S -> double precision floating point register
72  *     m -> Thumb2 modified immediate
73  *     n -> complimented Thumb2 modified immediate
74  *     M -> Thumb2 16-bit zero-extended immediate
75  *     b -> 4-digit binary
76  *     B -> dmb option string (sy, st, ish, ishst, nsh, hshst)
77  *     H -> operand shift
78  *
79  *  [!] escape.  To insert "!", use "!!"
80  */
81 /* NOTE: must be kept in sync with enum ArmOpcode from ArmLIR.h */
82 ArmEncodingMap EncodingMap[kArmLast] = {
83     ENCODING_MAP(kArm16BitData,    0x0000,
84                  kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
85                  kFmtUnused, -1, -1, IS_UNARY_OP, "data", "0x!0h(!0d)", 1),
86     ENCODING_MAP(kThumbAdcRR,        0x4140,
87                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
88                  kFmtUnused, -1, -1,
89                  IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES | USES_CCODES,
90                  "adcs", "r!0d, r!1d", 1),
91     ENCODING_MAP(kThumbAddRRI3,      0x1c00,
92                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
93                  kFmtUnused, -1, -1,
94                  IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
95                  "adds", "r!0d, r!1d, #!2d", 1),
96     ENCODING_MAP(kThumbAddRI8,       0x3000,
97                  kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1,
98                  kFmtUnused, -1, -1,
99                  IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES,
100                  "adds", "r!0d, r!0d, #!1d", 1),
101     ENCODING_MAP(kThumbAddRRR,       0x1800,
102                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
103                  kFmtUnused, -1, -1,
104                  IS_TERTIARY_OP | REG_DEF0_USE12 | SETS_CCODES,
105                  "adds", "r!0d, r!1d, r!2d", 1),
106     ENCODING_MAP(kThumbAddRRLH,     0x4440,
107                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
108                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE01,
109                  "add", "r!0d, r!1d", 1),
110     ENCODING_MAP(kThumbAddRRHL,     0x4480,
111                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
112                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE01,
113                  "add", "r!0d, r!1d", 1),
114     ENCODING_MAP(kThumbAddRRHH,     0x44c0,
115                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
116                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE01,
117                  "add", "r!0d, r!1d", 1),
118     ENCODING_MAP(kThumbAddPcRel,    0xa000,
119                  kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1,
120                  kFmtUnused, -1, -1, IS_TERTIARY_OP | IS_BRANCH,
121                  "add", "r!0d, pc, #!1E", 1),
122     ENCODING_MAP(kThumbAddSpRel,    0xa800,
123                  kFmtBitBlt, 10, 8, kFmtUnused, -1, -1, kFmtBitBlt, 7, 0,
124                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF_SP | REG_USE_SP,
125                  "add", "r!0d, sp, #!2E", 1),
126     ENCODING_MAP(kThumbAddSpI7,      0xb000,
127                  kFmtBitBlt, 6, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
128                  kFmtUnused, -1, -1, IS_UNARY_OP | REG_DEF_SP | REG_USE_SP,
129                  "add", "sp, #!0d*4", 1),
130     ENCODING_MAP(kThumbAndRR,        0x4000,
131                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
132                  kFmtUnused, -1, -1,
133                  IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
134                  "ands", "r!0d, r!1d", 1),
135     ENCODING_MAP(kThumbAsrRRI5,      0x1000,
136                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
137                  kFmtUnused, -1, -1,
138                  IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
139                  "asrs", "r!0d, r!1d, #!2d", 1),
140     ENCODING_MAP(kThumbAsrRR,        0x4100,
141                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
142                  kFmtUnused, -1, -1,
143                  IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
144                  "asrs", "r!0d, r!1d", 1),
145     ENCODING_MAP(kThumbBCond,        0xd000,
146                  kFmtBitBlt, 7, 0, kFmtBitBlt, 11, 8, kFmtUnused, -1, -1,
147                  kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | USES_CCODES,
148                  "b!1c", "!0t", 1),
149     ENCODING_MAP(kThumbBUncond,      0xe000,
150                  kFmtBitBlt, 10, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
151                  kFmtUnused, -1, -1, NO_OPERAND | IS_BRANCH,
152                  "b", "!0t", 1),
153     ENCODING_MAP(kThumbBicRR,        0x4380,
154                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
155                  kFmtUnused, -1, -1,
156                  IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
157                  "bics", "r!0d, r!1d", 1),
158     ENCODING_MAP(kThumbBkpt,          0xbe00,
159                  kFmtBitBlt, 7, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
160                  kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH,
161                  "bkpt", "!0d", 1),
162     ENCODING_MAP(kThumbBlx1,         0xf000,
163                  kFmtBitBlt, 10, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
164                  kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | REG_DEF_LR,
165                  "blx_1", "!0u", 1),
166     ENCODING_MAP(kThumbBlx2,         0xe800,
167                  kFmtBitBlt, 10, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
168                  kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | REG_DEF_LR,
169                  "blx_2", "!0v", 1),
170     ENCODING_MAP(kThumbBl1,          0xf000,
171                  kFmtBitBlt, 10, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
172                  kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_DEF_LR,
173                  "bl_1", "!0u", 1),
174     ENCODING_MAP(kThumbBl2,          0xf800,
175                  kFmtBitBlt, 10, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
176                  kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_DEF_LR,
177                  "bl_2", "!0v", 1),
178     ENCODING_MAP(kThumbBlxR,         0x4780,
179                  kFmtBitBlt, 6, 3, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
180                  kFmtUnused, -1, -1,
181                  IS_UNARY_OP | REG_USE0 | IS_BRANCH | REG_DEF_LR,
182                  "blx", "r!0d", 1),
183     ENCODING_MAP(kThumbBx,            0x4700,
184                  kFmtBitBlt, 6, 3, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
185                  kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH,
186                  "bx", "r!0d", 1),
187     ENCODING_MAP(kThumbCmnRR,        0x42c0,
188                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
189                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01 | SETS_CCODES,
190                  "cmn", "r!0d, r!1d", 1),
191     ENCODING_MAP(kThumbCmpRI8,       0x2800,
192                  kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1,
193                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE0 | SETS_CCODES,
194                  "cmp", "r!0d, #!1d", 1),
195     ENCODING_MAP(kThumbCmpRR,        0x4280,
196                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
197                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01 | SETS_CCODES,
198                  "cmp", "r!0d, r!1d", 1),
199     ENCODING_MAP(kThumbCmpLH,        0x4540,
200                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
201                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01 | SETS_CCODES,
202                  "cmp", "r!0d, r!1d", 1),
203     ENCODING_MAP(kThumbCmpHL,        0x4580,
204                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
205                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01 | SETS_CCODES,
206                  "cmp", "r!0d, r!1d", 1),
207     ENCODING_MAP(kThumbCmpHH,        0x45c0,
208                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
209                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01 | SETS_CCODES,
210                  "cmp", "r!0d, r!1d", 1),
211     ENCODING_MAP(kThumbEorRR,        0x4040,
212                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
213                  kFmtUnused, -1, -1,
214                  IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
215                  "eors", "r!0d, r!1d", 1),
216     ENCODING_MAP(kThumbLdmia,         0xc800,
217                  kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1,
218                  kFmtUnused, -1, -1,
219                  IS_BINARY_OP | REG_DEF0_USE0 | REG_DEF_LIST1 | IS_LOAD,
220                  "ldmia", "r!0d!!, <!1R>", 1),
221     ENCODING_MAP(kThumbLdrRRI5,      0x6800,
222                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
223                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
224                  "ldr", "r!0d, [r!1d, #!2E]", 1),
225     ENCODING_MAP(kThumbLdrRRR,       0x5800,
226                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
227                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12 | IS_LOAD,
228                  "ldr", "r!0d, [r!1d, r!2d]", 1),
229     ENCODING_MAP(kThumbLdrPcRel,    0x4800,
230                  kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1,
231                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0 | REG_USE_PC
232                  | IS_LOAD, "ldr", "r!0d, [pc, #!1E]", 1),
233     ENCODING_MAP(kThumbLdrSpRel,    0x9800,
234                  kFmtBitBlt, 10, 8, kFmtUnused, -1, -1, kFmtBitBlt, 7, 0,
235                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0 | REG_USE_SP
236                  | IS_LOAD, "ldr", "r!0d, [sp, #!2E]", 1),
237     ENCODING_MAP(kThumbLdrbRRI5,     0x7800,
238                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
239                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
240                  "ldrb", "r!0d, [r!1d, #2d]", 1),
241     ENCODING_MAP(kThumbLdrbRRR,      0x5c00,
242                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
243                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12 | IS_LOAD,
244                  "ldrb", "r!0d, [r!1d, r!2d]", 1),
245     ENCODING_MAP(kThumbLdrhRRI5,     0x8800,
246                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
247                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
248                  "ldrh", "r!0d, [r!1d, #!2F]", 1),
249     ENCODING_MAP(kThumbLdrhRRR,      0x5a00,
250                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
251                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12 | IS_LOAD,
252                  "ldrh", "r!0d, [r!1d, r!2d]", 1),
253     ENCODING_MAP(kThumbLdrsbRRR,     0x5600,
254                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
255                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12 | IS_LOAD,
256                  "ldrsb", "r!0d, [r!1d, r!2d]", 1),
257     ENCODING_MAP(kThumbLdrshRRR,     0x5e00,
258                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
259                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12 | IS_LOAD,
260                  "ldrsh", "r!0d, [r!1d, r!2d]", 1),
261     ENCODING_MAP(kThumbLslRRI5,      0x0000,
262                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
263                  kFmtUnused, -1, -1,
264                  IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
265                  "lsls", "r!0d, r!1d, #!2d", 1),
266     ENCODING_MAP(kThumbLslRR,        0x4080,
267                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
268                  kFmtUnused, -1, -1,
269                  IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
270                  "lsls", "r!0d, r!1d", 1),
271     ENCODING_MAP(kThumbLsrRRI5,      0x0800,
272                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
273                  kFmtUnused, -1, -1,
274                  IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
275                  "lsrs", "r!0d, r!1d, #!2d", 1),
276     ENCODING_MAP(kThumbLsrRR,        0x40c0,
277                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
278                  kFmtUnused, -1, -1,
279                  IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
280                  "lsrs", "r!0d, r!1d", 1),
281     ENCODING_MAP(kThumbMovImm,       0x2000,
282                  kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1,
283                  kFmtUnused, -1, -1,
284                  IS_BINARY_OP | REG_DEF0 | SETS_CCODES,
285                  "movs", "r!0d, #!1d", 1),
286     ENCODING_MAP(kThumbMovRR,        0x1c00,
287                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
288                  kFmtUnused, -1, -1,
289                  IS_BINARY_OP | REG_DEF0_USE1 | SETS_CCODES,
290                  "movs", "r!0d, r!1d", 1),
291     ENCODING_MAP(kThumbMovRR_H2H,    0x46c0,
292                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
293                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
294                  "mov", "r!0d, r!1d", 1),
295     ENCODING_MAP(kThumbMovRR_H2L,    0x4640,
296                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
297                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
298                  "mov", "r!0d, r!1d", 1),
299     ENCODING_MAP(kThumbMovRR_L2H,    0x4680,
300                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
301                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
302                  "mov", "r!0d, r!1d", 1),
303     ENCODING_MAP(kThumbMul,           0x4340,
304                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
305                  kFmtUnused, -1, -1,
306                  IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
307                  "muls", "r!0d, r!1d", 1),
308     ENCODING_MAP(kThumbMvn,           0x43c0,
309                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
310                  kFmtUnused, -1, -1,
311                  IS_BINARY_OP | REG_DEF0_USE1 | SETS_CCODES,
312                  "mvns", "r!0d, r!1d", 1),
313     ENCODING_MAP(kThumbNeg,           0x4240,
314                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
315                  kFmtUnused, -1, -1,
316                  IS_BINARY_OP | REG_DEF0_USE1 | SETS_CCODES,
317                  "negs", "r!0d, r!1d", 1),
318     ENCODING_MAP(kThumbOrr,           0x4300,
319                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
320                  kFmtUnused, -1, -1,
321                  IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
322                  "orrs", "r!0d, r!1d", 1),
323     ENCODING_MAP(kThumbPop,           0xbc00,
324                  kFmtBitBlt, 8, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
325                  kFmtUnused, -1, -1,
326                  IS_UNARY_OP | REG_DEF_SP | REG_USE_SP | REG_DEF_LIST0
327                  | IS_LOAD, "pop", "<!0R>", 1),
328     ENCODING_MAP(kThumbPush,          0xb400,
329                  kFmtBitBlt, 8, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
330                  kFmtUnused, -1, -1,
331                  IS_UNARY_OP | REG_DEF_SP | REG_USE_SP | REG_USE_LIST0
332                  | IS_STORE, "push", "<!0R>", 1),
333     ENCODING_MAP(kThumbRorRR,        0x41c0,
334                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
335                  kFmtUnused, -1, -1,
336                  IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
337                  "rors", "r!0d, r!1d", 1),
338     ENCODING_MAP(kThumbSbc,           0x4180,
339                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
340                  kFmtUnused, -1, -1,
341                  IS_BINARY_OP | REG_DEF0_USE01 | USES_CCODES | SETS_CCODES,
342                  "sbcs", "r!0d, r!1d", 1),
343     ENCODING_MAP(kThumbStmia,         0xc000,
344                  kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1,
345                  kFmtUnused, -1, -1,
346                  IS_BINARY_OP | REG_DEF0 | REG_USE0 | REG_USE_LIST1 | IS_STORE,
347                  "stmia", "r!0d!!, <!1R>", 1),
348     ENCODING_MAP(kThumbStrRRI5,      0x6000,
349                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
350                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
351                  "str", "r!0d, [r!1d, #!2E]", 1),
352     ENCODING_MAP(kThumbStrRRR,       0x5000,
353                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
354                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE012 | IS_STORE,
355                  "str", "r!0d, [r!1d, r!2d]", 1),
356     ENCODING_MAP(kThumbStrSpRel,    0x9000,
357                  kFmtBitBlt, 10, 8, kFmtUnused, -1, -1, kFmtBitBlt, 7, 0,
358                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE0 | REG_USE_SP
359                  | IS_STORE, "str", "r!0d, [sp, #!2E]", 1),
360     ENCODING_MAP(kThumbStrbRRI5,     0x7000,
361                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
362                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
363                  "strb", "r!0d, [r!1d, #!2d]", 1),
364     ENCODING_MAP(kThumbStrbRRR,      0x5400,
365                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
366                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE012 | IS_STORE,
367                  "strb", "r!0d, [r!1d, r!2d]", 1),
368     ENCODING_MAP(kThumbStrhRRI5,     0x8000,
369                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
370                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
371                  "strh", "r!0d, [r!1d, #!2F]", 1),
372     ENCODING_MAP(kThumbStrhRRR,      0x5200,
373                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
374                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE012 | IS_STORE,
375                  "strh", "r!0d, [r!1d, r!2d]", 1),
376     ENCODING_MAP(kThumbSubRRI3,      0x1e00,
377                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
378                  kFmtUnused, -1, -1,
379                  IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
380                  "subs", "r!0d, r!1d, #!2d]", 1),
381     ENCODING_MAP(kThumbSubRI8,       0x3800,
382                  kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1,
383                  kFmtUnused, -1, -1,
384                  IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES,
385                  "subs", "r!0d, #!1d", 1),
386     ENCODING_MAP(kThumbSubRRR,       0x1a00,
387                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
388                  kFmtUnused, -1, -1,
389                  IS_TERTIARY_OP | REG_DEF0_USE12 | SETS_CCODES,
390                  "subs", "r!0d, r!1d, r!2d", 1),
391     ENCODING_MAP(kThumbSubSpI7,      0xb080,
392                  kFmtBitBlt, 6, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
393                  kFmtUnused, -1, -1,
394                  IS_UNARY_OP | REG_DEF_SP | REG_USE_SP,
395                  "sub", "sp, #!0d", 1),
396     ENCODING_MAP(kThumbSwi,           0xdf00,
397                  kFmtBitBlt, 7, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,                       kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH,
398                  "swi", "!0d", 1),
399     ENCODING_MAP(kThumbTst,           0x4200,
400                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
401                  kFmtUnused, -1, -1, IS_UNARY_OP | REG_USE01 | SETS_CCODES,
402                  "tst", "r!0d, r!1d", 1),
403     ENCODING_MAP(kThumb2Vldrs,       0xed900a00,
404                  kFmtSfp, 22, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 7, 0,
405                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
406                  "vldr", "!0s, [r!1d, #!2E]", 2),
407     ENCODING_MAP(kThumb2Vldrd,       0xed900b00,
408                  kFmtDfp, 22, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 7, 0,
409                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
410                  "vldr", "!0S, [r!1d, #!2E]", 2),
411     ENCODING_MAP(kThumb2Vmuls,        0xee200a00,
412                  kFmtSfp, 22, 12, kFmtSfp, 7, 16, kFmtSfp, 5, 0,
413                  kFmtUnused, -1, -1,
414                  IS_TERTIARY_OP | REG_DEF0_USE12,
415                  "vmuls", "!0s, !1s, !2s", 2),
416     ENCODING_MAP(kThumb2Vmuld,        0xee200b00,
417                  kFmtDfp, 22, 12, kFmtDfp, 7, 16, kFmtDfp, 5, 0,
418                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
419                  "vmuld", "!0S, !1S, !2S", 2),
420     ENCODING_MAP(kThumb2Vstrs,       0xed800a00,
421                  kFmtSfp, 22, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 7, 0,
422                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
423                  "vstr", "!0s, [r!1d, #!2E]", 2),
424     ENCODING_MAP(kThumb2Vstrd,       0xed800b00,
425                  kFmtDfp, 22, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 7, 0,
426                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
427                  "vstr", "!0S, [r!1d, #!2E]", 2),
428     ENCODING_MAP(kThumb2Vsubs,        0xee300a40,
429                  kFmtSfp, 22, 12, kFmtSfp, 7, 16, kFmtSfp, 5, 0,
430                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
431                  "vsub", "!0s, !1s, !2s", 2),
432     ENCODING_MAP(kThumb2Vsubd,        0xee300b40,
433                  kFmtDfp, 22, 12, kFmtDfp, 7, 16, kFmtDfp, 5, 0,
434                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
435                  "vsub", "!0S, !1S, !2S", 2),
436     ENCODING_MAP(kThumb2Vadds,        0xee300a00,
437                  kFmtSfp, 22, 12, kFmtSfp, 7, 16, kFmtSfp, 5, 0,
438                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
439                  "vadd", "!0s, !1s, !2s", 2),
440     ENCODING_MAP(kThumb2Vaddd,        0xee300b00,
441                  kFmtDfp, 22, 12, kFmtDfp, 7, 16, kFmtDfp, 5, 0,
442                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
443                  "vadd", "!0S, !1S, !2S", 2),
444     ENCODING_MAP(kThumb2Vdivs,        0xee800a00,
445                  kFmtSfp, 22, 12, kFmtSfp, 7, 16, kFmtSfp, 5, 0,
446                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
447                  "vdivs", "!0s, !1s, !2s", 2),
448     ENCODING_MAP(kThumb2Vdivd,        0xee800b00,
449                  kFmtDfp, 22, 12, kFmtDfp, 7, 16, kFmtDfp, 5, 0,
450                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
451                  "vdivd", "!0S, !1S, !2S", 2),
452     ENCODING_MAP(kThumb2VcvtIF,       0xeeb80ac0,
453                  kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
454                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
455                  "vcvt.f32", "!0s, !1s", 2),
456     ENCODING_MAP(kThumb2VcvtID,       0xeeb80bc0,
457                  kFmtDfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
458                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
459                  "vcvt.f64", "!0S, !1s", 2),
460     ENCODING_MAP(kThumb2VcvtFI,       0xeebd0ac0,
461                  kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
462                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
463                  "vcvt.s32.f32 ", "!0s, !1s", 2),
464     ENCODING_MAP(kThumb2VcvtDI,       0xeebd0bc0,
465                  kFmtSfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1,
466                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
467                  "vcvt.s32.f64 ", "!0s, !1S", 2),
468     ENCODING_MAP(kThumb2VcvtFd,       0xeeb70ac0,
469                  kFmtDfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
470                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
471                  "vcvt.f64.f32 ", "!0S, !1s", 2),
472     ENCODING_MAP(kThumb2VcvtDF,       0xeeb70bc0,
473                  kFmtSfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1,
474                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
475                  "vcvt.f32.f64 ", "!0s, !1S", 2),
476     ENCODING_MAP(kThumb2Vsqrts,       0xeeb10ac0,
477                  kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
478                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
479                  "vsqrt.f32 ", "!0s, !1s", 2),
480     ENCODING_MAP(kThumb2Vsqrtd,       0xeeb10bc0,
481                  kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1,
482                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
483                  "vsqrt.f64 ", "!0S, !1S", 2),
484     ENCODING_MAP(kThumb2MovImmShift, 0xf04f0000, /* no setflags encoding */
485                  kFmtBitBlt, 11, 8, kFmtModImm, -1, -1, kFmtUnused, -1, -1,
486                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0,
487                  "mov", "r!0d, #!1m", 2),
488     ENCODING_MAP(kThumb2MovImm16,       0xf2400000,
489                  kFmtBitBlt, 11, 8, kFmtImm16, -1, -1, kFmtUnused, -1, -1,
490                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0,
491                  "mov", "r!0d, #!1M", 2),
492     ENCODING_MAP(kThumb2StrRRI12,       0xf8c00000,
493                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0,
494                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
495                  "str", "r!0d, [r!1d, #!2d]", 2),
496     ENCODING_MAP(kThumb2LdrRRI12,       0xf8d00000,
497                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0,
498                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
499                  "ldr", "r!0d, [r!1d, #!2d]", 2),
500     ENCODING_MAP(kThumb2StrRRI8Predec,       0xf8400c00,
501                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 8, 0,
502                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
503                  "str", "r!0d, [r!1d, #-!2d]", 2),
504     ENCODING_MAP(kThumb2LdrRRI8Predec,       0xf8500c00,
505                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 8, 0,
506                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
507                  "ldr", "r!0d, [r!1d, #-!2d]", 2),
508     ENCODING_MAP(kThumb2Cbnz,       0xb900, /* Note: does not affect flags */
509                  kFmtBitBlt, 2, 0, kFmtImm6, -1, -1, kFmtUnused, -1, -1,
510                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE0 | IS_BRANCH,
511                  "cbnz", "r!0d,!1t", 1),
512     ENCODING_MAP(kThumb2Cbz,       0xb100, /* Note: does not affect flags */
513                  kFmtBitBlt, 2, 0, kFmtImm6, -1, -1, kFmtUnused, -1, -1,
514                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE0 | IS_BRANCH,
515                  "cbz", "r!0d,!1t", 1),
516     ENCODING_MAP(kThumb2AddRRI12,       0xf2000000,
517                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtImm12, -1, -1,
518                  kFmtUnused, -1, -1,
519                  IS_TERTIARY_OP | REG_DEF0_USE1,/* Note: doesn't affect flags */
520                  "add", "r!0d,r!1d,#!2d", 2),
521     ENCODING_MAP(kThumb2MovRR,       0xea4f0000, /* no setflags encoding */
522                  kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtUnused, -1, -1,
523                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
524                  "mov", "r!0d, r!1d", 2),
525     ENCODING_MAP(kThumb2Vmovs,       0xeeb00a40,
526                  kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
527                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
528                  "vmov.f32 ", " !0s, !1s", 2),
529     ENCODING_MAP(kThumb2Vmovd,       0xeeb00b40,
530                  kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1,
531                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
532                  "vmov.f64 ", " !0S, !1S", 2),
533     ENCODING_MAP(kThumb2Ldmia,         0xe8900000,
534                  kFmtBitBlt, 19, 16, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
535                  kFmtUnused, -1, -1,
536                  IS_BINARY_OP | REG_DEF0_USE0 | REG_DEF_LIST1 | IS_LOAD,
537                  "ldmia", "r!0d!!, <!1R>", 2),
538     ENCODING_MAP(kThumb2Stmia,         0xe8800000,
539                  kFmtBitBlt, 19, 16, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
540                  kFmtUnused, -1, -1,
541                  IS_BINARY_OP | REG_DEF0_USE0 | REG_USE_LIST1 | IS_STORE,
542                  "stmia", "r!0d!!, <!1R>", 2),
543     ENCODING_MAP(kThumb2AddRRR,  0xeb100000, /* setflags encoding */
544                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
545                  kFmtShift, -1, -1,
546                  IS_QUAD_OP | REG_DEF0_USE12 | SETS_CCODES,
547                  "adds", "r!0d, r!1d, r!2d!3H", 2),
548     ENCODING_MAP(kThumb2SubRRR,       0xebb00000, /* setflags enconding */
549                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
550                  kFmtShift, -1, -1,
551                  IS_QUAD_OP | REG_DEF0_USE12 | SETS_CCODES,
552                  "subs", "r!0d, r!1d, r!2d!3H", 2),
553     ENCODING_MAP(kThumb2SbcRRR,       0xeb700000, /* setflags encoding */
554                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
555                  kFmtShift, -1, -1,
556                  IS_QUAD_OP | REG_DEF0_USE12 | USES_CCODES | SETS_CCODES,
557                  "sbcs", "r!0d, r!1d, r!2d!3H", 2),
558     ENCODING_MAP(kThumb2CmpRR,       0xebb00f00,
559                  kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, kFmtShift, -1, -1,
560                  kFmtUnused, -1, -1,
561                  IS_TERTIARY_OP | REG_USE01 | SETS_CCODES,
562                  "cmp", "r!0d, r!1d", 2),
563     ENCODING_MAP(kThumb2SubRRI12,       0xf2a00000,
564                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtImm12, -1, -1,
565                  kFmtUnused, -1, -1,
566                  IS_TERTIARY_OP | REG_DEF0_USE1,/* Note: doesn't affect flags */
567                  "sub", "r!0d,r!1d,#!2d", 2),
568     ENCODING_MAP(kThumb2MvnImmShift,  0xf06f0000, /* no setflags encoding */
569                  kFmtBitBlt, 11, 8, kFmtModImm, -1, -1, kFmtUnused, -1, -1,
570                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0,
571                  "mvn", "r!0d, #!1n", 2),
572     ENCODING_MAP(kThumb2Sel,       0xfaa0f080,
573                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
574                  kFmtUnused, -1, -1,
575                  IS_TERTIARY_OP | REG_DEF0_USE12 | USES_CCODES,
576                  "sel", "r!0d, r!1d, r!2d", 2),
577     ENCODING_MAP(kThumb2Ubfx,       0xf3c00000,
578                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtLsb, -1, -1,
579                  kFmtBWidth, 4, 0, IS_QUAD_OP | REG_DEF0_USE1,
580                  "ubfx", "r!0d, r!1d, #!2d, #!3d", 2),
581     ENCODING_MAP(kThumb2Sbfx,       0xf3400000,
582                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtLsb, -1, -1,
583                  kFmtBWidth, 4, 0, IS_QUAD_OP | REG_DEF0_USE1,
584                  "sbfx", "r!0d, r!1d, #!2d, #!3d", 2),
585     ENCODING_MAP(kThumb2LdrRRR,    0xf8500000,
586                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
587                  kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_DEF0_USE12 | IS_LOAD,
588                  "ldr", "r!0d, [r!1d, r!2d, LSL #!3d]", 2),
589     ENCODING_MAP(kThumb2LdrhRRR,    0xf8300000,
590                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
591                  kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_DEF0_USE12 | IS_LOAD,
592                  "ldrh", "r!0d, [r!1d, r!2d, LSL #!3d]", 2),
593     ENCODING_MAP(kThumb2LdrshRRR,    0xf9300000,
594                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
595                  kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_DEF0_USE12 | IS_LOAD,
596                  "ldrsh", "r!0d, [r!1d, r!2d, LSL #!3d]", 2),
597     ENCODING_MAP(kThumb2LdrbRRR,    0xf8100000,
598                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
599                  kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_DEF0_USE12 | IS_LOAD,
600                  "ldrb", "r!0d, [r!1d, r!2d, LSL #!3d]", 2),
601     ENCODING_MAP(kThumb2LdrsbRRR,    0xf9100000,
602                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
603                  kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_DEF0_USE12 | IS_LOAD,
604                  "ldrsb", "r!0d, [r!1d, r!2d, LSL #!3d]", 2),
605     ENCODING_MAP(kThumb2StrRRR,    0xf8400000,
606                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
607                  kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_USE012 | IS_STORE,
608                  "str", "r!0d, [r!1d, r!2d, LSL #!3d]", 2),
609     ENCODING_MAP(kThumb2StrhRRR,    0xf8200000,
610                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
611                  kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_USE012 | IS_STORE,
612                  "strh", "r!0d, [r!1d, r!2d, LSL #!3d]", 2),
613     ENCODING_MAP(kThumb2StrbRRR,    0xf8000000,
614                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
615                  kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_USE012 | IS_STORE,
616                  "strb", "r!0d, [r!1d, r!2d, LSL #!3d]", 2),
617     ENCODING_MAP(kThumb2LdrhRRI12,       0xf8b00000,
618                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0,
619                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
620                  "ldrh", "r!0d, [r!1d, #!2d]", 2),
621     ENCODING_MAP(kThumb2LdrshRRI12,       0xf9b00000,
622                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0,
623                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
624                  "ldrsh", "r!0d, [r!1d, #!2d]", 2),
625     ENCODING_MAP(kThumb2LdrbRRI12,       0xf8900000,
626                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0,
627                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
628                  "ldrb", "r!0d, [r!1d, #!2d]", 2),
629     ENCODING_MAP(kThumb2LdrsbRRI12,       0xf9900000,
630                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0,
631                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
632                  "ldrsb", "r!0d, [r!1d, #!2d]", 2),
633     ENCODING_MAP(kThumb2StrhRRI12,       0xf8a00000,
634                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0,
635                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
636                  "strh", "r!0d, [r!1d, #!2d]", 2),
637     ENCODING_MAP(kThumb2StrbRRI12,       0xf8800000,
638                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0,
639                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
640                  "strb", "r!0d, [r!1d, #!2d]", 2),
641     ENCODING_MAP(kThumb2Pop,           0xe8bd0000,
642                  kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
643                  kFmtUnused, -1, -1,
644                  IS_UNARY_OP | REG_DEF_SP | REG_USE_SP | REG_DEF_LIST0
645                  | IS_LOAD, "pop", "<!0R>", 2),
646     ENCODING_MAP(kThumb2Push,          0xe8ad0000,
647                  kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
648                  kFmtUnused, -1, -1,
649                  IS_UNARY_OP | REG_DEF_SP | REG_USE_SP | REG_USE_LIST0
650                  | IS_STORE, "push", "<!0R>", 2),
651     ENCODING_MAP(kThumb2CmpRI8, 0xf1b00f00,
652                  kFmtBitBlt, 19, 16, kFmtModImm, -1, -1, kFmtUnused, -1, -1,
653                  kFmtUnused, -1, -1,
654                  IS_BINARY_OP | REG_USE0 | SETS_CCODES,
655                  "cmp", "r!0d, #!1m", 2),
656     ENCODING_MAP(kThumb2AdcRRR,  0xeb500000, /* setflags encoding */
657                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
658                  kFmtShift, -1, -1,
659                  IS_QUAD_OP | REG_DEF0_USE12 | SETS_CCODES,
660                  "adcs", "r!0d, r!1d, r!2d!3H", 2),
661     ENCODING_MAP(kThumb2AndRRR,  0xea000000,
662                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
663                  kFmtShift, -1, -1, IS_QUAD_OP | REG_DEF0_USE12,
664                  "and", "r!0d, r!1d, r!2d!3H", 2),
665     ENCODING_MAP(kThumb2BicRRR,  0xea200000,
666                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
667                  kFmtShift, -1, -1, IS_QUAD_OP | REG_DEF0_USE12,
668                  "bic", "r!0d, r!1d, r!2d!3H", 2),
669     ENCODING_MAP(kThumb2CmnRR,  0xeb000000,
670                  kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, kFmtShift, -1, -1,
671                  kFmtUnused, -1, -1,
672                  IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
673                  "cmn", "r!0d, r!1d, shift !2d", 2),
674     ENCODING_MAP(kThumb2EorRRR,  0xea800000,
675                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
676                  kFmtShift, -1, -1, IS_QUAD_OP | REG_DEF0_USE12,
677                  "eor", "r!0d, r!1d, r!2d!3H", 2),
678     ENCODING_MAP(kThumb2MulRRR,  0xfb00f000,
679                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
680                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
681                  "mul", "r!0d, r!1d, r!2d", 2),
682     ENCODING_MAP(kThumb2MnvRR,  0xea6f0000,
683                  kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtShift, -1, -1,
684                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
685                  "mvn", "r!0d, r!1d, shift !2d", 2),
686     ENCODING_MAP(kThumb2RsubRRI8,       0xf1d00000,
687                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
688                  kFmtUnused, -1, -1,
689                  IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
690                  "rsb", "r!0d,r!1d,#!2m", 2),
691     ENCODING_MAP(kThumb2NegRR,       0xf1d00000, /* instance of rsub */
692                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtUnused, -1, -1,
693                  kFmtUnused, -1, -1,
694                  IS_BINARY_OP | REG_DEF0_USE1 | SETS_CCODES,
695                  "neg", "r!0d,r!1d", 2),
696     ENCODING_MAP(kThumb2OrrRRR,  0xea400000,
697                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
698                  kFmtShift, -1, -1, IS_QUAD_OP | REG_DEF0_USE12,
699                  "orr", "r!0d, r!1d, r!2d!3H", 2),
700     ENCODING_MAP(kThumb2TstRR,       0xea100f00,
701                  kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, kFmtShift, -1, -1,
702                  kFmtUnused, -1, -1,
703                  IS_TERTIARY_OP | REG_USE01 | SETS_CCODES,
704                  "tst", "r!0d, r!1d, shift !2d", 2),
705     ENCODING_MAP(kThumb2LslRRR,  0xfa00f000,
706                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
707                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
708                  "lsl", "r!0d, r!1d, r!2d", 2),
709     ENCODING_MAP(kThumb2LsrRRR,  0xfa20f000,
710                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
711                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
712                  "lsr", "r!0d, r!1d, r!2d", 2),
713     ENCODING_MAP(kThumb2AsrRRR,  0xfa40f000,
714                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
715                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
716                  "asr", "r!0d, r!1d, r!2d", 2),
717     ENCODING_MAP(kThumb2RorRRR,  0xfa60f000,
718                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
719                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
720                  "ror", "r!0d, r!1d, r!2d", 2),
721     ENCODING_MAP(kThumb2LslRRI5,  0xea4f0000,
722                  kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtShift5, -1, -1,
723                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
724                  "lsl", "r!0d, r!1d, #!2d", 2),
725     ENCODING_MAP(kThumb2LsrRRI5,  0xea4f0010,
726                  kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtShift5, -1, -1,
727                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
728                  "lsr", "r!0d, r!1d, #!2d", 2),
729     ENCODING_MAP(kThumb2AsrRRI5,  0xea4f0020,
730                  kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtShift5, -1, -1,
731                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
732                  "asr", "r!0d, r!1d, #!2d", 2),
733     ENCODING_MAP(kThumb2RorRRI5,  0xea4f0030,
734                  kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtShift5, -1, -1,
735                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
736                  "ror", "r!0d, r!1d, #!2d", 2),
737     ENCODING_MAP(kThumb2BicRRI8,  0xf0200000,
738                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
739                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
740                  "bic", "r!0d, r!1d, #!2m", 2),
741     ENCODING_MAP(kThumb2AndRRI8,  0xf0000000,
742                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
743                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
744                  "and", "r!0d, r!1d, #!2m", 2),
745     ENCODING_MAP(kThumb2OrrRRI8,  0xf0400000,
746                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
747                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
748                  "orr", "r!0d, r!1d, #!2m", 2),
749     ENCODING_MAP(kThumb2EorRRI8,  0xf0800000,
750                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
751                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
752                  "eor", "r!0d, r!1d, #!2m", 2),
753     ENCODING_MAP(kThumb2AddRRI8,  0xf1100000,
754                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
755                  kFmtUnused, -1, -1,
756                  IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
757                  "adds", "r!0d, r!1d, #!2m", 2),
758     ENCODING_MAP(kThumb2AdcRRI8,  0xf1500000,
759                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
760                  kFmtUnused, -1, -1,
761                  IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES | USES_CCODES,
762                  "adcs", "r!0d, r!1d, #!2m", 2),
763     ENCODING_MAP(kThumb2SubRRI8,  0xf1b00000,
764                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
765                  kFmtUnused, -1, -1,
766                  IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
767                  "subs", "r!0d, r!1d, #!2m", 2),
768     ENCODING_MAP(kThumb2SbcRRI8,  0xf1700000,
769                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
770                  kFmtUnused, -1, -1,
771                  IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES | USES_CCODES,
772                  "sbcs", "r!0d, r!1d, #!2m", 2),
773     ENCODING_MAP(kThumb2It,  0xbf00,
774                  kFmtBitBlt, 7, 4, kFmtBitBlt, 3, 0, kFmtModImm, -1, -1,
775                  kFmtUnused, -1, -1, IS_BINARY_OP | IS_IT | USES_CCODES,
776                  "it:!1b", "!0c", 1),
777     ENCODING_MAP(kThumb2Fmstat,  0xeef1fa10,
778                  kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
779                  kFmtUnused, -1, -1, NO_OPERAND | SETS_CCODES,
780                  "fmstat", "", 2),
781     ENCODING_MAP(kThumb2Vcmpd,        0xeeb40b40,
782                  kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1,
783                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01,
784                  "vcmp.f64", "!0S, !1S", 2),
785     ENCODING_MAP(kThumb2Vcmps,        0xeeb40a40,
786                  kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
787                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01,
788                  "vcmp.f32", "!0s, !1s", 2),
789     ENCODING_MAP(kThumb2LdrPcRel12,       0xf8df0000,
790                  kFmtBitBlt, 15, 12, kFmtBitBlt, 11, 0, kFmtUnused, -1, -1,
791                  kFmtUnused, -1, -1,
792                  IS_TERTIARY_OP | REG_DEF0 | REG_USE_PC | IS_LOAD,
793                  "ldr", "r!0d, [rpc, #!1d]", 2),
794     ENCODING_MAP(kThumb2BCond,        0xf0008000,
795                  kFmtBrOffset, -1, -1, kFmtBitBlt, 25, 22, kFmtUnused, -1, -1,
796                  kFmtUnused, -1, -1,
797                  IS_BINARY_OP | IS_BRANCH | USES_CCODES,
798                  "b!1c", "!0t", 2),
799     ENCODING_MAP(kThumb2Vmovd_RR,       0xeeb00b40,
800                  kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1,
801                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
802                  "vmov.f64", "!0S, !1S", 2),
803     ENCODING_MAP(kThumb2Vmovs_RR,       0xeeb00a40,
804                  kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
805                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
806                  "vmov.f32", "!0s, !1s", 2),
807     ENCODING_MAP(kThumb2Fmrs,       0xee100a10,
808                  kFmtBitBlt, 15, 12, kFmtSfp, 7, 16, kFmtUnused, -1, -1,
809                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
810                  "fmrs", "r!0d, !1s", 2),
811     ENCODING_MAP(kThumb2Fmsr,       0xee000a10,
812                  kFmtSfp, 7, 16, kFmtBitBlt, 15, 12, kFmtUnused, -1, -1,
813                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
814                  "fmsr", "!0s, r!1d", 2),
815     ENCODING_MAP(kThumb2Fmrrd,       0xec500b10,
816                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtDfp, 5, 0,
817                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF01_USE2,
818                  "fmrrd", "r!0d, r!1d, !2S", 2),
819     ENCODING_MAP(kThumb2Fmdrr,       0xec400b10,
820                  kFmtDfp, 5, 0, kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16,
821                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
822                  "fmdrr", "!0S, r!1d, r!2d", 2),
823     ENCODING_MAP(kThumb2Vabsd,       0xeeb00bc0,
824                  kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1,
825                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
826                  "vabs.f64", "!0S, !1S", 2),
827     ENCODING_MAP(kThumb2Vabss,       0xeeb00ac0,
828                  kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
829                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
830                  "vabs.f32", "!0s, !1s", 2),
831     ENCODING_MAP(kThumb2Vnegd,       0xeeb10b40,
832                  kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1,
833                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
834                  "vneg.f64", "!0S, !1S", 2),
835     ENCODING_MAP(kThumb2Vnegs,       0xeeb10a40,
836                  kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
837                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
838                  "vneg.f32", "!0s, !1s", 2),
839     ENCODING_MAP(kThumb2Vmovs_IMM8,       0xeeb00a00,
840                  kFmtSfp, 22, 12, kFmtFPImm, 16, 0, kFmtUnused, -1, -1,
841                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0,
842                  "vmov.f32", "!0s, #0x!1h", 2),
843     ENCODING_MAP(kThumb2Vmovd_IMM8,       0xeeb00b00,
844                  kFmtDfp, 22, 12, kFmtFPImm, 16, 0, kFmtUnused, -1, -1,
845                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0,
846                  "vmov.f64", "!0S, #0x!1h", 2),
847     ENCODING_MAP(kThumb2Mla,  0xfb000000,
848                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
849                  kFmtBitBlt, 15, 12,
850                  IS_QUAD_OP | REG_DEF0 | REG_USE1 | REG_USE2 | REG_USE3,
851                  "mla", "r!0d, r!1d, r!2d, r!3d", 2),
852     ENCODING_MAP(kThumb2Umull,  0xfba00000,
853                  kFmtBitBlt, 15, 12, kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16,
854                  kFmtBitBlt, 3, 0,
855                  IS_QUAD_OP | REG_DEF0 | REG_DEF1 | REG_USE2 | REG_USE3,
856                  "umull", "r!0d, r!1d, r!2d, r!3d", 2),
857     ENCODING_MAP(kThumb2Ldrex,       0xe8500f00,
858                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 7, 0,
859                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
860                  "ldrex", "r!0d, [r!1d, #!2E]", 2),
861     ENCODING_MAP(kThumb2Strex,       0xe8400000,
862                  kFmtBitBlt, 11, 8, kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16,
863                  kFmtBitBlt, 7, 0, IS_QUAD_OP | REG_DEF0_USE12 | IS_STORE,
864                  "strex", "r!0d,r!1d, [r!2d, #!2E]", 2),
865     ENCODING_MAP(kThumb2Clrex,       0xf3bf8f2f,
866                  kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
867                  kFmtUnused, -1, -1, NO_OPERAND,
868                  "clrex", "", 2),
869     ENCODING_MAP(kThumb2Bfi,         0xf3600000,
870                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtShift5, -1, -1,
871                  kFmtBitBlt, 4, 0, IS_QUAD_OP | REG_DEF0_USE1,
872                  "bfi", "r!0d,r!1d,#!2d,#!3d", 2),
873     ENCODING_MAP(kThumb2Bfc,         0xf36f0000,
874                  kFmtBitBlt, 11, 8, kFmtShift5, -1, -1, kFmtBitBlt, 4, 0,
875                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0,
876                  "bfc", "r!0d,#!1d,#!2d", 2),
877     ENCODING_MAP(kThumb2Dmb,         0xf3bf8f50,
878                  kFmtBitBlt, 3, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
879                  kFmtUnused, -1, -1, IS_UNARY_OP,
880                  "dmb","#!0B",2),
881 };
882 
883 /*
884  * The fake NOP of moving r0 to r0 actually will incur data stalls if r0 is
885  * not ready. Since r5 (rFP) is not updated often, it is less likely to
886  * generate unnecessary stall cycles.
887  */
888 #define PADDING_MOV_R5_R5               0x1C2D
889 
890 /* Track the number of times that the code cache is patched */
891 #if defined(WITH_JIT_TUNING)
892 #define UPDATE_CODE_CACHE_PATCHES()    (gDvmJit.codeCachePatches++)
893 #else
894 #define UPDATE_CODE_CACHE_PATCHES()
895 #endif
896 
897 /* Write the numbers in the literal pool to the codegen stream */
installDataContent(CompilationUnit * cUnit)898 static void installDataContent(CompilationUnit *cUnit)
899 {
900     int *dataPtr = (int *) ((char *) cUnit->baseAddr + cUnit->dataOffset);
901     ArmLIR *dataLIR = (ArmLIR *) cUnit->wordList;
902     while (dataLIR) {
903         *dataPtr++ = dataLIR->operands[0];
904         dataLIR = NEXT_LIR(dataLIR);
905     }
906 }
907 
908 /* Returns the size of a Jit trace description */
jitTraceDescriptionSize(const JitTraceDescription * desc)909 static int jitTraceDescriptionSize(const JitTraceDescription *desc)
910 {
911     int runCount;
912     /* Trace end is always of non-meta type (ie isCode == true) */
913     for (runCount = 0; ; runCount++) {
914         if (desc->trace[runCount].frag.isCode &&
915             desc->trace[runCount].frag.runEnd)
916            break;
917     }
918     return sizeof(JitTraceDescription) + ((runCount+1) * sizeof(JitTraceRun));
919 }
920 
921 /*
922  * Assemble the LIR into binary instruction format.  Note that we may
923  * discover that pc-relative displacements may not fit the selected
924  * instruction.  In those cases we will try to substitute a new code
925  * sequence or request that the trace be shortened and retried.
926  */
assembleInstructions(CompilationUnit * cUnit,intptr_t startAddr)927 static AssemblerStatus assembleInstructions(CompilationUnit *cUnit,
928                                             intptr_t startAddr)
929 {
930     short *bufferAddr = (short *) cUnit->codeBuffer;
931     ArmLIR *lir;
932 
933     for (lir = (ArmLIR *) cUnit->firstLIRInsn; lir; lir = NEXT_LIR(lir)) {
934         if (lir->opCode < 0) {
935             if ((lir->opCode == kArmPseudoPseudoAlign4) &&
936                 /* 1 means padding is needed */
937                 (lir->operands[0] == 1)) {
938                 *bufferAddr++ = PADDING_MOV_R5_R5;
939             }
940             continue;
941         }
942 
943         if (lir->isNop) {
944             continue;
945         }
946 
947         if (lir->opCode == kThumbLdrPcRel ||
948             lir->opCode == kThumb2LdrPcRel12 ||
949             lir->opCode == kThumbAddPcRel ||
950             ((lir->opCode == kThumb2Vldrs) && (lir->operands[1] == rpc))) {
951             ArmLIR *lirTarget = (ArmLIR *) lir->generic.target;
952             intptr_t pc = (lir->generic.offset + 4) & ~3;
953             intptr_t target = lirTarget->generic.offset;
954             int delta = target - pc;
955             if (delta & 0x3) {
956                 LOGE("PC-rel distance is not multiples of 4: %d\n", delta);
957                 dvmCompilerAbort(cUnit);
958             }
959             if ((lir->opCode == kThumb2LdrPcRel12) && (delta > 4091)) {
960                 return kRetryHalve;
961             } else if (delta > 1020) {
962                 return kRetryHalve;
963             }
964             if (lir->opCode == kThumb2Vldrs) {
965                 lir->operands[2] = delta >> 2;
966             } else {
967                 lir->operands[1] = (lir->opCode == kThumb2LdrPcRel12) ?
968                                     delta : delta >> 2;
969             }
970         } else if (lir->opCode == kThumb2Cbnz || lir->opCode == kThumb2Cbz) {
971             ArmLIR *targetLIR = (ArmLIR *) lir->generic.target;
972             intptr_t pc = lir->generic.offset + 4;
973             intptr_t target = targetLIR->generic.offset;
974             int delta = target - pc;
975             if (delta > 126 || delta < 0) {
976                 /* Convert to cmp rx,#0 / b[eq/ne] tgt pair */
977                 ArmLIR *newInst = dvmCompilerNew(sizeof(ArmLIR), true);
978                 /* Make new branch instruction and insert after */
979                 newInst->opCode = kThumbBCond;
980                 newInst->operands[0] = 0;
981                 newInst->operands[1] = (lir->opCode == kThumb2Cbz) ?
982                                         kArmCondEq : kArmCondNe;
983                 newInst->generic.target = lir->generic.target;
984                 dvmCompilerSetupResourceMasks(newInst);
985                 dvmCompilerInsertLIRAfter((LIR *)lir, (LIR *)newInst);
986                 /* Convert the cb[n]z to a cmp rx, #0 ] */
987                 lir->opCode = kThumbCmpRI8;
988                 /* operand[0] is src1 in both cb[n]z & CmpRI8 */
989                 lir->operands[1] = 0;
990                 lir->generic.target = 0;
991                 dvmCompilerSetupResourceMasks(lir);
992                 return kRetryAll;
993             } else {
994                 lir->operands[1] = delta >> 1;
995             }
996         } else if (lir->opCode == kThumbBCond ||
997                    lir->opCode == kThumb2BCond) {
998             ArmLIR *targetLIR = (ArmLIR *) lir->generic.target;
999             intptr_t pc = lir->generic.offset + 4;
1000             intptr_t target = targetLIR->generic.offset;
1001             int delta = target - pc;
1002             if ((lir->opCode == kThumbBCond) && (delta > 254 || delta < -256)) {
1003                 return kRetryHalve;
1004             }
1005             lir->operands[0] = delta >> 1;
1006         } else if (lir->opCode == kThumbBUncond) {
1007             ArmLIR *targetLIR = (ArmLIR *) lir->generic.target;
1008             intptr_t pc = lir->generic.offset + 4;
1009             intptr_t target = targetLIR->generic.offset;
1010             int delta = target - pc;
1011             if (delta > 2046 || delta < -2048) {
1012                 LOGE("Unconditional branch distance out of range: %d\n", delta);
1013                 dvmCompilerAbort(cUnit);
1014             }
1015             lir->operands[0] = delta >> 1;
1016         } else if (lir->opCode == kThumbBlx1) {
1017             assert(NEXT_LIR(lir)->opCode == kThumbBlx2);
1018             /* curPC is Thumb */
1019             intptr_t curPC = (startAddr + lir->generic.offset + 4) & ~3;
1020             intptr_t target = lir->operands[1];
1021 
1022             /* Match bit[1] in target with base */
1023             if (curPC & 0x2) {
1024                 target |= 0x2;
1025             }
1026             int delta = target - curPC;
1027             assert((delta >= -(1<<22)) && (delta <= ((1<<22)-2)));
1028 
1029             lir->operands[0] = (delta >> 12) & 0x7ff;
1030             NEXT_LIR(lir)->operands[0] = (delta>> 1) & 0x7ff;
1031         }
1032 
1033         ArmEncodingMap *encoder = &EncodingMap[lir->opCode];
1034         u4 bits = encoder->skeleton;
1035         int i;
1036         for (i = 0; i < 4; i++) {
1037             u4 operand;
1038             u4 value;
1039             operand = lir->operands[i];
1040             switch(encoder->fieldLoc[i].kind) {
1041                 case kFmtUnused:
1042                     break;
1043                 case kFmtFPImm:
1044                     value = ((operand & 0xF0) >> 4) << encoder->fieldLoc[i].end;
1045                     value |= (operand & 0x0F) << encoder->fieldLoc[i].start;
1046                     bits |= value;
1047                     break;
1048                 case kFmtBrOffset:
1049                     value = ((operand  & 0x80000) >> 19) << 26;
1050                     value |= ((operand & 0x40000) >> 18) << 11;
1051                     value |= ((operand & 0x20000) >> 17) << 13;
1052                     value |= ((operand & 0x1f800) >> 11) << 16;
1053                     value |= (operand  & 0x007ff);
1054                     bits |= value;
1055                     break;
1056                 case kFmtShift5:
1057                     value = ((operand & 0x1c) >> 2) << 12;
1058                     value |= (operand & 0x03) << 6;
1059                     bits |= value;
1060                     break;
1061                 case kFmtShift:
1062                     value = ((operand & 0x70) >> 4) << 12;
1063                     value |= (operand & 0x0f) << 4;
1064                     bits |= value;
1065                     break;
1066                 case kFmtBWidth:
1067                     value = operand - 1;
1068                     bits |= value;
1069                     break;
1070                 case kFmtLsb:
1071                     value = ((operand & 0x1c) >> 2) << 12;
1072                     value |= (operand & 0x03) << 6;
1073                     bits |= value;
1074                     break;
1075                 case kFmtImm6:
1076                     value = ((operand & 0x20) >> 5) << 9;
1077                     value |= (operand & 0x1f) << 3;
1078                     bits |= value;
1079                     break;
1080                 case kFmtBitBlt:
1081                     value = (operand << encoder->fieldLoc[i].start) &
1082                             ((1 << (encoder->fieldLoc[i].end + 1)) - 1);
1083                     bits |= value;
1084                     break;
1085                 case kFmtDfp: {
1086                     assert(DOUBLEREG(operand));
1087                     assert((operand & 0x1) == 0);
1088                     int regName = (operand & FP_REG_MASK) >> 1;
1089                     /* Snag the 1-bit slice and position it */
1090                     value = ((regName & 0x10) >> 4) <<
1091                             encoder->fieldLoc[i].end;
1092                     /* Extract and position the 4-bit slice */
1093                     value |= (regName & 0x0f) <<
1094                             encoder->fieldLoc[i].start;
1095                     bits |= value;
1096                     break;
1097                 }
1098                 case kFmtSfp:
1099                     assert(SINGLEREG(operand));
1100                     /* Snag the 1-bit slice and position it */
1101                     value = (operand & 0x1) <<
1102                             encoder->fieldLoc[i].end;
1103                     /* Extract and position the 4-bit slice */
1104                     value |= ((operand & 0x1e) >> 1) <<
1105                             encoder->fieldLoc[i].start;
1106                     bits |= value;
1107                     break;
1108                 case kFmtImm12:
1109                 case kFmtModImm:
1110                     value = ((operand & 0x800) >> 11) << 26;
1111                     value |= ((operand & 0x700) >> 8) << 12;
1112                     value |= operand & 0x0ff;
1113                     bits |= value;
1114                     break;
1115                 case kFmtImm16:
1116                     value = ((operand & 0x0800) >> 11) << 26;
1117                     value |= ((operand & 0xf000) >> 12) << 16;
1118                     value |= ((operand & 0x0700) >> 8) << 12;
1119                     value |= operand & 0x0ff;
1120                     bits |= value;
1121                     break;
1122                 default:
1123                     assert(0);
1124             }
1125         }
1126         if (encoder->size == 2) {
1127             *bufferAddr++ = (bits >> 16) & 0xffff;
1128         }
1129         *bufferAddr++ = bits & 0xffff;
1130     }
1131     return kSuccess;
1132 }
1133 
1134 #if defined(SIGNATURE_BREAKPOINT)
1135 /* Inspect the assembled instruction stream to find potential matches */
matchSignatureBreakpoint(const CompilationUnit * cUnit,unsigned int size)1136 static void matchSignatureBreakpoint(const CompilationUnit *cUnit,
1137                                      unsigned int size)
1138 {
1139     unsigned int i, j;
1140     u4 *ptr = (u4 *) cUnit->codeBuffer;
1141 
1142     for (i = 0; i < size - gDvmJit.signatureBreakpointSize + 1; i++) {
1143         if (ptr[i] == gDvmJit.signatureBreakpoint[0]) {
1144             for (j = 1; j < gDvmJit.signatureBreakpointSize; j++) {
1145                 if (ptr[i+j] != gDvmJit.signatureBreakpoint[j]) {
1146                     break;
1147                 }
1148             }
1149             if (j == gDvmJit.signatureBreakpointSize) {
1150                 LOGD("Signature match starting from offset %#x (%d words)",
1151                      i*4, gDvmJit.signatureBreakpointSize);
1152                 int descSize = jitTraceDescriptionSize(cUnit->traceDesc);
1153                 JitTraceDescription *newCopy =
1154                     (JitTraceDescription *) malloc(descSize);
1155                 memcpy(newCopy, cUnit->traceDesc, descSize);
1156                 dvmCompilerWorkEnqueue(NULL, kWorkOrderTraceDebug, newCopy);
1157                 break;
1158             }
1159         }
1160     }
1161 }
1162 #endif
1163 
1164 /*
1165  * Translation layout in the code cache.  Note that the codeAddress pointer
1166  * in JitTable will point directly to the code body (field codeAddress).  The
1167  * chain cell offset codeAddress - 2, and (if present) executionCount is at
1168  * codeAddress - 6.
1169  *
1170  *      +----------------------------+
1171  *      | Execution count            |  -> [Optional] 4 bytes
1172  *      +----------------------------+
1173  *   +--| Offset to chain cell counts|  -> 2 bytes
1174  *   |  +----------------------------+
1175  *   |  | Code body                  |  -> Start address for translation
1176  *   |  |                            |     variable in 2-byte chunks
1177  *   |  .                            .     (JitTable's codeAddress points here)
1178  *   |  .                            .
1179  *   |  |                            |
1180  *   |  +----------------------------+
1181  *   |  | Chaining Cells             |  -> 12/16 bytes each, must be 4 byte aligned
1182  *   |  .                            .
1183  *   |  .                            .
1184  *   |  |                            |
1185  *   |  +----------------------------+
1186  *   |  | Gap for large switch stmt  |  -> # cases >= MAX_CHAINED_SWITCH_CASES
1187  *   |  +----------------------------+
1188  *   +->| Chaining cell counts       |  -> 8 bytes, chain cell counts by type
1189  *      +----------------------------+
1190  *      | Trace description          |  -> variable sized
1191  *      .                            .
1192  *      |                            |
1193  *      +----------------------------+
1194  *      | Literal pool               |  -> 4-byte aligned, variable size
1195  *      .                            .
1196  *      .                            .
1197  *      |                            |
1198  *      +----------------------------+
1199  *
1200  * Go over each instruction in the list and calculate the offset from the top
1201  * before sending them off to the assembler. If out-of-range branch distance is
1202  * seen rearrange the instructions a bit to correct it.
1203  */
dvmCompilerAssembleLIR(CompilationUnit * cUnit,JitTranslationInfo * info)1204 void dvmCompilerAssembleLIR(CompilationUnit *cUnit, JitTranslationInfo *info)
1205 {
1206     LIR *lir;
1207     ArmLIR *armLIR;
1208     int offset = 0;
1209     int i;
1210     ChainCellCounts chainCellCounts;
1211     int descSize =
1212         cUnit->wholeMethod ? 0 : jitTraceDescriptionSize(cUnit->traceDesc);
1213     int chainingCellGap;
1214 
1215     info->instructionSet = cUnit->instructionSet;
1216 
1217     /* Beginning offset needs to allow space for chain cell offset */
1218     for (armLIR = (ArmLIR *) cUnit->firstLIRInsn;
1219          armLIR;
1220          armLIR = NEXT_LIR(armLIR)) {
1221         armLIR->generic.offset = offset;
1222         if (armLIR->opCode >= 0 && !armLIR->isNop) {
1223             armLIR->size = EncodingMap[armLIR->opCode].size * 2;
1224             offset += armLIR->size;
1225         } else if (armLIR->opCode == kArmPseudoPseudoAlign4) {
1226             if (offset & 0x2) {
1227                 offset += 2;
1228                 armLIR->operands[0] = 1;
1229             } else {
1230                 armLIR->operands[0] = 0;
1231             }
1232         }
1233         /* Pseudo opcodes don't consume space */
1234     }
1235 
1236     /* Const values have to be word aligned */
1237     offset = (offset + 3) & ~3;
1238 
1239     /*
1240      * Get the gap (# of u4) between the offset of chaining cell count and
1241      * the bottom of real chaining cells. If the translation has chaining
1242      * cells, the gap is guaranteed to be multiples of 4.
1243      */
1244     chainingCellGap = (offset - cUnit->chainingCellBottom->offset) >> 2;
1245 
1246     /* Add space for chain cell counts & trace description */
1247     u4 chainCellOffset = offset;
1248     ArmLIR *chainCellOffsetLIR = (ArmLIR *) cUnit->chainCellOffsetLIR;
1249     assert(chainCellOffsetLIR);
1250     assert(chainCellOffset < 0x10000);
1251     assert(chainCellOffsetLIR->opCode == kArm16BitData &&
1252            chainCellOffsetLIR->operands[0] == CHAIN_CELL_OFFSET_TAG);
1253 
1254     /*
1255      * Replace the CHAIN_CELL_OFFSET_TAG with the real value. If trace
1256      * profiling is enabled, subtract 4 (occupied by the counter word) from
1257      * the absolute offset as the value stored in chainCellOffsetLIR is the
1258      * delta from &chainCellOffsetLIR to &ChainCellCounts.
1259      */
1260     chainCellOffsetLIR->operands[0] =
1261         gDvmJit.profile ? (chainCellOffset - 4) : chainCellOffset;
1262 
1263     offset += sizeof(chainCellCounts) + descSize;
1264 
1265     assert((offset & 0x3) == 0);  /* Should still be word aligned */
1266 
1267     /* Set up offsets for literals */
1268     cUnit->dataOffset = offset;
1269 
1270     for (lir = cUnit->wordList; lir; lir = lir->next) {
1271         lir->offset = offset;
1272         offset += 4;
1273     }
1274 
1275     cUnit->totalSize = offset;
1276 
1277     if (gDvmJit.codeCacheByteUsed + cUnit->totalSize > gDvmJit.codeCacheSize) {
1278         gDvmJit.codeCacheFull = true;
1279         cUnit->baseAddr = NULL;
1280         return;
1281     }
1282 
1283     /* Allocate enough space for the code block */
1284     cUnit->codeBuffer = dvmCompilerNew(chainCellOffset, true);
1285     if (cUnit->codeBuffer == NULL) {
1286         LOGE("Code buffer allocation failure\n");
1287         cUnit->baseAddr = NULL;
1288         return;
1289     }
1290 
1291     /*
1292      * Attempt to assemble the trace.  Note that assembleInstructions
1293      * may rewrite the code sequence and request a retry.
1294      */
1295     cUnit->assemblerStatus = assembleInstructions(cUnit,
1296           (intptr_t) gDvmJit.codeCache + gDvmJit.codeCacheByteUsed);
1297 
1298     switch(cUnit->assemblerStatus) {
1299         case kSuccess:
1300             break;
1301         case kRetryAll:
1302             if (cUnit->assemblerRetries < MAX_ASSEMBLER_RETRIES) {
1303                 /* Restore pristine chain cell marker on retry */
1304                 chainCellOffsetLIR->operands[0] = CHAIN_CELL_OFFSET_TAG;
1305                 return;
1306             }
1307             /* Too many retries - reset and try cutting the trace in half */
1308             cUnit->assemblerRetries = 0;
1309             cUnit->assemblerStatus = kRetryHalve;
1310             return;
1311         case kRetryHalve:
1312             return;
1313         default:
1314              LOGE("Unexpected assembler status: %d", cUnit->assemblerStatus);
1315              dvmAbort();
1316     }
1317 
1318 #if defined(SIGNATURE_BREAKPOINT)
1319     if (info->discardResult == false && gDvmJit.signatureBreakpoint != NULL &&
1320         chainCellOffset/4 >= gDvmJit.signatureBreakpointSize) {
1321         matchSignatureBreakpoint(cUnit, chainCellOffset/4);
1322     }
1323 #endif
1324 
1325     /* Don't go all the way if the goal is just to get the verbose output */
1326     if (info->discardResult) return;
1327 
1328     cUnit->baseAddr = (char *) gDvmJit.codeCache + gDvmJit.codeCacheByteUsed;
1329     gDvmJit.codeCacheByteUsed += offset;
1330 
1331     UNPROTECT_CODE_CACHE(cUnit->baseAddr, offset);
1332 
1333     /* Install the code block */
1334     memcpy((char*)cUnit->baseAddr, cUnit->codeBuffer, chainCellOffset);
1335     gDvmJit.numCompilations++;
1336 
1337     /* Install the chaining cell counts */
1338     for (i=0; i< kChainingCellGap; i++) {
1339         chainCellCounts.u.count[i] = cUnit->numChainingCells[i];
1340     }
1341 
1342     /* Set the gap number in the chaining cell count structure */
1343     chainCellCounts.u.count[kChainingCellGap] = chainingCellGap;
1344 
1345     memcpy((char*)cUnit->baseAddr + chainCellOffset, &chainCellCounts,
1346            sizeof(chainCellCounts));
1347 
1348     /* Install the trace description */
1349     memcpy((char*)cUnit->baseAddr + chainCellOffset + sizeof(chainCellCounts),
1350            cUnit->traceDesc, descSize);
1351 
1352     /* Write the literals directly into the code cache */
1353     installDataContent(cUnit);
1354 
1355     /* Flush dcache and invalidate the icache to maintain coherence */
1356     cacheflush((long)cUnit->baseAddr,
1357                (long)((char *) cUnit->baseAddr + offset), 0);
1358     UPDATE_CODE_CACHE_PATCHES();
1359 
1360     PROTECT_CODE_CACHE(cUnit->baseAddr, offset);
1361 
1362     /* Record code entry point and instruction set */
1363     info->codeAddress = (char*)cUnit->baseAddr + cUnit->headerSize;
1364     /* If applicable, mark low bit to denote thumb */
1365     if (info->instructionSet != DALVIK_JIT_ARM)
1366         info->codeAddress = (char*)info->codeAddress + 1;
1367 }
1368 
1369 /*
1370  * Returns the skeleton bit pattern associated with an opcode.  All
1371  * variable fields are zeroed.
1372  */
getSkeleton(ArmOpCode op)1373 static u4 getSkeleton(ArmOpCode op)
1374 {
1375     return EncodingMap[op].skeleton;
1376 }
1377 
assembleChainingBranch(int branchOffset,bool thumbTarget)1378 static u4 assembleChainingBranch(int branchOffset, bool thumbTarget)
1379 {
1380     u4 thumb1, thumb2;
1381 
1382     if (!thumbTarget) {
1383         thumb1 =  (getSkeleton(kThumbBlx1) | ((branchOffset>>12) & 0x7ff));
1384         thumb2 =  (getSkeleton(kThumbBlx2) | ((branchOffset>> 1) & 0x7ff));
1385     } else if ((branchOffset < -2048) | (branchOffset > 2046)) {
1386         thumb1 =  (getSkeleton(kThumbBl1) | ((branchOffset>>12) & 0x7ff));
1387         thumb2 =  (getSkeleton(kThumbBl2) | ((branchOffset>> 1) & 0x7ff));
1388     } else {
1389         thumb1 =  (getSkeleton(kThumbBUncond) | ((branchOffset>> 1) & 0x7ff));
1390         thumb2 =  getSkeleton(kThumbOrr);  /* nop -> or r0, r0 */
1391     }
1392 
1393     return thumb2<<16 | thumb1;
1394 }
1395 
1396 /*
1397  * Perform translation chain operation.
1398  * For ARM, we'll use a pair of thumb instructions to generate
1399  * an unconditional chaining branch of up to 4MB in distance.
1400  * Use a BL, because the generic "interpret" translation needs
1401  * the link register to find the dalvik pc of teh target.
1402  *     111HHooooooooooo
1403  * Where HH is 10 for the 1st inst, and 11 for the second and
1404  * the "o" field is each instruction's 11-bit contribution to the
1405  * 22-bit branch offset.
1406  * If the target is nearby, use a single-instruction bl.
1407  * If one or more threads is suspended, don't chain.
1408  */
dvmJitChain(void * tgtAddr,u4 * branchAddr)1409 void* dvmJitChain(void* tgtAddr, u4* branchAddr)
1410 {
1411     int baseAddr = (u4) branchAddr + 4;
1412     int branchOffset = (int) tgtAddr - baseAddr;
1413     u4 newInst;
1414     bool thumbTarget;
1415 
1416     /*
1417      * Only chain translations when there is no urge to ask all threads to
1418      * suspend themselves via the interpreter.
1419      */
1420     if ((gDvmJit.pProfTable != NULL) && (gDvm.sumThreadSuspendCount == 0) &&
1421         (gDvmJit.codeCacheFull == false)) {
1422         assert((branchOffset >= -(1<<22)) && (branchOffset <= ((1<<22)-2)));
1423 
1424         gDvmJit.translationChains++;
1425 
1426         COMPILER_TRACE_CHAINING(
1427             LOGD("Jit Runtime: chaining 0x%x to 0x%x\n",
1428                  (int) branchAddr, (int) tgtAddr & -2));
1429 
1430         /*
1431          * NOTE: normally, all translations are Thumb[2] mode, with
1432          * a single exception: the default TEMPLATE_INTERPRET
1433          * pseudo-translation.  If the need ever arises to
1434          * mix Arm & Thumb[2] translations, the following code should be
1435          * generalized.
1436          */
1437         thumbTarget = (tgtAddr != dvmCompilerGetInterpretTemplate());
1438 
1439         newInst = assembleChainingBranch(branchOffset, thumbTarget);
1440 
1441         /*
1442          * The second half-word instruction of the chaining cell must
1443          * either be a nop (which represents initial state), or is the
1444          * same exact branch halfword that we are trying to install.
1445          */
1446         assert( ((*branchAddr >> 16) == getSkeleton(kThumbOrr)) ||
1447                 ((*branchAddr >> 16) == (newInst >> 16)));
1448 
1449         UNPROTECT_CODE_CACHE(branchAddr, sizeof(*branchAddr));
1450 
1451         *branchAddr = newInst;
1452         cacheflush((long)branchAddr, (long)branchAddr + 4, 0);
1453         UPDATE_CODE_CACHE_PATCHES();
1454 
1455         PROTECT_CODE_CACHE(branchAddr, sizeof(*branchAddr));
1456 
1457         gDvmJit.hasNewChain = true;
1458     }
1459 
1460     return tgtAddr;
1461 }
1462 
1463 #if !defined(WITH_SELF_VERIFICATION)
1464 /*
1465  * Attempt to enqueue a work order to patch an inline cache for a predicted
1466  * chaining cell for virtual/interface calls.
1467  */
inlineCachePatchEnqueue(PredictedChainingCell * cellAddr,PredictedChainingCell * newContent)1468 static void inlineCachePatchEnqueue(PredictedChainingCell *cellAddr,
1469                                     PredictedChainingCell *newContent)
1470 {
1471     /*
1472      * Make sure only one thread gets here since updating the cell (ie fast
1473      * path and queueing the request (ie the queued path) have to be done
1474      * in an atomic fashion.
1475      */
1476     dvmLockMutex(&gDvmJit.compilerICPatchLock);
1477 
1478     /* Fast path for uninitialized chaining cell */
1479     if (cellAddr->clazz == NULL &&
1480         cellAddr->branch == PREDICTED_CHAIN_BX_PAIR_INIT) {
1481 
1482         UNPROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr));
1483 
1484         cellAddr->method = newContent->method;
1485         cellAddr->branch = newContent->branch;
1486         /*
1487          * The update order matters - make sure clazz is updated last since it
1488          * will bring the uninitialized chaining cell to life.
1489          */
1490         android_atomic_release_store((int32_t)newContent->clazz,
1491             (void*) &cellAddr->clazz);
1492         cacheflush((intptr_t) cellAddr, (intptr_t) (cellAddr+1), 0);
1493         UPDATE_CODE_CACHE_PATCHES();
1494 
1495         PROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr));
1496 
1497 #if defined(WITH_JIT_TUNING)
1498         gDvmJit.icPatchInit++;
1499 #endif
1500     /* Check if this is a frequently missed clazz */
1501     } else if (cellAddr->stagedClazz != newContent->clazz) {
1502         /* Not proven to be frequent yet - build up the filter cache */
1503         UNPROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr));
1504 
1505         cellAddr->stagedClazz = newContent->clazz;
1506 
1507         UPDATE_CODE_CACHE_PATCHES();
1508         PROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr));
1509 
1510 #if defined(WITH_JIT_TUNING)
1511         gDvmJit.icPatchRejected++;
1512 #endif
1513     /*
1514      * Different classes but same method implementation - it is safe to just
1515      * patch the class value without the need to stop the world.
1516      */
1517     } else if (cellAddr->method == newContent->method) {
1518         UNPROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr));
1519 
1520         cellAddr->clazz = newContent->clazz;
1521         /* No need to flush the cache here since the branch is not patched */
1522         UPDATE_CODE_CACHE_PATCHES();
1523 
1524         PROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr));
1525 
1526 #if defined(WITH_JIT_TUNING)
1527         gDvmJit.icPatchLockFree++;
1528 #endif
1529     /*
1530      * Cannot patch the chaining cell inline - queue it until the next safe
1531      * point.
1532      */
1533     } else if (gDvmJit.compilerICPatchIndex < COMPILER_IC_PATCH_QUEUE_SIZE) {
1534         int index = gDvmJit.compilerICPatchIndex++;
1535         gDvmJit.compilerICPatchQueue[index].cellAddr = cellAddr;
1536         gDvmJit.compilerICPatchQueue[index].cellContent = *newContent;
1537 #if defined(WITH_JIT_TUNING)
1538         gDvmJit.icPatchQueued++;
1539 #endif
1540     } else {
1541     /* Queue is full - just drop this patch request */
1542 #if defined(WITH_JIT_TUNING)
1543         gDvmJit.icPatchDropped++;
1544 #endif
1545     }
1546 
1547     dvmUnlockMutex(&gDvmJit.compilerICPatchLock);
1548 }
1549 #endif
1550 
1551 /*
1552  * This method is called from the invoke templates for virtual and interface
1553  * methods to speculatively setup a chain to the callee. The templates are
1554  * written in assembly and have setup method, cell, and clazz at r0, r2, and
1555  * r3 respectively, so there is a unused argument in the list. Upon return one
1556  * of the following three results may happen:
1557  *   1) Chain is not setup because the callee is native. Reset the rechain
1558  *      count to a big number so that it will take a long time before the next
1559  *      rechain attempt to happen.
1560  *   2) Chain is not setup because the callee has not been created yet. Reset
1561  *      the rechain count to a small number and retry in the near future.
1562  *   3) Ask all other threads to stop before patching this chaining cell.
1563  *      This is required because another thread may have passed the class check
1564  *      but hasn't reached the chaining cell yet to follow the chain. If we
1565  *      patch the content before halting the other thread, there could be a
1566  *      small window for race conditions to happen that it may follow the new
1567  *      but wrong chain to invoke a different method.
1568  */
dvmJitToPatchPredictedChain(const Method * method,InterpState * interpState,PredictedChainingCell * cell,const ClassObject * clazz)1569 const Method *dvmJitToPatchPredictedChain(const Method *method,
1570                                           InterpState *interpState,
1571                                           PredictedChainingCell *cell,
1572                                           const ClassObject *clazz)
1573 {
1574     int newRechainCount = PREDICTED_CHAIN_COUNTER_RECHAIN;
1575 #if defined(WITH_SELF_VERIFICATION)
1576     newRechainCount = PREDICTED_CHAIN_COUNTER_AVOID;
1577     goto done;
1578 #else
1579     if (dvmIsNativeMethod(method)) {
1580         UNPROTECT_CODE_CACHE(cell, sizeof(*cell));
1581 
1582         /*
1583          * Put a non-zero/bogus value in the clazz field so that it won't
1584          * trigger immediate patching and will continue to fail to match with
1585          * a real clazz pointer.
1586          */
1587         cell->clazz = (void *) PREDICTED_CHAIN_FAKE_CLAZZ;
1588 
1589         UPDATE_CODE_CACHE_PATCHES();
1590         PROTECT_CODE_CACHE(cell, sizeof(*cell));
1591         goto done;
1592     }
1593     int tgtAddr = (int) dvmJitGetCodeAddr(method->insns);
1594 
1595     /*
1596      * Compilation not made yet for the callee. Reset the counter to a small
1597      * value and come back to check soon.
1598      */
1599     if ((tgtAddr == 0) ||
1600         ((void*)tgtAddr == dvmCompilerGetInterpretTemplate())) {
1601         COMPILER_TRACE_CHAINING(
1602             LOGD("Jit Runtime: predicted chain %p to method %s%s delayed",
1603                  cell, method->clazz->descriptor, method->name));
1604         goto done;
1605     }
1606 
1607     PredictedChainingCell newCell;
1608 
1609     if (cell->clazz == NULL) {
1610         newRechainCount = interpState->icRechainCount;
1611     }
1612 
1613     int baseAddr = (int) cell + 4;   // PC is cur_addr + 4
1614     int branchOffset = tgtAddr - baseAddr;
1615 
1616     newCell.branch = assembleChainingBranch(branchOffset, true);
1617     newCell.clazz = clazz;
1618     newCell.method = method;
1619 
1620     /*
1621      * Enter the work order to the queue and the chaining cell will be patched
1622      * the next time a safe point is entered.
1623      *
1624      * If the enqueuing fails reset the rechain count to a normal value so that
1625      * it won't get indefinitely delayed.
1626      */
1627     inlineCachePatchEnqueue(cell, &newCell);
1628 #endif
1629 done:
1630     interpState->icRechainCount = newRechainCount;
1631     return method;
1632 }
1633 
1634 /*
1635  * Patch the inline cache content based on the content passed from the work
1636  * order.
1637  */
dvmCompilerPatchInlineCache(void)1638 void dvmCompilerPatchInlineCache(void)
1639 {
1640     int i;
1641     PredictedChainingCell *minAddr, *maxAddr;
1642 
1643     /* Nothing to be done */
1644     if (gDvmJit.compilerICPatchIndex == 0) return;
1645 
1646     /*
1647      * Since all threads are already stopped we don't really need to acquire
1648      * the lock. But race condition can be easily introduced in the future w/o
1649      * paying attention so we still acquire the lock here.
1650      */
1651     dvmLockMutex(&gDvmJit.compilerICPatchLock);
1652 
1653     UNPROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed);
1654 
1655     //LOGD("Number of IC patch work orders: %d", gDvmJit.compilerICPatchIndex);
1656 
1657     /* Initialize the min/max address range */
1658     minAddr = (PredictedChainingCell *)
1659         ((char *) gDvmJit.codeCache + gDvmJit.codeCacheSize);
1660     maxAddr = (PredictedChainingCell *) gDvmJit.codeCache;
1661 
1662     for (i = 0; i < gDvmJit.compilerICPatchIndex; i++) {
1663         PredictedChainingCell *cellAddr =
1664             gDvmJit.compilerICPatchQueue[i].cellAddr;
1665         PredictedChainingCell *cellContent =
1666             &gDvmJit.compilerICPatchQueue[i].cellContent;
1667 
1668         COMPILER_TRACE_CHAINING(
1669             LOGD("Jit Runtime: predicted chain %p from %s to %s (%s) "
1670                  "patched",
1671                  cellAddr,
1672                  cellAddr->clazz->descriptor,
1673                  cellContent->clazz->descriptor,
1674                  cellContent->method->name));
1675 
1676         /* Patch the chaining cell */
1677         *cellAddr = *cellContent;
1678         minAddr = (cellAddr < minAddr) ? cellAddr : minAddr;
1679         maxAddr = (cellAddr > maxAddr) ? cellAddr : maxAddr;
1680     }
1681 
1682     /* Then synchronize the I/D cache */
1683     cacheflush((long) minAddr, (long) (maxAddr+1), 0);
1684     UPDATE_CODE_CACHE_PATCHES();
1685 
1686     PROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed);
1687 
1688     gDvmJit.compilerICPatchIndex = 0;
1689     dvmUnlockMutex(&gDvmJit.compilerICPatchLock);
1690 }
1691 
1692 /*
1693  * Unchain a trace given the starting address of the translation
1694  * in the code cache.  Refer to the diagram in dvmCompilerAssembleLIR.
1695  * Returns the address following the last cell unchained.  Note that
1696  * the incoming codeAddr is a thumb code address, and therefore has
1697  * the low bit set.
1698  */
dvmJitUnchain(void * codeAddr)1699 u4* dvmJitUnchain(void* codeAddr)
1700 {
1701     u2* pChainCellOffset = (u2*)((char*)codeAddr - 3);
1702     u2 chainCellOffset = *pChainCellOffset;
1703     ChainCellCounts *pChainCellCounts =
1704           (ChainCellCounts*)((char*)codeAddr + chainCellOffset - 3);
1705     int cellSize;
1706     u4* pChainCells;
1707     u4* pStart;
1708     u4 newInst;
1709     int i,j;
1710     PredictedChainingCell *predChainCell;
1711 
1712     /* Get total count of chain cells */
1713     for (i = 0, cellSize = 0; i < kChainingCellGap; i++) {
1714         if (i != kChainingCellInvokePredicted) {
1715             cellSize += pChainCellCounts->u.count[i] * (CHAIN_CELL_NORMAL_SIZE >> 2);
1716         } else {
1717             cellSize += pChainCellCounts->u.count[i] *
1718                 (CHAIN_CELL_PREDICTED_SIZE >> 2);
1719         }
1720     }
1721 
1722     if (cellSize == 0)
1723         return (u4 *) pChainCellCounts;
1724 
1725     /* Locate the beginning of the chain cell region */
1726     pStart = pChainCells = ((u4 *) pChainCellCounts) - cellSize -
1727              pChainCellCounts->u.count[kChainingCellGap];
1728 
1729     /* The cells are sorted in order - walk through them and reset */
1730     for (i = 0; i < kChainingCellGap; i++) {
1731         int elemSize = CHAIN_CELL_NORMAL_SIZE >> 2;  /* In 32-bit words */
1732         if (i == kChainingCellInvokePredicted) {
1733             elemSize = CHAIN_CELL_PREDICTED_SIZE >> 2;
1734         }
1735 
1736         for (j = 0; j < pChainCellCounts->u.count[i]; j++) {
1737             switch(i) {
1738                 case kChainingCellNormal:
1739                 case kChainingCellHot:
1740                 case kChainingCellInvokeSingleton:
1741                 case kChainingCellBackwardBranch:
1742                     /*
1743                      * Replace the 1st half-word of the cell with an
1744                      * unconditional branch, leaving the 2nd half-word
1745                      * untouched.  This avoids problems with a thread
1746                      * that is suspended between the two halves when
1747                      * this unchaining takes place.
1748                      */
1749                     newInst = *pChainCells;
1750                     newInst &= 0xFFFF0000;
1751                     newInst |= getSkeleton(kThumbBUncond); /* b offset is 0 */
1752                     *pChainCells = newInst;
1753                     break;
1754                 case kChainingCellInvokePredicted:
1755                     predChainCell = (PredictedChainingCell *) pChainCells;
1756                     /*
1757                      * There could be a race on another mutator thread to use
1758                      * this particular predicted cell and the check has passed
1759                      * the clazz comparison. So we cannot safely wipe the
1760                      * method and branch but it is safe to clear the clazz,
1761                      * which serves as the key.
1762                      */
1763                     predChainCell->clazz = PREDICTED_CHAIN_CLAZZ_INIT;
1764                     break;
1765                 default:
1766                     LOGE("Unexpected chaining type: %d", i);
1767                     dvmAbort();  // dvmAbort OK here - can't safely recover
1768             }
1769             COMPILER_TRACE_CHAINING(
1770                 LOGD("Jit Runtime: unchaining 0x%x", (int)pChainCells));
1771             pChainCells += elemSize;  /* Advance by a fixed number of words */
1772         }
1773     }
1774     return pChainCells;
1775 }
1776 
1777 /* Unchain all translation in the cache. */
dvmJitUnchainAll()1778 void dvmJitUnchainAll()
1779 {
1780     u4* lowAddress = NULL;
1781     u4* highAddress = NULL;
1782     unsigned int i;
1783     if (gDvmJit.pJitEntryTable != NULL) {
1784         COMPILER_TRACE_CHAINING(LOGD("Jit Runtime: unchaining all"));
1785         dvmLockMutex(&gDvmJit.tableLock);
1786 
1787         UNPROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed);
1788 
1789         for (i = 0; i < gDvmJit.jitTableSize; i++) {
1790             if (gDvmJit.pJitEntryTable[i].dPC &&
1791                    gDvmJit.pJitEntryTable[i].codeAddress &&
1792                    (gDvmJit.pJitEntryTable[i].codeAddress !=
1793                     dvmCompilerGetInterpretTemplate())) {
1794                 u4* lastAddress;
1795                 lastAddress =
1796                       dvmJitUnchain(gDvmJit.pJitEntryTable[i].codeAddress);
1797                 if (lowAddress == NULL ||
1798                       (u4*)gDvmJit.pJitEntryTable[i].codeAddress < lowAddress)
1799                     lowAddress = lastAddress;
1800                 if (lastAddress > highAddress)
1801                     highAddress = lastAddress;
1802             }
1803         }
1804         cacheflush((long)lowAddress, (long)highAddress, 0);
1805         UPDATE_CODE_CACHE_PATCHES();
1806 
1807         PROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed);
1808 
1809         dvmUnlockMutex(&gDvmJit.tableLock);
1810         gDvmJit.translationChains = 0;
1811     }
1812     gDvmJit.hasNewChain = false;
1813 }
1814 
1815 typedef struct jitProfileAddrToLine {
1816     u4 lineNum;
1817     u4 bytecodeOffset;
1818 } jitProfileAddrToLine;
1819 
1820 
1821 /* Callback function to track the bytecode offset/line number relationiship */
addrToLineCb(void * cnxt,u4 bytecodeOffset,u4 lineNum)1822 static int addrToLineCb (void *cnxt, u4 bytecodeOffset, u4 lineNum)
1823 {
1824     jitProfileAddrToLine *addrToLine = (jitProfileAddrToLine *) cnxt;
1825 
1826     /* Best match so far for this offset */
1827     if (addrToLine->bytecodeOffset >= bytecodeOffset) {
1828         addrToLine->lineNum = lineNum;
1829     }
1830     return 0;
1831 }
1832 
getTraceBase(const JitEntry * p)1833 static char *getTraceBase(const JitEntry *p)
1834 {
1835     return (char*)p->codeAddress -
1836         (6 + (p->u.info.instructionSet == DALVIK_JIT_ARM ? 0 : 1));
1837 }
1838 
1839 /* Dumps profile info for a single trace */
dumpTraceProfile(JitEntry * p,bool silent,bool reset,unsigned long sum)1840 static int dumpTraceProfile(JitEntry *p, bool silent, bool reset,
1841                             unsigned long sum)
1842 {
1843     ChainCellCounts* pCellCounts;
1844     char* traceBase;
1845     u4* pExecutionCount;
1846     u4 executionCount;
1847     u2* pCellOffset;
1848     JitTraceDescription *desc;
1849     const Method* method;
1850     int idx;
1851 
1852     traceBase = getTraceBase(p);
1853 
1854     if (p->codeAddress == NULL) {
1855         if (!silent)
1856             LOGD("TRACEPROFILE 0x%08x 0 NULL 0 0", (int)traceBase);
1857         return 0;
1858     }
1859     if (p->codeAddress == dvmCompilerGetInterpretTemplate()) {
1860         if (!silent)
1861             LOGD("TRACEPROFILE 0x%08x 0 INTERPRET_ONLY  0 0", (int)traceBase);
1862         return 0;
1863     }
1864 
1865     pExecutionCount = (u4*) (traceBase);
1866     executionCount = *pExecutionCount;
1867     if (reset) {
1868         *pExecutionCount =0;
1869     }
1870     if (silent) {
1871         return executionCount;
1872     }
1873     pCellOffset = (u2*) (traceBase + 4);
1874     pCellCounts = (ChainCellCounts*) ((char *)pCellOffset + *pCellOffset);
1875     desc = (JitTraceDescription*) ((char*)pCellCounts + sizeof(*pCellCounts));
1876     method = desc->method;
1877     char *methodDesc = dexProtoCopyMethodDescriptor(&method->prototype);
1878     jitProfileAddrToLine addrToLine = {0, desc->trace[0].frag.startOffset};
1879 
1880     /*
1881      * We may end up decoding the debug information for the same method
1882      * multiple times, but the tradeoff is we don't need to allocate extra
1883      * space to store the addr/line mapping. Since this is a debugging feature
1884      * and done infrequently so the slower but simpler mechanism should work
1885      * just fine.
1886      */
1887     dexDecodeDebugInfo(method->clazz->pDvmDex->pDexFile,
1888                        dvmGetMethodCode(method),
1889                        method->clazz->descriptor,
1890                        method->prototype.protoIdx,
1891                        method->accessFlags,
1892                        addrToLineCb, NULL, &addrToLine);
1893 
1894     LOGD("TRACEPROFILE 0x%08x % 10d %5.2f%% [%#x(+%d), %d] %s%s;%s",
1895          (int)traceBase,
1896          executionCount,
1897          ((float ) executionCount) / sum * 100.0,
1898          desc->trace[0].frag.startOffset,
1899          desc->trace[0].frag.numInsts,
1900          addrToLine.lineNum,
1901          method->clazz->descriptor, method->name, methodDesc);
1902     free(methodDesc);
1903 
1904     /* Find the last fragment (ie runEnd is set) */
1905     for (idx = 0;
1906          desc->trace[idx].frag.isCode && !desc->trace[idx].frag.runEnd;
1907          idx++) {
1908     }
1909 
1910     /*
1911      * runEnd must comes with a JitCodeDesc frag. If isCode is false it must
1912      * be a meta info field (only used by callsite info for now).
1913      */
1914     if (!desc->trace[idx].frag.isCode) {
1915         const Method *method = desc->trace[idx+1].meta;
1916         char *methodDesc = dexProtoCopyMethodDescriptor(&method->prototype);
1917         /* Print the callee info in the trace */
1918         LOGD("    -> %s%s;%s", method->clazz->descriptor, method->name,
1919              methodDesc);
1920     }
1921 
1922     return executionCount;
1923 }
1924 
1925 /* Create a copy of the trace descriptor of an existing compilation */
dvmCopyTraceDescriptor(const u2 * pc,const JitEntry * knownEntry)1926 JitTraceDescription *dvmCopyTraceDescriptor(const u2 *pc,
1927                                             const JitEntry *knownEntry)
1928 {
1929     const JitEntry *jitEntry = knownEntry ? knownEntry : dvmFindJitEntry(pc);
1930     if (jitEntry == NULL) return NULL;
1931 
1932     /* Find out the startint point */
1933     char *traceBase = getTraceBase(jitEntry);
1934 
1935     /* Then find out the starting point of the chaining cell */
1936     u2 *pCellOffset = (u2*) (traceBase + 4);
1937     ChainCellCounts *pCellCounts =
1938         (ChainCellCounts*) ((char *)pCellOffset + *pCellOffset);
1939 
1940     /* From there we can find out the starting point of the trace descriptor */
1941     JitTraceDescription *desc =
1942         (JitTraceDescription*) ((char*)pCellCounts + sizeof(*pCellCounts));
1943 
1944     /* Now make a copy and return */
1945     int descSize = jitTraceDescriptionSize(desc);
1946     JitTraceDescription *newCopy = (JitTraceDescription *) malloc(descSize);
1947     memcpy(newCopy, desc, descSize);
1948     return newCopy;
1949 }
1950 
1951 /* Handy function to retrieve the profile count */
getProfileCount(const JitEntry * entry)1952 static inline int getProfileCount(const JitEntry *entry)
1953 {
1954     if (entry->dPC == 0 || entry->codeAddress == 0 ||
1955         entry->codeAddress == dvmCompilerGetInterpretTemplate())
1956         return 0;
1957 
1958     u4 *pExecutionCount = (u4 *) getTraceBase(entry);
1959 
1960     return *pExecutionCount;
1961 }
1962 
1963 
1964 /* qsort callback function */
sortTraceProfileCount(const void * entry1,const void * entry2)1965 static int sortTraceProfileCount(const void *entry1, const void *entry2)
1966 {
1967     const JitEntry *jitEntry1 = entry1;
1968     const JitEntry *jitEntry2 = entry2;
1969 
1970     int count1 = getProfileCount(jitEntry1);
1971     int count2 = getProfileCount(jitEntry2);
1972     return (count1 == count2) ? 0 : ((count1 > count2) ? -1 : 1);
1973 }
1974 
1975 /* Sort the trace profile counts and dump them */
dvmCompilerSortAndPrintTraceProfiles()1976 void dvmCompilerSortAndPrintTraceProfiles()
1977 {
1978     JitEntry *sortedEntries;
1979     int numTraces = 0;
1980     unsigned long sum = 0;
1981     unsigned int i;
1982 
1983     /* Make sure that the table is not changing */
1984     dvmLockMutex(&gDvmJit.tableLock);
1985 
1986     /* Sort the entries by descending order */
1987     sortedEntries = malloc(sizeof(JitEntry) * gDvmJit.jitTableSize);
1988     if (sortedEntries == NULL)
1989         goto done;
1990     memcpy(sortedEntries, gDvmJit.pJitEntryTable,
1991            sizeof(JitEntry) * gDvmJit.jitTableSize);
1992     qsort(sortedEntries, gDvmJit.jitTableSize, sizeof(JitEntry),
1993           sortTraceProfileCount);
1994 
1995     /* Analyze the sorted entries */
1996     for (i=0; i < gDvmJit.jitTableSize; i++) {
1997         if (sortedEntries[i].dPC != 0) {
1998             sum += dumpTraceProfile(&sortedEntries[i],
1999                                        true /* silent */,
2000                                        false /* reset */,
2001                                        0);
2002             numTraces++;
2003         }
2004     }
2005     if (numTraces == 0)
2006         numTraces = 1;
2007     if (sum == 0) {
2008         sum = 1;
2009     }
2010 
2011     LOGD("JIT: Average execution count -> %d",(int)(sum / numTraces));
2012 
2013     /* Dump the sorted entries. The count of each trace will be reset to 0. */
2014     for (i=0; i < gDvmJit.jitTableSize; i++) {
2015         if (sortedEntries[i].dPC != 0) {
2016             dumpTraceProfile(&sortedEntries[i],
2017                              false /* silent */,
2018                              true /* reset */,
2019                              sum);
2020         }
2021     }
2022 
2023     for (i=0; i < gDvmJit.jitTableSize && i < 10; i++) {
2024         /* Stip interpreter stubs */
2025         if (sortedEntries[i].codeAddress == dvmCompilerGetInterpretTemplate()) {
2026             continue;
2027         }
2028         JitTraceDescription* desc =
2029             dvmCopyTraceDescriptor(NULL, &sortedEntries[i]);
2030         dvmCompilerWorkEnqueue(sortedEntries[i].dPC,
2031                                kWorkOrderTraceDebug, desc);
2032     }
2033 
2034     free(sortedEntries);
2035 done:
2036     dvmUnlockMutex(&gDvmJit.tableLock);
2037     return;
2038 }
2039 
2040 #if defined(WITH_SELF_VERIFICATION)
2041 /*
2042  * The following are used to keep compiled loads and stores from modifying
2043  * memory during self verification mode.
2044  *
2045  * Stores do not modify memory. Instead, the address and value pair are stored
2046  * into heapSpace. Addresses within heapSpace are unique. For accesses smaller
2047  * than a word, the word containing the address is loaded first before being
2048  * updated.
2049  *
2050  * Loads check heapSpace first and return data from there if an entry exists.
2051  * Otherwise, data is loaded from memory as usual.
2052  */
2053 
2054 /* Used to specify sizes of memory operations */
2055 enum {
2056     kSVByte,
2057     kSVSignedByte,
2058     kSVHalfword,
2059     kSVSignedHalfword,
2060     kSVWord,
2061     kSVDoubleword,
2062     kSVVariable,
2063 };
2064 
2065 /* Load the value of a decoded register from the stack */
selfVerificationMemRegLoad(int * sp,int reg)2066 static int selfVerificationMemRegLoad(int* sp, int reg)
2067 {
2068     return *(sp + reg);
2069 }
2070 
2071 /* Load the value of a decoded doubleword register from the stack */
selfVerificationMemRegLoadDouble(int * sp,int reg)2072 static s8 selfVerificationMemRegLoadDouble(int* sp, int reg)
2073 {
2074     return *((s8*)(sp + reg));
2075 }
2076 
2077 /* Store the value of a decoded register out to the stack */
selfVerificationMemRegStore(int * sp,int data,int reg)2078 static void selfVerificationMemRegStore(int* sp, int data, int reg)
2079 {
2080     *(sp + reg) = data;
2081 }
2082 
2083 /* Store the value of a decoded doubleword register out to the stack */
selfVerificationMemRegStoreDouble(int * sp,s8 data,int reg)2084 static void selfVerificationMemRegStoreDouble(int* sp, s8 data, int reg)
2085 {
2086     *((s8*)(sp + reg)) = data;
2087 }
2088 
2089 /*
2090  * Load the specified size of data from the specified address, checking
2091  * heapSpace first if Self Verification mode wrote to it previously, and
2092  * falling back to actual memory otherwise.
2093  */
selfVerificationLoad(int addr,int size)2094 static int selfVerificationLoad(int addr, int size)
2095 {
2096     Thread *self = dvmThreadSelf();
2097     ShadowSpace *shadowSpace = self->shadowSpace;
2098     ShadowHeap *heapSpacePtr;
2099 
2100     int data;
2101     int maskedAddr = addr & 0xFFFFFFFC;
2102     int alignment = addr & 0x3;
2103 
2104     for (heapSpacePtr = shadowSpace->heapSpace;
2105          heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
2106         if (heapSpacePtr->addr == maskedAddr) {
2107             addr = ((unsigned int) &(heapSpacePtr->data)) | alignment;
2108             break;
2109         }
2110     }
2111 
2112     switch (size) {
2113         case kSVByte:
2114             data = *((u1*) addr);
2115             break;
2116         case kSVSignedByte:
2117             data = *((s1*) addr);
2118             break;
2119         case kSVHalfword:
2120             data = *((u2*) addr);
2121             break;
2122         case kSVSignedHalfword:
2123             data = *((s2*) addr);
2124             break;
2125         case kSVWord:
2126             data = *((u4*) addr);
2127             break;
2128         default:
2129             LOGE("*** ERROR: BAD SIZE IN selfVerificationLoad: %d", size);
2130             data = 0;
2131             dvmAbort();
2132     }
2133 
2134     //LOGD("*** HEAP LOAD: Addr: 0x%x Data: 0x%x Size: %d", addr, data, size);
2135     return data;
2136 }
2137 
2138 /* Like selfVerificationLoad, but specifically for doublewords */
selfVerificationLoadDoubleword(int addr)2139 static s8 selfVerificationLoadDoubleword(int addr)
2140 {
2141     Thread *self = dvmThreadSelf();
2142     ShadowSpace* shadowSpace = self->shadowSpace;
2143     ShadowHeap* heapSpacePtr;
2144 
2145     int addr2 = addr+4;
2146     unsigned int data = *((unsigned int*) addr);
2147     unsigned int data2 = *((unsigned int*) addr2);
2148 
2149     for (heapSpacePtr = shadowSpace->heapSpace;
2150          heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
2151         if (heapSpacePtr->addr == addr) {
2152             data = heapSpacePtr->data;
2153         } else if (heapSpacePtr->addr == addr2) {
2154             data2 = heapSpacePtr->data;
2155         }
2156     }
2157 
2158     //LOGD("*** HEAP LOAD DOUBLEWORD: Addr: 0x%x Data: 0x%x Data2: 0x%x",
2159     //    addr, data, data2);
2160     return (((s8) data2) << 32) | data;
2161 }
2162 
2163 /*
2164  * Handles a store of a specified size of data to a specified address.
2165  * This gets logged as an addr/data pair in heapSpace instead of modifying
2166  * memory.  Addresses in heapSpace are unique, and accesses smaller than a
2167  * word pull the entire word from memory first before updating.
2168  */
selfVerificationStore(int addr,int data,int size)2169 static void selfVerificationStore(int addr, int data, int size)
2170 {
2171     Thread *self = dvmThreadSelf();
2172     ShadowSpace *shadowSpace = self->shadowSpace;
2173     ShadowHeap *heapSpacePtr;
2174 
2175     int maskedAddr = addr & 0xFFFFFFFC;
2176     int alignment = addr & 0x3;
2177 
2178     //LOGD("*** HEAP STORE: Addr: 0x%x Data: 0x%x Size: %d", addr, data, size);
2179 
2180     for (heapSpacePtr = shadowSpace->heapSpace;
2181          heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
2182         if (heapSpacePtr->addr == maskedAddr) break;
2183     }
2184 
2185     if (heapSpacePtr == shadowSpace->heapSpaceTail) {
2186         heapSpacePtr->addr = maskedAddr;
2187         heapSpacePtr->data = *((unsigned int*) maskedAddr);
2188         shadowSpace->heapSpaceTail++;
2189     }
2190 
2191     addr = ((unsigned int) &(heapSpacePtr->data)) | alignment;
2192     switch (size) {
2193         case kSVByte:
2194             *((u1*) addr) = data;
2195             break;
2196         case kSVSignedByte:
2197             *((s1*) addr) = data;
2198             break;
2199         case kSVHalfword:
2200             *((u2*) addr) = data;
2201             break;
2202         case kSVSignedHalfword:
2203             *((s2*) addr) = data;
2204             break;
2205         case kSVWord:
2206             *((u4*) addr) = data;
2207             break;
2208         default:
2209             LOGE("*** ERROR: BAD SIZE IN selfVerificationSave: %d", size);
2210             dvmAbort();
2211     }
2212 }
2213 
2214 /* Like selfVerificationStore, but specifically for doublewords */
selfVerificationStoreDoubleword(int addr,s8 double_data)2215 static void selfVerificationStoreDoubleword(int addr, s8 double_data)
2216 {
2217     Thread *self = dvmThreadSelf();
2218     ShadowSpace *shadowSpace = self->shadowSpace;
2219     ShadowHeap *heapSpacePtr;
2220 
2221     int addr2 = addr+4;
2222     int data = double_data;
2223     int data2 = double_data >> 32;
2224     bool store1 = false, store2 = false;
2225 
2226     //LOGD("*** HEAP STORE DOUBLEWORD: Addr: 0x%x Data: 0x%x, Data2: 0x%x",
2227     //    addr, data, data2);
2228 
2229     for (heapSpacePtr = shadowSpace->heapSpace;
2230          heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
2231         if (heapSpacePtr->addr == addr) {
2232             heapSpacePtr->data = data;
2233             store1 = true;
2234         } else if (heapSpacePtr->addr == addr2) {
2235             heapSpacePtr->data = data2;
2236             store2 = true;
2237         }
2238     }
2239 
2240     if (!store1) {
2241         shadowSpace->heapSpaceTail->addr = addr;
2242         shadowSpace->heapSpaceTail->data = data;
2243         shadowSpace->heapSpaceTail++;
2244     }
2245     if (!store2) {
2246         shadowSpace->heapSpaceTail->addr = addr2;
2247         shadowSpace->heapSpaceTail->data = data2;
2248         shadowSpace->heapSpaceTail++;
2249     }
2250 }
2251 
2252 /*
2253  * Decodes the memory instruction at the address specified in the link
2254  * register. All registers (r0-r12,lr) and fp registers (d0-d15) are stored
2255  * consecutively on the stack beginning at the specified stack pointer.
2256  * Calls the proper Self Verification handler for the memory instruction and
2257  * updates the link register to point past the decoded memory instruction.
2258  */
dvmSelfVerificationMemOpDecode(int lr,int * sp)2259 void dvmSelfVerificationMemOpDecode(int lr, int* sp)
2260 {
2261     enum {
2262         kMemOpLdrPcRel = 0x09, // ldr(3)  [01001] rd[10..8] imm_8[7..0]
2263         kMemOpRRR      = 0x0A, // Full opcode is 7 bits
2264         kMemOp2Single  = 0x0A, // Used for Vstrs and Vldrs
2265         kMemOpRRR2     = 0x0B, // Full opcode is 7 bits
2266         kMemOp2Double  = 0x0B, // Used for Vstrd and Vldrd
2267         kMemOpStrRRI5  = 0x0C, // str(1)  [01100] imm_5[10..6] rn[5..3] rd[2..0]
2268         kMemOpLdrRRI5  = 0x0D, // ldr(1)  [01101] imm_5[10..6] rn[5..3] rd[2..0]
2269         kMemOpStrbRRI5 = 0x0E, // strb(1) [01110] imm_5[10..6] rn[5..3] rd[2..0]
2270         kMemOpLdrbRRI5 = 0x0F, // ldrb(1) [01111] imm_5[10..6] rn[5..3] rd[2..0]
2271         kMemOpStrhRRI5 = 0x10, // strh(1) [10000] imm_5[10..6] rn[5..3] rd[2..0]
2272         kMemOpLdrhRRI5 = 0x11, // ldrh(1) [10001] imm_5[10..6] rn[5..3] rd[2..0]
2273         kMemOpLdrSpRel = 0x13, // ldr(4)  [10011] rd[10..8] imm_8[7..0]
2274         kMemOpStmia    = 0x18, // stmia   [11000] rn[10..8] reglist [7..0]
2275         kMemOpLdmia    = 0x19, // ldmia   [11001] rn[10..8] reglist [7..0]
2276         kMemOpStrRRR   = 0x28, // str(2)  [0101000] rm[8..6] rn[5..3] rd[2..0]
2277         kMemOpStrhRRR  = 0x29, // strh(2) [0101001] rm[8..6] rn[5..3] rd[2..0]
2278         kMemOpStrbRRR  = 0x2A, // strb(2) [0101010] rm[8..6] rn[5..3] rd[2..0]
2279         kMemOpLdrsbRRR = 0x2B, // ldrsb   [0101011] rm[8..6] rn[5..3] rd[2..0]
2280         kMemOpLdrRRR   = 0x2C, // ldr(2)  [0101100] rm[8..6] rn[5..3] rd[2..0]
2281         kMemOpLdrhRRR  = 0x2D, // ldrh(2) [0101101] rm[8..6] rn[5..3] rd[2..0]
2282         kMemOpLdrbRRR  = 0x2E, // ldrb(2) [0101110] rm[8..6] rn[5..3] rd[2..0]
2283         kMemOpLdrshRRR = 0x2F, // ldrsh   [0101111] rm[8..6] rn[5..3] rd[2..0]
2284         kMemOp2Stmia   = 0xE88, // stmia  [111010001000[ rn[19..16] mask[15..0]
2285         kMemOp2Ldmia   = 0xE89, // ldmia  [111010001001[ rn[19..16] mask[15..0]
2286         kMemOp2Stmia2  = 0xE8A, // stmia  [111010001010[ rn[19..16] mask[15..0]
2287         kMemOp2Ldmia2  = 0xE8B, // ldmia  [111010001011[ rn[19..16] mask[15..0]
2288         kMemOp2Vstr    = 0xED8, // Used for Vstrs and Vstrd
2289         kMemOp2Vldr    = 0xED9, // Used for Vldrs and Vldrd
2290         kMemOp2Vstr2   = 0xEDC, // Used for Vstrs and Vstrd
2291         kMemOp2Vldr2   = 0xEDD, // Used for Vstrs and Vstrd
2292         kMemOp2StrbRRR = 0xF80, /* str rt,[rn,rm,LSL #imm] [111110000000]
2293                                 rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
2294         kMemOp2LdrbRRR = 0xF81, /* ldrb rt,[rn,rm,LSL #imm] [111110000001]
2295                                 rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
2296         kMemOp2StrhRRR = 0xF82, /* str rt,[rn,rm,LSL #imm] [111110000010]
2297                                 rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
2298         kMemOp2LdrhRRR = 0xF83, /* ldrh rt,[rn,rm,LSL #imm] [111110000011]
2299                                 rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
2300         kMemOp2StrRRR  = 0xF84, /* str rt,[rn,rm,LSL #imm] [111110000100]
2301                                 rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
2302         kMemOp2LdrRRR  = 0xF85, /* ldr rt,[rn,rm,LSL #imm] [111110000101]
2303                                 rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
2304         kMemOp2StrbRRI12 = 0xF88, /* strb rt,[rn,#imm12] [111110001000]
2305                                        rt[15..12] rn[19..16] imm12[11..0] */
2306         kMemOp2LdrbRRI12 = 0xF89, /* ldrb rt,[rn,#imm12] [111110001001]
2307                                        rt[15..12] rn[19..16] imm12[11..0] */
2308         kMemOp2StrhRRI12 = 0xF8A, /* strh rt,[rn,#imm12] [111110001010]
2309                                        rt[15..12] rn[19..16] imm12[11..0] */
2310         kMemOp2LdrhRRI12 = 0xF8B, /* ldrh rt,[rn,#imm12] [111110001011]
2311                                        rt[15..12] rn[19..16] imm12[11..0] */
2312         kMemOp2StrRRI12 = 0xF8C, /* str(Imm,T3) rd,[rn,#imm12] [111110001100]
2313                                        rn[19..16] rt[15..12] imm12[11..0] */
2314         kMemOp2LdrRRI12 = 0xF8D, /* ldr(Imm,T3) rd,[rn,#imm12] [111110001101]
2315                                        rn[19..16] rt[15..12] imm12[11..0] */
2316         kMemOp2LdrsbRRR = 0xF91, /* ldrsb rt,[rn,rm,LSL #imm] [111110010001]
2317                                 rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
2318         kMemOp2LdrshRRR = 0xF93, /* ldrsh rt,[rn,rm,LSL #imm] [111110010011]
2319                                 rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
2320         kMemOp2LdrsbRRI12 = 0xF99, /* ldrsb rt,[rn,#imm12] [111110011001]
2321                                        rt[15..12] rn[19..16] imm12[11..0] */
2322         kMemOp2LdrshRRI12 = 0xF9B, /* ldrsh rt,[rn,#imm12] [111110011011]
2323                                        rt[15..12] rn[19..16] imm12[11..0] */
2324         kMemOp2        = 0xE000, // top 3 bits set indicates Thumb2
2325     };
2326 
2327     int addr, offset, data;
2328     long long double_data;
2329     int size = kSVWord;
2330     bool store = false;
2331     unsigned int *lr_masked = (unsigned int *) (lr & 0xFFFFFFFE);
2332     unsigned int insn = *lr_masked;
2333 
2334     int old_lr;
2335     old_lr = selfVerificationMemRegLoad(sp, 13);
2336 
2337     if ((insn & kMemOp2) == kMemOp2) {
2338         insn = (insn << 16) | (insn >> 16);
2339         //LOGD("*** THUMB2 - Addr: 0x%x Insn: 0x%x", lr, insn);
2340 
2341         int opcode12 = (insn >> 20) & 0xFFF;
2342         int opcode4 = (insn >> 8) & 0xF;
2343         int imm2 = (insn >> 4) & 0x3;
2344         int imm8 = insn & 0xFF;
2345         int imm12 = insn & 0xFFF;
2346         int rd = (insn >> 12) & 0xF;
2347         int rm = insn & 0xF;
2348         int rn = (insn >> 16) & 0xF;
2349         int rt = (insn >> 12) & 0xF;
2350         bool wBack = true;
2351 
2352         // Update the link register
2353         selfVerificationMemRegStore(sp, old_lr+4, 13);
2354 
2355         // Determine whether the mem op is a store or load
2356         switch (opcode12) {
2357             case kMemOp2Stmia:
2358             case kMemOp2Stmia2:
2359             case kMemOp2Vstr:
2360             case kMemOp2Vstr2:
2361             case kMemOp2StrbRRR:
2362             case kMemOp2StrhRRR:
2363             case kMemOp2StrRRR:
2364             case kMemOp2StrbRRI12:
2365             case kMemOp2StrhRRI12:
2366             case kMemOp2StrRRI12:
2367                 store = true;
2368         }
2369 
2370         // Determine the size of the mem access
2371         switch (opcode12) {
2372             case kMemOp2StrbRRR:
2373             case kMemOp2LdrbRRR:
2374             case kMemOp2StrbRRI12:
2375             case kMemOp2LdrbRRI12:
2376                 size = kSVByte;
2377                 break;
2378             case kMemOp2LdrsbRRR:
2379             case kMemOp2LdrsbRRI12:
2380                 size = kSVSignedByte;
2381                 break;
2382             case kMemOp2StrhRRR:
2383             case kMemOp2LdrhRRR:
2384             case kMemOp2StrhRRI12:
2385             case kMemOp2LdrhRRI12:
2386                 size = kSVHalfword;
2387                 break;
2388             case kMemOp2LdrshRRR:
2389             case kMemOp2LdrshRRI12:
2390                 size = kSVSignedHalfword;
2391                 break;
2392             case kMemOp2Vstr:
2393             case kMemOp2Vstr2:
2394             case kMemOp2Vldr:
2395             case kMemOp2Vldr2:
2396                 if (opcode4 == kMemOp2Double) size = kSVDoubleword;
2397                 break;
2398             case kMemOp2Stmia:
2399             case kMemOp2Ldmia:
2400             case kMemOp2Stmia2:
2401             case kMemOp2Ldmia2:
2402                 size = kSVVariable;
2403                 break;
2404         }
2405 
2406         // Load the value of the address
2407         addr = selfVerificationMemRegLoad(sp, rn);
2408 
2409         // Figure out the offset
2410         switch (opcode12) {
2411             case kMemOp2Vstr:
2412             case kMemOp2Vstr2:
2413             case kMemOp2Vldr:
2414             case kMemOp2Vldr2:
2415                 offset = imm8 << 2;
2416                 if (opcode4 == kMemOp2Single) {
2417                     rt = rd << 1;
2418                     if (insn & 0x400000) rt |= 0x1;
2419                 } else if (opcode4 == kMemOp2Double) {
2420                     if (insn & 0x400000) rt |= 0x10;
2421                     rt = rt << 1;
2422                 } else {
2423                     LOGE("*** ERROR: UNRECOGNIZED VECTOR MEM OP: %x", opcode4);
2424                     dvmAbort();
2425                 }
2426                 rt += 14;
2427                 break;
2428             case kMemOp2StrbRRR:
2429             case kMemOp2LdrbRRR:
2430             case kMemOp2StrhRRR:
2431             case kMemOp2LdrhRRR:
2432             case kMemOp2StrRRR:
2433             case kMemOp2LdrRRR:
2434             case kMemOp2LdrsbRRR:
2435             case kMemOp2LdrshRRR:
2436                 offset = selfVerificationMemRegLoad(sp, rm) << imm2;
2437                 break;
2438             case kMemOp2StrbRRI12:
2439             case kMemOp2LdrbRRI12:
2440             case kMemOp2StrhRRI12:
2441             case kMemOp2LdrhRRI12:
2442             case kMemOp2StrRRI12:
2443             case kMemOp2LdrRRI12:
2444             case kMemOp2LdrsbRRI12:
2445             case kMemOp2LdrshRRI12:
2446                 offset = imm12;
2447                 break;
2448             case kMemOp2Stmia:
2449             case kMemOp2Ldmia:
2450                 wBack = false;
2451             case kMemOp2Stmia2:
2452             case kMemOp2Ldmia2:
2453                 offset = 0;
2454                 break;
2455             default:
2456                 LOGE("*** ERROR: UNRECOGNIZED THUMB2 MEM OP: %x", opcode12);
2457                 offset = 0;
2458                 dvmAbort();
2459         }
2460 
2461         // Handle the decoded mem op accordingly
2462         if (store) {
2463             if (size == kSVVariable) {
2464                 LOGD("*** THUMB2 STMIA CURRENTLY UNUSED (AND UNTESTED)");
2465                 int i;
2466                 int regList = insn & 0xFFFF;
2467                 for (i = 0; i < 16; i++) {
2468                     if (regList & 0x1) {
2469                         data = selfVerificationMemRegLoad(sp, i);
2470                         selfVerificationStore(addr, data, kSVWord);
2471                         addr += 4;
2472                     }
2473                     regList = regList >> 1;
2474                 }
2475                 if (wBack) selfVerificationMemRegStore(sp, addr, rn);
2476             } else if (size == kSVDoubleword) {
2477                 double_data = selfVerificationMemRegLoadDouble(sp, rt);
2478                 selfVerificationStoreDoubleword(addr+offset, double_data);
2479             } else {
2480                 data = selfVerificationMemRegLoad(sp, rt);
2481                 selfVerificationStore(addr+offset, data, size);
2482             }
2483         } else {
2484             if (size == kSVVariable) {
2485                 LOGD("*** THUMB2 LDMIA CURRENTLY UNUSED (AND UNTESTED)");
2486                 int i;
2487                 int regList = insn & 0xFFFF;
2488                 for (i = 0; i < 16; i++) {
2489                     if (regList & 0x1) {
2490                         data = selfVerificationLoad(addr, kSVWord);
2491                         selfVerificationMemRegStore(sp, data, i);
2492                         addr += 4;
2493                     }
2494                     regList = regList >> 1;
2495                 }
2496                 if (wBack) selfVerificationMemRegStore(sp, addr, rn);
2497             } else if (size == kSVDoubleword) {
2498                 double_data = selfVerificationLoadDoubleword(addr+offset);
2499                 selfVerificationMemRegStoreDouble(sp, double_data, rt);
2500             } else {
2501                 data = selfVerificationLoad(addr+offset, size);
2502                 selfVerificationMemRegStore(sp, data, rt);
2503             }
2504         }
2505     } else {
2506         //LOGD("*** THUMB - Addr: 0x%x Insn: 0x%x", lr, insn);
2507 
2508         // Update the link register
2509         selfVerificationMemRegStore(sp, old_lr+2, 13);
2510 
2511         int opcode5 = (insn >> 11) & 0x1F;
2512         int opcode7 = (insn >> 9) & 0x7F;
2513         int imm = (insn >> 6) & 0x1F;
2514         int rd = (insn >> 8) & 0x7;
2515         int rm = (insn >> 6) & 0x7;
2516         int rn = (insn >> 3) & 0x7;
2517         int rt = insn & 0x7;
2518 
2519         // Determine whether the mem op is a store or load
2520         switch (opcode5) {
2521             case kMemOpRRR:
2522                 switch (opcode7) {
2523                     case kMemOpStrRRR:
2524                     case kMemOpStrhRRR:
2525                     case kMemOpStrbRRR:
2526                         store = true;
2527                 }
2528                 break;
2529             case kMemOpStrRRI5:
2530             case kMemOpStrbRRI5:
2531             case kMemOpStrhRRI5:
2532             case kMemOpStmia:
2533                 store = true;
2534         }
2535 
2536         // Determine the size of the mem access
2537         switch (opcode5) {
2538             case kMemOpRRR:
2539             case kMemOpRRR2:
2540                 switch (opcode7) {
2541                     case kMemOpStrbRRR:
2542                     case kMemOpLdrbRRR:
2543                         size = kSVByte;
2544                         break;
2545                     case kMemOpLdrsbRRR:
2546                         size = kSVSignedByte;
2547                         break;
2548                     case kMemOpStrhRRR:
2549                     case kMemOpLdrhRRR:
2550                         size = kSVHalfword;
2551                         break;
2552                     case kMemOpLdrshRRR:
2553                         size = kSVSignedHalfword;
2554                         break;
2555                 }
2556                 break;
2557             case kMemOpStrbRRI5:
2558             case kMemOpLdrbRRI5:
2559                 size = kSVByte;
2560                 break;
2561             case kMemOpStrhRRI5:
2562             case kMemOpLdrhRRI5:
2563                 size = kSVHalfword;
2564                 break;
2565             case kMemOpStmia:
2566             case kMemOpLdmia:
2567                 size = kSVVariable;
2568                 break;
2569         }
2570 
2571         // Load the value of the address
2572         if (opcode5 == kMemOpLdrPcRel)
2573             addr = selfVerificationMemRegLoad(sp, 4);
2574         else if (opcode5 == kMemOpStmia || opcode5 == kMemOpLdmia)
2575             addr = selfVerificationMemRegLoad(sp, rd);
2576         else
2577             addr = selfVerificationMemRegLoad(sp, rn);
2578 
2579         // Figure out the offset
2580         switch (opcode5) {
2581             case kMemOpLdrPcRel:
2582                 offset = (insn & 0xFF) << 2;
2583                 rt = rd;
2584                 break;
2585             case kMemOpRRR:
2586             case kMemOpRRR2:
2587                 offset = selfVerificationMemRegLoad(sp, rm);
2588                 break;
2589             case kMemOpStrRRI5:
2590             case kMemOpLdrRRI5:
2591                 offset = imm << 2;
2592                 break;
2593             case kMemOpStrhRRI5:
2594             case kMemOpLdrhRRI5:
2595                 offset = imm << 1;
2596                 break;
2597             case kMemOpStrbRRI5:
2598             case kMemOpLdrbRRI5:
2599                 offset = imm;
2600                 break;
2601             case kMemOpStmia:
2602             case kMemOpLdmia:
2603                 offset = 0;
2604                 break;
2605             default:
2606                 LOGE("*** ERROR: UNRECOGNIZED THUMB MEM OP: %x", opcode5);
2607                 offset = 0;
2608                 dvmAbort();
2609         }
2610 
2611         // Handle the decoded mem op accordingly
2612         if (store) {
2613             if (size == kSVVariable) {
2614                 int i;
2615                 int regList = insn & 0xFF;
2616                 for (i = 0; i < 8; i++) {
2617                     if (regList & 0x1) {
2618                         data = selfVerificationMemRegLoad(sp, i);
2619                         selfVerificationStore(addr, data, kSVWord);
2620                         addr += 4;
2621                     }
2622                     regList = regList >> 1;
2623                 }
2624                 selfVerificationMemRegStore(sp, addr, rd);
2625             } else {
2626                 data = selfVerificationMemRegLoad(sp, rt);
2627                 selfVerificationStore(addr+offset, data, size);
2628             }
2629         } else {
2630             if (size == kSVVariable) {
2631                 bool wBack = true;
2632                 int i;
2633                 int regList = insn & 0xFF;
2634                 for (i = 0; i < 8; i++) {
2635                     if (regList & 0x1) {
2636                         if (i == rd) wBack = false;
2637                         data = selfVerificationLoad(addr, kSVWord);
2638                         selfVerificationMemRegStore(sp, data, i);
2639                         addr += 4;
2640                     }
2641                     regList = regList >> 1;
2642                 }
2643                 if (wBack) selfVerificationMemRegStore(sp, addr, rd);
2644             } else {
2645                 data = selfVerificationLoad(addr+offset, size);
2646                 selfVerificationMemRegStore(sp, data, rt);
2647             }
2648         }
2649     }
2650 }
2651 #endif
2652