• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2009 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef BASE_LINKED_LIST_H_
6 #define BASE_LINKED_LIST_H_
7 
8 // Simple LinkedList type. (See the Q&A section to understand how this
9 // differs from std::list).
10 //
11 // To use, start by declaring the class which will be contained in the linked
12 // list, as extending LinkNode (this gives it next/previous pointers).
13 //
14 //   class MyNodeType : public LinkNode<MyNodeType> {
15 //     ...
16 //   };
17 //
18 // Next, to keep track of the list's head/tail, use a LinkedList instance:
19 //
20 //   LinkedList<MyNodeType> list;
21 //
22 // To add elements to the list, use any of LinkedList::Append,
23 // LinkNode::InsertBefore, or LinkNode::InsertAfter:
24 //
25 //   LinkNode<MyNodeType>* n1 = ...;
26 //   LinkNode<MyNodeType>* n2 = ...;
27 //   LinkNode<MyNodeType>* n3 = ...;
28 //
29 //   list.Append(n1);
30 //   list.Append(n3);
31 //   n3->InsertBefore(n3);
32 //
33 // Lastly, to iterate through the linked list forwards:
34 //
35 //   for (LinkNode<MyNodeType>* node = list.head();
36 //        node != list.end();
37 //        node = node->next()) {
38 //     MyNodeType* value = node->value();
39 //     ...
40 //   }
41 //
42 // Or to iterate the linked list backwards:
43 //
44 //   for (LinkNode<MyNodeType>* node = list.tail();
45 //        node != list.end();
46 //        node = node->previous()) {
47 //     MyNodeType* value = node->value();
48 //     ...
49 //   }
50 //
51 // Questions and Answers:
52 //
53 // Q. Should I use std::list or base::LinkedList?
54 //
55 // A. The main reason to use base::LinkedList over std::list is
56 //    performance. If you don't care about the performance differences
57 //    then use an STL container, as it makes for better code readability.
58 //
59 //    Comparing the performance of base::LinkedList<T> to std::list<T*>:
60 //
61 //    * Erasing an element of type T* from base::LinkedList<T> is
62 //      an O(1) operation. Whereas for std::list<T*> it is O(n).
63 //      That is because with std::list<T*> you must obtain an
64 //      iterator to the T* element before you can call erase(iterator).
65 //
66 //    * Insertion operations with base::LinkedList<T> never require
67 //      heap allocations.
68 //
69 // Q. How does base::LinkedList implementation differ from std::list?
70 //
71 // A. Doubly-linked lists are made up of nodes that contain "next" and
72 //    "previous" pointers that reference other nodes in the list.
73 //
74 //    With base::LinkedList<T>, the type being inserted already reserves
75 //    space for the "next" and "previous" pointers (base::LinkNode<T>*).
76 //    Whereas with std::list<T> the type can be anything, so the implementation
77 //    needs to glue on the "next" and "previous" pointers using
78 //    some internal node type.
79 
80 namespace base {
81 
82 template <typename T>
83 class LinkNode {
84  public:
LinkNode()85   LinkNode() : previous_(0), next_(0) {}
LinkNode(LinkNode<T> * previous,LinkNode<T> * next)86   LinkNode(LinkNode<T>* previous, LinkNode<T>* next)
87       : previous_(previous), next_(next) {}
88 
89   // Insert |this| into the linked list, before |e|.
InsertBefore(LinkNode<T> * e)90   void InsertBefore(LinkNode<T>* e) {
91     this->next_ = e;
92     this->previous_ = e->previous_;
93     e->previous_->next_ = this;
94     e->previous_ = this;
95   }
96 
97   // Insert |this| into the linked list, after |e|.
InsertAfter(LinkNode<T> * e)98   void InsertAfter(LinkNode<T>* e) {
99     this->next_ = e->next_;
100     this->previous_ = e;
101     e->next_->previous_ = this;
102     e->next_ = this;
103   }
104 
105   // Remove |this| from the linked list.
RemoveFromList()106   void RemoveFromList() {
107     this->previous_->next_ = this->next_;
108     this->next_->previous_ = this->previous_;
109   }
110 
previous()111   LinkNode<T>* previous() const {
112     return previous_;
113   }
114 
next()115   LinkNode<T>* next() const {
116     return next_;
117   }
118 
119   // Cast from the node-type to the value type.
value()120   const T* value() const {
121     return static_cast<const T*>(this);
122   }
123 
value()124   T* value() {
125     return static_cast<T*>(this);
126   }
127 
128  private:
129   LinkNode<T>* previous_;
130   LinkNode<T>* next_;
131 };
132 
133 template <typename T>
134 class LinkedList {
135  public:
136   // The "root" node is self-referential, and forms the basis of a circular
137   // list (root_.next() will point back to the start of the list,
138   // and root_->previous() wraps around to the end of the list).
LinkedList()139   LinkedList() : root_(&root_, &root_) {}
140 
141   // Appends |e| to the end of the linked list.
Append(LinkNode<T> * e)142   void Append(LinkNode<T>* e) {
143     e->InsertBefore(&root_);
144   }
145 
head()146   LinkNode<T>* head() const {
147     return root_.next();
148   }
149 
tail()150   LinkNode<T>* tail() const {
151     return root_.previous();
152   }
153 
end()154   const LinkNode<T>* end() const {
155     return &root_;
156   }
157 
158  private:
159   LinkNode<T> root_;
160 };
161 
162 }  // namespace base
163 
164 #endif  // BASE_LINKED_LIST_H_
165