• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
2
3<html>
4
5<head>
6<title>Bytecode for the Dalvik VM</title>
7<link rel=stylesheet href="dalvik-bytecode.css">
8</head>
9
10<body>
11
12<h1>Bytecode for the Dalvik VM</h1>
13<p>Copyright &copy; 2007 The Android Open Source Project
14
15<h2>General Design</h2>
16
17<ul>
18<li>The machine model and calling conventions are meant to approximately
19  imitate common real architectures and C-style calling conventions:
20  <ul>
21  <li>The VM is register-based, and frames are fixed in size upon creation.
22    Each frame consists of a particular number of registers (specified by
23    the method) as well as any adjunct data needed to execute the method,
24    such as (but not limited to) the program counter and a reference to the
25    <code>.dex</code> file that contains the method.
26  </li>
27  <li>Registers are 32 bits wide. Adjacent register pairs are used for 64-bit
28    values.
29  </li>
30  <li>In terms of bitwise representation, <code>(Object) null == (int)
31    0</code>.
32  </li>
33  <li>The <i>N</i> arguments to a method land in the last <i>N</i> registers
34    of the method's invocation frame, in order. Wide arguments consume
35    two registers. Instance methods are passed a <code>this</code> reference
36    as their first argument.
37  </li>
38  </ul>
39<li>The storage unit in the instruction stream is a 16-bit unsigned quantity.
40  Some bits in some instructions are ignored / must-be-zero.
41</li>
42<li>Instructions aren't gratuitously limited to a particular type. For
43  example, instructions that move 32-bit register values without interpretation
44  don't have to specify whether they are moving ints or floats.
45</li>
46<li>There are separately enumerated and indexed constant pools for
47  references to strings, types, fields, and methods.
48</li>
49<li>Bitwise literal data is represented in-line in the instruction stream.</li>
50<li>Because, in practice, it is uncommon for a method to need more than
51  16 registers, and because needing more than eight registers <i>is</i>
52  reasonably common, many instructions are limited to only addressing
53  the first 16
54  registers. When reasonably possible, instructions allow references to
55  up to the first 256 registers. In cases where an instruction variant isn't
56  available to address a desired register, it is expected that the register
57  contents get moved from the original register to a low register (before the
58  operation) and/or moved from a low result register to a high register
59  (after the operation).
60</li>
61<li>There are several "pseudo-instructions" that are used to hold
62  variable-length data referred to by regular instructions (for example,
63  <code>fill-array-data</code>). Such instructions must never be
64  encountered during the normal flow of execution. In addition, the
65  instructions must be located on even-numbered bytecode offsets (that is,
66  4-byte aligned). In order to meet this requirement, dex generation tools
67  should emit an extra <code>nop</code> instruction as a spacer if such an
68  instruction would otherwise be unaligned. Finally, though not required,
69  it is expected that most tools will choose to emit these instructions at
70  the ends of methods, since otherwise it would likely be the case that
71  additional instructions would be needed to branch around them.
72</li>
73<li>When installed on a running system, some instructions may be altered,
74  changing their format, as an install-time static linking optimization.
75  This is to allow for faster execution once linkage is known.
76  See the associated
77  <a href="instruction-formats.html">instruction formats document</a>
78  for the suggested variants. The word "suggested" is used advisedly;
79  it is not mandatory to implement these.
80</li>
81<li>Human-syntax and mnemonics:
82  <ul>
83  <li>Dest-then-source ordering for arguments.</li>
84  <li>Some opcodes have a disambiguating suffix with respect to the type(s)
85    they operate on: Type-general 64-bit opcodes
86    are suffixed with <code>-wide</code>.
87    Type-specific opcodes are suffixed with their type (or a
88    straightforward abbreviation), one of: <code>-boolean</code>
89    <code>-byte</code> <code>-char</code> <code>-short</code>
90    <code>-int</code> <code>-long</code> <code>-float</code>
91    <code>-double</code> <code>-object</code> <code>-string</code>
92    <code>-class</code> <code>-void</code>. Type-general 32-bit opcodes
93    are unmarked.
94  </li>
95  <li>Some opcodes have a disambiguating suffix to distinguish
96    otherwise-identical operations that have different instruction layouts
97    or options. These suffixes are separated from the main names with a slash
98    ("<code>/</code>") and mainly exist at all to make there be a one-to-one
99    mapping with static constants in the code that generates and interprets
100    executables (that is, to reduce ambiguity for humans).
101  </li>
102  </ul>
103</li>
104<li>See the <a href="instruction-formats.html">instruction formats
105  document</a> for more details about the various instruction formats
106  (listed under "Op &amp; Format") as well as details about the opcode
107  syntax.
108</li>
109</ul>
110
111<h2>Summary of Instruction Set</h2>
112
113<table class="instruc">
114<thead>
115<tr>
116  <th>Op &amp; Format</th>
117  <th>Mnemonic / Syntax</th>
118  <th>Arguments</th>
119  <th>Description</th>
120</tr>
121</thead>
122<tbody>
123<tr>
124  <td>00 10x</td>
125  <td>nop</td>
126  <td>&nbsp;</td>
127  <td>Waste cycles.</td>
128</tr>
129<tr>
130  <td>01 12x</td>
131  <td>move vA, vB</td>
132  <td><code>A:</code> destination register (4 bits)<br/>
133    <code>B:</code> source register (4 bits)</td>
134  <td>Move the contents of one non-object register to another.</td>
135</tr>
136<tr>
137  <td>02 22x</td>
138  <td>move/from16 vAA, vBBBB</td>
139  <td><code>A:</code> destination register (8 bits)<br/>
140    <code>B:</code> source register (16 bits)</td>
141  <td>Move the contents of one non-object register to another.</td>
142</tr>
143<tr>
144  <td>03 32x</td>
145  <td>move/16 vAAAA, vBBBB</td>
146  <td><code>A:</code> destination register (16 bits)<br/>
147    <code>B:</code> source register (16 bits)</td>
148  <td>Move the contents of one non-object register to another.</td>
149</tr>
150<tr>
151  <td>04 12x</td>
152  <td>move-wide vA, vB</td>
153  <td><code>A:</code> destination register pair (4 bits)<br/>
154    <code>B:</code> source register pair (4 bits)</td>
155  <td>Move the contents of one register-pair to another.
156    <p><b>Note:</b>
157    It is legal to move from <code>v<i>N</i></code> to either
158    <code>v<i>N-1</i></code> or <code>v<i>N+1</i></code>, so implementations
159    must arrange for both halves of a register pair to be read before
160    anything is written.</p>
161  </td>
162</tr>
163<tr>
164  <td>05 22x</td>
165  <td>move-wide/from16 vAA, vBBBB</td>
166  <td><code>A:</code> destination register pair (8 bits)<br/>
167    <code>B:</code> source register pair (16 bits)</td>
168  <td>Move the contents of one register-pair to another.
169    <p><b>Note:</b>
170    Implementation considerations are the same as <code>move-wide</code>,
171    above.</p>
172  </td>
173</tr>
174<tr>
175  <td>06 32x</td>
176  <td>move-wide/16 vAAAA, vBBBB</td>
177  <td><code>A:</code> destination register pair (16 bits)<br/>
178    <code>B:</code> source register pair (16 bits)</td>
179  <td>Move the contents of one register-pair to another.
180    <p><b>Note:</b>
181    Implementation considerations are the same as <code>move-wide</code>,
182    above.</p>
183  </td>
184</tr>
185<tr>
186  <td>07 12x</td>
187  <td>move-object vA, vB</td>
188  <td><code>A:</code> destination register (4 bits)<br/>
189    <code>B:</code> source register (4 bits)</td>
190  <td>Move the contents of one object-bearing register to another.</td>
191</tr>
192<tr>
193  <td>08 22x</td>
194  <td>move-object/from16 vAA, vBBBB</td>
195  <td><code>A:</code> destination register (8 bits)<br/>
196    <code>B:</code> source register (16 bits)</td>
197  <td>Move the contents of one object-bearing register to another.</td>
198</tr>
199<tr>
200  <td>09 32x</td>
201  <td>move-object/16 vAAAA, vBBBB</td>
202  <td><code>A:</code> destination register (16 bits)<br/>
203    <code>B:</code> source register (16 bits)</td>
204  <td>Move the contents of one object-bearing register to another.</td>
205</tr>
206<tr>
207  <td>0a 11x</td>
208  <td>move-result vAA</td>
209  <td><code>A:</code> destination register (8 bits)</td>
210  <td>Move the single-word non-object result of the most recent
211    <code>invoke-<i>kind</i></code> into the indicated register.
212    This must be done as the instruction immediately after an
213    <code>invoke-<i>kind</i></code> whose (single-word, non-object) result
214    is not to be ignored; anywhere else is invalid.</td>
215</tr>
216<tr>
217  <td>0b 11x</td>
218  <td>move-result-wide vAA</td>
219  <td><code>A:</code> destination register pair (8 bits)</td>
220  <td>Move the double-word result of the most recent
221    <code>invoke-<i>kind</i></code> into the indicated register pair.
222    This must be done as the instruction immediately after an
223    <code>invoke-<i>kind</i></code> whose (double-word) result
224    is not to be ignored; anywhere else is invalid.</td>
225</tr>
226<tr>
227  <td>0c 11x</td>
228  <td>move-result-object vAA</td>
229  <td><code>A:</code> destination register (8 bits)</td>
230  <td>Move the object result of the most recent <code>invoke-<i>kind</i></code>
231    into the indicated register. This must be done as the instruction
232    immediately after an <code>invoke-<i>kind</i></code> or
233    <code>filled-new-array</code>
234    whose (object) result is not to be ignored; anywhere else is invalid.</td>
235</tr>
236<tr>
237  <td>0d 11x</td>
238  <td>move-exception vAA</td>
239  <td><code>A:</code> destination register (8 bits)</td>
240  <td>Save a just-caught exception into the given register. This should
241    be the first instruction of any exception handler whose caught
242    exception is not to be ignored, and this instruction must <i>only</i>
243    ever occur as the first instruction of an exception handler; anywhere
244    else is invalid.</td>
245</tr>
246<tr>
247  <td>0e 10x</td>
248  <td>return-void</td>
249  <td>&nbsp;</td>
250  <td>Return from a <code>void</code> method.</td>
251</tr>
252<tr>
253  <td>0f 11x</td>
254  <td>return vAA</td>
255  <td><code>A:</code> return value register (8 bits)</td>
256  <td>Return from a single-width (32-bit) non-object value-returning
257    method.
258  </td>
259</tr>
260<tr>
261  <td>10 11x</td>
262  <td>return-wide vAA</td>
263  <td><code>A:</code> return value register-pair (8 bits)</td>
264  <td>Return from a double-width (64-bit) value-returning method.</td>
265</tr>
266<tr>
267  <td>11 11x</td>
268  <td>return-object vAA</td>
269  <td><code>A:</code> return value register (8 bits)</td>
270  <td>Return from an object-returning method.</td>
271</tr>
272<tr>
273  <td>12 11n</td>
274  <td>const/4 vA, #+B</td>
275  <td><code>A:</code> destination register (4 bits)<br/>
276    <code>B:</code> signed int (4 bits)</td>
277  <td>Move the given literal value (sign-extended to 32 bits) into
278    the specified register.</td>
279</tr>
280<tr>
281  <td>13 21s</td>
282  <td>const/16 vAA, #+BBBB</td>
283  <td><code>A:</code> destination register (8 bits)<br/>
284    <code>B:</code> signed int (16 bits)</td>
285  <td>Move the given literal value (sign-extended to 32 bits) into
286    the specified register.</td>
287</tr>
288<tr>
289  <td>14 31i</td>
290  <td>const vAA, #+BBBBBBBB</td>
291  <td><code>A:</code> destination register (8 bits)<br/>
292    <code>B:</code> arbitrary 32-bit constant</td>
293  <td>Move the given literal value into the specified register.</td>
294</tr>
295<tr>
296  <td>15 21h</td>
297  <td>const/high16 vAA, #+BBBB0000</td>
298  <td><code>A:</code> destination register (8 bits)<br/>
299    <code>B:</code> signed int (16 bits)</td>
300  <td>Move the given literal value (right-zero-extended to 32 bits) into
301    the specified register.</td>
302</tr>
303<tr>
304  <td>16 21s</td>
305  <td>const-wide/16 vAA, #+BBBB</td>
306  <td><code>A:</code> destination register (8 bits)<br/>
307    <code>B:</code> signed int (16 bits)</td>
308  <td>Move the given literal value (sign-extended to 64 bits) into
309    the specified register-pair.</td>
310</tr>
311<tr>
312  <td>17 31i</td>
313  <td>const-wide/32 vAA, #+BBBBBBBB</td>
314  <td><code>A:</code> destination register (8 bits)<br/>
315    <code>B:</code> signed int (32 bits)</td>
316  <td>Move the given literal value (sign-extended to 64 bits) into
317    the specified register-pair.</td>
318</tr>
319<tr>
320  <td>18 51l</td>
321  <td>const-wide vAA, #+BBBBBBBBBBBBBBBB</td>
322  <td><code>A:</code> destination register (8 bits)<br/>
323    <code>B:</code> arbitrary double-width (64-bit) constant</td>
324  <td>Move the given literal value into
325    the specified register-pair.</td>
326</tr>
327<tr>
328  <td>19 21h</td>
329  <td>const-wide/high16 vAA, #+BBBB000000000000</td>
330  <td><code>A:</code> destination register (8 bits)<br/>
331    <code>B:</code> signed int (16 bits)</td>
332  <td>Move the given literal value (right-zero-extended to 64 bits) into
333    the specified register-pair.</td>
334</tr>
335<tr>
336  <td>1a 21c</td>
337  <td>const-string vAA, string@BBBB</td>
338  <td><code>A:</code> destination register (8 bits)<br/>
339    <code>B:</code> string index</td>
340  <td>Move a reference to the string specified by the given index into the
341    specified register.</td>
342</tr>
343<tr>
344  <td>1b 31c</td>
345  <td>const-string/jumbo vAA, string@BBBBBBBB</td>
346  <td><code>A:</code> destination register (8 bits)<br/>
347    <code>B:</code> string index</td>
348  <td>Move a reference to the string specified by the given index into the
349    specified register.</td>
350</tr>
351<tr>
352  <td>1c 21c</td>
353  <td>const-class vAA, type@BBBB</td>
354  <td><code>A:</code> destination register (8 bits)<br/>
355    <code>B:</code> type index</td>
356  <td>Move a reference to the class specified by the given index into the
357    specified register. In the case where the indicated type is primitive,
358    this will store a reference to the primitive type's degenerate
359    class.</td>
360</tr>
361<tr>
362  <td>1d 11x</td>
363  <td>monitor-enter vAA</td>
364  <td><code>A:</code> reference-bearing register (8 bits)</td>
365  <td>Acquire the monitor for the indicated object.</td>
366</tr>
367<tr>
368  <td>1e 11x</td>
369  <td>monitor-exit vAA</td>
370  <td><code>A:</code> reference-bearing register (8 bits)</td>
371  <td>Release the monitor for the indicated object.
372    <p><b>Note:</b>
373    If this instruction needs to throw an exception, it must do
374    so as if the pc has already advanced past the instruction.
375    It may be useful to think of this as the instruction successfully
376    executing (in a sense), and the exception getting thrown <i>after</i>
377    the instruction but <i>before</i> the next one gets a chance to
378    run. This definition makes it possible for a method to use
379    a monitor cleanup catch-all (e.g., <code>finally</code>) block as
380    the monitor cleanup for that block itself, as a way to handle the
381    arbitrary exceptions that might get thrown due to the historical
382    implementation of <code>Thread.stop()</code>, while still managing
383    to have proper monitor hygiene.</p>
384  </td>
385</tr>
386<tr>
387  <td>1f 21c</td>
388  <td>check-cast vAA, type@BBBB</td>
389  <td><code>A:</code> reference-bearing register (8 bits)<br/>
390    <code>B:</code> type index (16 bits)</td>
391  <td>Throw a <code>ClassCastException</code> if the reference in the
392    given register cannot be cast to the indicated type.
393    <p><b>Note:</b> Since <code>A</code> must always be a reference
394    (and not a primitive value), this will necessarily fail at runtime
395    (that is, it will throw an exception) if <code>B</code> refers to a
396    primitive type.</p>
397  </td>
398</tr>
399<tr>
400  <td>20 22c</td>
401  <td>instance-of vA, vB, type@CCCC</td>
402  <td><code>A:</code> destination register (4 bits)<br/>
403    <code>B:</code> reference-bearing register (4 bits)<br/>
404    <code>C:</code> type index (16 bits)</td>
405  <td>Store in the given destination register <code>1</code>
406    if the indicated reference is an instance of the given type,
407    or <code>0</code> if not.
408    <p><b>Note:</b> Since <code>B</code> must always be a reference
409    (and not a primitive value), this will always result
410    in <code>0</code> being stored if <code>C</code> refers to a primitive
411    type.</td>
412</tr>
413<tr>
414  <td>21 12x</td>
415  <td>array-length vA, vB</td>
416  <td><code>A:</code> destination register (4 bits)<br/>
417    <code>B:</code> array reference-bearing register (4 bits)</td>
418  <td>Store in the given destination register the length of the indicated
419    array, in entries</td>
420</tr>
421<tr>
422  <td>22 21c</td>
423  <td>new-instance vAA, type@BBBB</td>
424  <td><code>A:</code> destination register (8 bits)<br/>
425    <code>B:</code> type index</td>
426  <td>Construct a new instance of the indicated type, storing a
427    reference to it in the destination. The type must refer to a
428    non-array class.</td>
429</tr>
430<tr>
431  <td>23 22c</td>
432  <td>new-array vA, vB, type@CCCC</td>
433  <td><code>A:</code> destination register (8 bits)<br/>
434    <code>B:</code> size register<br/>
435    <code>C:</code> type index</td>
436  <td>Construct a new array of the indicated type and size. The type
437    must be an array type.</td>
438</tr>
439<tr>
440  <td>24 35c</td>
441  <td>filled-new-array {vD, vE, vF, vG, vA}, type@CCCC</td>
442  <td><code>B:</code> array size and argument word count (4 bits)<br/>
443    <code>C:</code> type index (16 bits)<br/>
444    <code>D..G, A:</code> argument registers (4 bits each)</td>
445  <td>Construct an array of the given type and size, filling it with the
446    supplied contents. The type must be an array type. The array's
447    contents must be single-word (that is,
448    no arrays of <code>long</code> or <code>double</code>, but reference
449    types are acceptable). The constructed
450    instance is stored as a "result" in the same way that the method invocation
451    instructions store their results, so the constructed instance must
452    be moved to a register with an immediately subsequent
453    <code>move-result-object</code> instruction (if it is to be used).</td>
454</tr>
455<tr>
456  <td>25 3rc</td>
457  <td>filled-new-array/range {vCCCC .. vNNNN}, type@BBBB</td>
458  <td><code>A:</code> array size and argument word count (8 bits)<br/>
459    <code>B:</code> type index (16 bits)<br/>
460    <code>C:</code> first argument register (16 bits)<br/>
461    <code>N = A + C - 1</code></td>
462  <td>Construct an array of the given type and size, filling it with
463    the supplied contents. Clarifications and restrictions are the same
464    as <code>filled-new-array</code>, described above.</td>
465</tr>
466<tr>
467  <td>26 31t</td>
468  <td>fill-array-data vAA, +BBBBBBBB <i>(with supplemental data as specified
469    below in "<code>fill-array-data</code> Format")</i></td>
470  <td><code>A:</code> array reference (8 bits)<br/>
471    <code>B:</code> signed "branch" offset to table data pseudo-instruction
472    (32 bits)
473  </td>
474  <td>Fill the given array with the indicated data. The reference must be
475    to an array of primitives, and the data table must match it in type and
476    must contain no more elements than will fit in the array. That is,
477    the array may be larger than the table, and if so, only the initial
478    elements of the array are set, leaving the remainder alone.
479  </td>
480</tr>
481<tr>
482  <td>27 11x</td>
483  <td>throw vAA</td>
484  <td><code>A:</code> exception-bearing register (8 bits)<br/></td>
485  <td>Throw the indicated exception.</td>
486</tr>
487<tr>
488  <td>28 10t</td>
489  <td>goto +AA</td>
490  <td><code>A:</code> signed branch offset (8 bits)</td>
491  <td>Unconditionally jump to the indicated instruction.
492    <p><b>Note:</b>
493    The branch offset must not be <code>0</code>. (A spin
494    loop may be legally constructed either with <code>goto/32</code> or
495    by including a <code>nop</code> as a target before the branch.)</p>
496  </td>
497</tr>
498<tr>
499  <td>29 20t</td>
500  <td>goto/16 +AAAA</td>
501  <td><code>A:</code> signed branch offset (16 bits)<br/></td>
502  <td>Unconditionally jump to the indicated instruction.
503    <p><b>Note:</b>
504    The branch offset must not be <code>0</code>. (A spin
505    loop may be legally constructed either with <code>goto/32</code> or
506    by including a <code>nop</code> as a target before the branch.)</p>
507  </td>
508</tr>
509<tr>
510  <td>2a 30t</td>
511  <td>goto/32 +AAAAAAAA</td>
512  <td><code>A:</code> signed branch offset (32 bits)<br/></td>
513  <td>Unconditionally jump to the indicated instruction.</td>
514</tr>
515<tr>
516  <td>2b 31t</td>
517  <td>packed-switch vAA, +BBBBBBBB <i>(with supplemental data as
518    specified below in "<code>packed-switch</code> Format")</i></td>
519  <td><code>A:</code> register to test<br/>
520    <code>B:</code> signed "branch" offset to table data pseudo-instruction
521    (32 bits)
522  </td>
523  <td>Jump to a new instruction based on the value in the
524    given register, using a table of offsets corresponding to each value
525    in a particular integral range, or fall through to the next
526    instruction if there is no match.
527  </td>
528</tr>
529<tr>
530  <td>2c 31t</td>
531  <td>sparse-switch vAA, +BBBBBBBB <i>(with supplemental data as
532    specified below in "<code>sparse-switch</code> Format")</i></td>
533  <td><code>A:</code> register to test<br/>
534    <code>B:</code> signed "branch" offset to table data pseudo-instruction
535    (32 bits)
536  </td>
537  <td>Jump to a new instruction based on the value in the given
538    register, using an ordered table of value-offset pairs, or fall
539    through to the next instruction if there is no match.
540  </td>
541</tr>
542<tr>
543  <td>2d..31 23x</td>
544  <td>cmp<i>kind</i> vAA, vBB, vCC<br/>
545    2d: cmpl-float <i>(lt bias)</i><br/>
546    2e: cmpg-float <i>(gt bias)</i><br/>
547    2f: cmpl-double <i>(lt bias)</i><br/>
548    30: cmpg-double <i>(gt bias)</i><br/>
549    31: cmp-long
550  </td>
551  <td><code>A:</code> destination register (8 bits)<br/>
552    <code>B:</code> first source register or pair<br/>
553    <code>C:</code> second source register or pair</td>
554  <td>Perform the indicated floating point or <code>long</code> comparison,
555    storing <code>0</code> if the two arguments are equal, <code>1</code>
556    if the second argument is larger, or <code>-1</code> if the first
557    argument is larger. The "bias" listed for the floating point operations
558    indicates how <code>NaN</code> comparisons are treated: "Gt bias"
559    instructions return <code>1</code> for <code>NaN</code> comparisons,
560    and "lt bias" instructions return
561    <code>-1</code>.
562    <p>For example, to check to see if floating point
563    <code>a &lt; b</code>, then it is advisable to use
564    <code>cmpg-float</code>; a result of <code>-1</code> indicates that
565    the test was true, and the other values indicate it was false either
566    due to a valid comparison or because one or the other values was
567    <code>NaN</code>.</p>
568  </td>
569</tr>
570<tr>
571  <td>32..37 22t</td>
572  <td>if-<i>test</i> vA, vB, +CCCC<br/>
573    32: if-eq<br/>
574    33: if-ne<br/>
575    34: if-lt<br/>
576    35: if-ge<br/>
577    36: if-gt<br/>
578    37: if-le<br/>
579  </td>
580  <td><code>A:</code> first register to test (4 bits)<br/>
581    <code>B:</code> second register to test (4 bits)<br/>
582    <code>C:</code> signed branch offset (16 bits)</td>
583  <td>Branch to the given destination if the given two registers' values
584    compare as specified.
585    <p><b>Note:</b>
586    The branch offset must not be <code>0</code>. (A spin
587    loop may be legally constructed either by branching around a
588    backward <code>goto</code> or by including a <code>nop</code> as
589    a target before the branch.)</p>
590  </td>
591</tr>
592<tr>
593  <td>38..3d 21t</td>
594  <td>if-<i>test</i>z vAA, +BBBB<br/>
595    38: if-eqz<br/>
596    39: if-nez<br/>
597    3a: if-ltz<br/>
598    3b: if-gez<br/>
599    3c: if-gtz<br/>
600    3d: if-lez<br/>
601  </td>
602  <td><code>A:</code> register to test (8 bits)<br/>
603    <code>B:</code> signed branch offset (16 bits)</td>
604  <td>Branch to the given destination if the given register's value compares
605    with 0 as specified.
606    <p><b>Note:</b>
607    The branch offset must not be <code>0</code>. (A spin
608    loop may be legally constructed either by branching around a
609    backward <code>goto</code> or by including a <code>nop</code> as
610    a target before the branch.)</p>
611  </td>
612</tr>
613<tr>
614  <td>3e..43 10x</td>
615  <td><i>(unused)</i></td>
616  <td>&nbsp;</td>
617  <td><i>(unused)</i></td>
618</tr>
619<tr>
620  <td>44..51 23x</td>
621  <td><i>arrayop</i> vAA, vBB, vCC<br/>
622    44: aget<br/>
623    45: aget-wide<br/>
624    46: aget-object<br/>
625    47: aget-boolean<br/>
626    48: aget-byte<br/>
627    49: aget-char<br/>
628    4a: aget-short<br/>
629    4b: aput<br/>
630    4c: aput-wide<br/>
631    4d: aput-object<br/>
632    4e: aput-boolean<br/>
633    4f: aput-byte<br/>
634    50: aput-char<br/>
635    51: aput-short
636  </td>
637  <td><code>A:</code> value register or pair; may be source or dest
638      (8 bits)<br/>
639    <code>B:</code> array register (8 bits)<br/>
640    <code>C:</code> index register (8 bits)</td>
641  <td>Perform the identified array operation at the identified index of
642    the given array, loading or storing into the value register.</td>
643</tr>
644<tr>
645  <td>52..5f 22c</td>
646  <td>i<i>instanceop</i> vA, vB, field@CCCC<br/>
647    52: iget<br/>
648    53: iget-wide<br/>
649    54: iget-object<br/>
650    55: iget-boolean<br/>
651    56: iget-byte<br/>
652    57: iget-char<br/>
653    58: iget-short<br/>
654    59: iput<br/>
655    5a: iput-wide<br/>
656    5b: iput-object<br/>
657    5c: iput-boolean<br/>
658    5d: iput-byte<br/>
659    5e: iput-char<br/>
660    5f: iput-short
661  </td>
662  <td><code>A:</code> value register or pair; may be source or dest
663      (4 bits)<br/>
664    <code>B:</code> object register (4 bits)<br/>
665    <code>C:</code> instance field reference index (16 bits)</td>
666  <td>Perform the identified object instance field operation with
667    the identified field, loading or storing into the value register.
668    <p><b>Note:</b> These opcodes are reasonable candidates for static linking,
669    altering the field argument to be a more direct offset.</p>
670  </td>
671</tr>
672<tr>
673  <td>60..6d 21c</td>
674  <td>s<i>staticop</i> vAA, field@BBBB<br/>
675    60: sget<br/>
676    61: sget-wide<br/>
677    62: sget-object<br/>
678    63: sget-boolean<br/>
679    64: sget-byte<br/>
680    65: sget-char<br/>
681    66: sget-short<br/>
682    67: sput<br/>
683    68: sput-wide<br/>
684    69: sput-object<br/>
685    6a: sput-boolean<br/>
686    6b: sput-byte<br/>
687    6c: sput-char<br/>
688    6d: sput-short
689  </td>
690  <td><code>A:</code> value register or pair; may be source or dest
691      (8 bits)<br/>
692    <code>B:</code> static field reference index (16 bits)</td>
693  <td>Perform the identified object static field operation with the identified
694    static field, loading or storing into the value register.
695    <p><b>Note:</b> These opcodes are reasonable candidates for static linking,
696    altering the field argument to be a more direct offset.</p>
697  </td>
698</tr>
699<tr>
700  <td>6e..72 35c</td>
701  <td>invoke-<i>kind</i> {vD, vE, vF, vG, vA}, meth@CCCC<br/>
702    6e: invoke-virtual<br/>
703    6f: invoke-super<br/>
704    70: invoke-direct<br/>
705    71: invoke-static<br/>
706    72: invoke-interface
707  </td>
708  <td><code>B:</code> argument word count (4 bits)<br/>
709    <code>C:</code> method index (16 bits)<br/>
710    <code>D..G, A:</code> argument registers (4 bits each)</td>
711  <td>Call the indicated method. The result (if any) may be stored
712    with an appropriate <code>move-result*</code> variant as the immediately
713    subsequent instruction.
714    <p><code>invoke-virtual</code> is used to invoke a normal virtual
715    method (a method that is not <code>private</code>, <code>static</code>,
716    or <code>final</code>, and is also not a constructor).</p>
717    <p><code>invoke-super</code> is used to invoke the closest superclass's
718    virtual method (as opposed to the one with the same <code>method_id</code>
719    in the calling class). The same method restrictions hold as for
720    <code>invoke-virtual</code>.</p>
721    <p><code>invoke-direct</code> is used to invoke a non-<code>static</code>
722    direct method (that is, an instance method that is by its nature
723    non-overridable, namely either a <code>private</code> instance method
724    or a constructor).</p>
725    <p><code>invoke-static</code> is used to invoke a <code>static</code>
726    method (which is always considered a direct method).</p>
727    <p><code>invoke-interface</code> is used to invoke an
728    <code>interface</code> method, that is, on an object whose concrete
729    class isn't known, using a <code>method_id</code> that refers to
730    an <code>interface</code>.</p>
731    <p><b>Note:</b> These opcodes are reasonable candidates for static linking,
732    altering the method argument to be a more direct offset
733    (or pair thereof).</p>
734  </td>
735</tr>
736<tr>
737  <td>73 10x</td>
738  <td><i>(unused)</i></td>
739  <td>&nbsp;</td>
740  <td><i>(unused)</i></td>
741</tr>
742<tr>
743  <td>74..78 3rc</td>
744  <td>invoke-<i>kind</i>/range {vCCCC .. vNNNN}, meth@BBBB<br/>
745    74: invoke-virtual/range<br/>
746    75: invoke-super/range<br/>
747    76: invoke-direct/range<br/>
748    77: invoke-static/range<br/>
749    78: invoke-interface/range
750  </td>
751  <td><code>A:</code> argument word count (8 bits)<br/>
752    <code>B:</code> method index (16 bits)<br/>
753    <code>C:</code> first argument register (16 bits)<br/>
754    <code>N = A + C - 1</code></td>
755  <td>Call the indicated method. See first <code>invoke-<i>kind</i></code>
756    description above for details, caveats, and suggestions.
757  </td>
758</tr>
759<tr>
760  <td>79..7a 10x</td>
761  <td><i>(unused)</i></td>
762  <td>&nbsp;</td>
763  <td><i>(unused)</i></td>
764</tr>
765<tr>
766  <td>7b..8f 12x</td>
767  <td><i>unop</i> vA, vB<br/>
768    7b: neg-int<br/>
769    7c: not-int<br/>
770    7d: neg-long<br/>
771    7e: not-long<br/>
772    7f: neg-float<br/>
773    80: neg-double<br/>
774    81: int-to-long<br/>
775    82: int-to-float<br/>
776    83: int-to-double<br/>
777    84: long-to-int<br/>
778    85: long-to-float<br/>
779    86: long-to-double<br/>
780    87: float-to-int<br/>
781    88: float-to-long<br/>
782    89: float-to-double<br/>
783    8a: double-to-int<br/>
784    8b: double-to-long<br/>
785    8c: double-to-float<br/>
786    8d: int-to-byte<br/>
787    8e: int-to-char<br/>
788    8f: int-to-short
789  </td>
790  <td><code>A:</code> destination register or pair (4 bits)<br/>
791    <code>B:</code> source register or pair (4 bits)</td>
792  <td>Perform the identified unary operation on the source register,
793    storing the result in the destination register.</td>
794</tr>
795
796<tr>
797  <td>90..af 23x</td>
798  <td><i>binop</i> vAA, vBB, vCC<br/>
799    90: add-int<br/>
800    91: sub-int<br/>
801    92: mul-int<br/>
802    93: div-int<br/>
803    94: rem-int<br/>
804    95: and-int<br/>
805    96: or-int<br/>
806    97: xor-int<br/>
807    98: shl-int<br/>
808    99: shr-int<br/>
809    9a: ushr-int<br/>
810    9b: add-long<br/>
811    9c: sub-long<br/>
812    9d: mul-long<br/>
813    9e: div-long<br/>
814    9f: rem-long<br/>
815    a0: and-long<br/>
816    a1: or-long<br/>
817    a2: xor-long<br/>
818    a3: shl-long<br/>
819    a4: shr-long<br/>
820    a5: ushr-long<br/>
821    a6: add-float<br/>
822    a7: sub-float<br/>
823    a8: mul-float<br/>
824    a9: div-float<br/>
825    aa: rem-float<br/>
826    ab: add-double<br/>
827    ac: sub-double<br/>
828    ad: mul-double<br/>
829    ae: div-double<br/>
830    af: rem-double
831  </td>
832  <td><code>A:</code> destination register or pair (8 bits)<br/>
833    <code>B:</code> first source register or pair (8 bits)<br/>
834    <code>C:</code> second source register or pair (8 bits)</td>
835  <td>Perform the identified binary operation on the two source registers,
836    storing the result in the first source register.</td>
837</tr>
838<tr>
839  <td>b0..cf 12x</td>
840  <td><i>binop</i>/2addr vA, vB<br/>
841    b0: add-int/2addr<br/>
842    b1: sub-int/2addr<br/>
843    b2: mul-int/2addr<br/>
844    b3: div-int/2addr<br/>
845    b4: rem-int/2addr<br/>
846    b5: and-int/2addr<br/>
847    b6: or-int/2addr<br/>
848    b7: xor-int/2addr<br/>
849    b8: shl-int/2addr<br/>
850    b9: shr-int/2addr<br/>
851    ba: ushr-int/2addr<br/>
852    bb: add-long/2addr<br/>
853    bc: sub-long/2addr<br/>
854    bd: mul-long/2addr<br/>
855    be: div-long/2addr<br/>
856    bf: rem-long/2addr<br/>
857    c0: and-long/2addr<br/>
858    c1: or-long/2addr<br/>
859    c2: xor-long/2addr<br/>
860    c3: shl-long/2addr<br/>
861    c4: shr-long/2addr<br/>
862    c5: ushr-long/2addr<br/>
863    c6: add-float/2addr<br/>
864    c7: sub-float/2addr<br/>
865    c8: mul-float/2addr<br/>
866    c9: div-float/2addr<br/>
867    ca: rem-float/2addr<br/>
868    cb: add-double/2addr<br/>
869    cc: sub-double/2addr<br/>
870    cd: mul-double/2addr<br/>
871    ce: div-double/2addr<br/>
872    cf: rem-double/2addr
873  </td>
874  <td><code>A:</code> destination and first source register or pair
875      (4 bits)<br/>
876    <code>B:</code> second source register or pair (4 bits)</td>
877  <td>Perform the identified binary operation on the two source registers,
878    storing the result in the first source register.</td>
879</tr>
880<tr>
881  <td>d0..d7 22s</td>
882  <td><i>binop</i>/lit16 vA, vB, #+CCCC<br/>
883    d0: add-int/lit16<br/>
884    d1: rsub-int (reverse subtract)<br/>
885    d2: mul-int/lit16<br/>
886    d3: div-int/lit16<br/>
887    d4: rem-int/lit16<br/>
888    d5: and-int/lit16<br/>
889    d6: or-int/lit16<br/>
890    d7: xor-int/lit16
891  </td>
892  <td><code>A:</code> destination register (4 bits)<br/>
893    <code>B:</code> source register (4 bits)<br/>
894    <code>C:</code> signed int constant (16 bits)</td>
895  <td>Perform the indicated binary op on the indicated register (first
896    argument) and literal value (second argument), storing the result in
897    the destination register.
898    <p><b>Note:</b>
899    <code>rsub-int</code> does not have a suffix since this version is the
900    main opcode of its family. Also, see below for details on its semantics.
901    </p>
902  </td>
903</tr>
904<tr>
905  <td>d8..e2 22b</td>
906  <td><i>binop</i>/lit8 vAA, vBB, #+CC<br/>
907    d8: add-int/lit8<br/>
908    d9: rsub-int/lit8<br/>
909    da: mul-int/lit8<br/>
910    db: div-int/lit8<br/>
911    dc: rem-int/lit8<br/>
912    dd: and-int/lit8<br/>
913    de: or-int/lit8<br/>
914    df: xor-int/lit8<br/>
915    e0: shl-int/lit8<br/>
916    e1: shr-int/lit8<br/>
917    e2: ushr-int/lit8
918  </td>
919  <td><code>A:</code> destination register (8 bits)<br/>
920    <code>B:</code> source register (8 bits)<br/>
921    <code>C:</code> signed int constant (8 bits)</td>
922  <td>Perform the indicated binary op on the indicated register (first
923    argument) and literal value (second argument), storing the result
924    in the destination register.
925    <p><b>Note:</b> See below for details on the semantics of
926    <code>rsub-int</code>.</p>
927  </td>
928</tr>
929<tr>
930  <td>e3..ff 10x</td>
931  <td><i>(unused)</i></td>
932  <td>&nbsp;</td>
933  <td><i>(unused)</i></td>
934</tr>
935</tbody>
936</table>
937
938<h2><code>packed-switch</code> Format</h2>
939
940<table class="supplement">
941<thead>
942<tr>
943  <th>Name</th>
944  <th>Format</th>
945  <th>Description</th>
946</tr>
947</thead>
948<tbody>
949<tr>
950  <td>ident</td>
951  <td>ushort = 0x0100</td>
952  <td>identifying pseudo-opcode</td>
953</tr>
954<tr>
955  <td>size</td>
956  <td>ushort</td>
957  <td>number of entries in the table</td>
958</tr>
959<tr>
960  <td>first_key</td>
961  <td>int</td>
962  <td>first (and lowest) switch case value</td>
963</tr>
964<tr>
965  <td>targets</td>
966  <td>int[]</td>
967  <td>list of <code>size</code> relative branch targets. The targets are
968    relative to the address of the switch opcode, not of this table.
969  </td>
970</tr>
971</tbody>
972</table>
973
974<p><b>Note:</b> The total number of code units for an instance of this
975table is <code>(size * 2) + 4</code>.</p>
976
977<h2><code>sparse-switch</code> Format</h2>
978
979<table class="supplement">
980<thead>
981<tr>
982  <th>Name</th>
983  <th>Format</th>
984  <th>Description</th>
985</tr>
986</thead>
987<tbody>
988<tr>
989  <td>ident</td>
990  <td>ushort = 0x0200</td>
991  <td>identifying pseudo-opcode</td>
992</tr>
993<tr>
994  <td>size</td>
995  <td>ushort</td>
996  <td>number of entries in the table</td>
997</tr>
998<tr>
999  <td>keys</td>
1000  <td>int[]</td>
1001  <td>list of <code>size</code> key values, sorted low-to-high</td>
1002</tr>
1003<tr>
1004  <td>targets</td>
1005  <td>int[]</td>
1006  <td>list of <code>size</code> relative branch targets, each corresponding
1007    to the key value at the same index. The targets are
1008    relative to the address of the switch opcode, not of this table.
1009  </td>
1010</tr>
1011</tbody>
1012</table>
1013
1014<p><b>Note:</b> The total number of code units for an instance of this
1015table is <code>(size * 4) + 2</code>.</p>
1016
1017<h2><code>fill-array-data</code> Format</h2>
1018
1019<table class="supplement">
1020<thead>
1021<tr>
1022  <th>Name</th>
1023  <th>Format</th>
1024  <th>Description</th>
1025</tr>
1026</thead>
1027<tbody>
1028<tr>
1029  <td>ident</td>
1030  <td>ushort = 0x0300</td>
1031  <td>identifying pseudo-opcode</td>
1032</tr>
1033<tr>
1034  <td>element_width</td>
1035  <td>ushort</td>
1036  <td>number of bytes in each element</td>
1037</tr>
1038<tr>
1039  <td>size</td>
1040  <td>uint</td>
1041  <td>number of elements in the table</td>
1042</tr>
1043<tr>
1044  <td>data</td>
1045  <td>ubyte[]</td>
1046  <td>data values</td>
1047</tr>
1048</tbody>
1049</table>
1050
1051<p><b>Note:</b> The total number of code units for an instance of this
1052table is <code>(size * element_width + 1) / 2 + 4</code>.</p>
1053
1054
1055<h2>Mathematical Operation Details</h2>
1056
1057<p><b>Note:</b> Floating point operations must follow IEEE 754 rules, using
1058round-to-nearest and gradual underflow, except where stated otherwise.</p>
1059
1060<table class="math">
1061<thead>
1062<tr>
1063  <th>Opcode</th>
1064  <th>C Semantics</th>
1065  <th>Notes</th>
1066</tr>
1067</thead>
1068<tbody>
1069<tr>
1070  <td>neg-int</td>
1071  <td>int32 a;<br/>
1072    int32 result = -a;
1073  </td>
1074  <td>Unary twos-complement.</td>
1075</tr>
1076<tr>
1077  <td>not-int</td>
1078  <td>int32 a;<br/>
1079    int32 result = ~a;
1080  </td>
1081  <td>Unary ones-complement.</td>
1082</tr>
1083<tr>
1084  <td>neg-long</td>
1085  <td>int64 a;<br/>
1086    int64 result = -a;
1087  </td>
1088  <td>Unary twos-complement.</td>
1089</tr>
1090<tr>
1091  <td>not-long</td>
1092  <td>int64 a;<br/>
1093    int64 result = ~a;
1094  </td>
1095  <td>Unary ones-complement.</td>
1096</tr>
1097<tr>
1098  <td>neg-float</td>
1099  <td>float a;<br/>
1100    float result = -a;
1101  </td>
1102  <td>Floating point negation.</td>
1103</tr>
1104<tr>
1105  <td>neg-double</td>
1106  <td>double a;<br/>
1107    double result = -a;
1108  </td>
1109  <td>Floating point negation.</td>
1110</tr>
1111<tr>
1112  <td>int-to-long</td>
1113  <td>int32 a;<br/>
1114    int64 result = (int64) a;
1115  </td>
1116  <td>Sign extension of <code>int32</code> into <code>int64</code>.</td>
1117</tr>
1118<tr>
1119  <td>int-to-float</td>
1120  <td>int32 a;<br/>
1121    float result = (float) a;
1122  </td>
1123  <td>Conversion of <code>int32</code> to <code>float</code>, using
1124    round-to-nearest. This loses precision for some values.
1125  </td>
1126</tr>
1127<tr>
1128  <td>int-to-double</td>
1129  <td>int32 a;<br/>
1130    double result = (double) a;
1131  </td>
1132  <td>Conversion of <code>int32</code> to <code>double</code>.</td>
1133</tr>
1134<tr>
1135  <td>long-to-int</td>
1136  <td>int64 a;<br/>
1137    int32 result = (int32) a;
1138  </td>
1139  <td>Truncation of <code>int64</code> into <code>int32</code>.</td>
1140</tr>
1141<tr>
1142  <td>long-to-float</td>
1143  <td>int64 a;<br/>
1144    float result = (float) a;
1145  </td>
1146  <td>Conversion of <code>int64</code> to <code>float</code>, using
1147    round-to-nearest. This loses precision for some values.
1148  </td>
1149</tr>
1150<tr>
1151  <td>long-to-double</td>
1152  <td>int64 a;<br/>
1153    double result = (double) a;
1154  </td>
1155  <td>Conversion of <code>int64</code> to <code>double</code>, using
1156    round-to-nearest. This loses precision for some values.
1157  </td>
1158</tr>
1159<tr>
1160  <td>float-to-int</td>
1161  <td>float a;<br/>
1162    int32 result = (int32) a;
1163  </td>
1164  <td>Conversion of <code>float</code> to <code>int32</code>, using
1165    round-toward-zero. <code>NaN</code> and <code>-0.0</code> (negative zero)
1166    convert to the integer <code>0</code>. Infinities and values with
1167    too large a magnitude to be represented get converted to either
1168    <code>0x7fffffff</code> or <code>-0x80000000</code> depending on sign.
1169  </td>
1170</tr>
1171<tr>
1172  <td>float-to-long</td>
1173  <td>float a;<br/>
1174    int64 result = (int64) a;
1175  </td>
1176  <td>Conversion of <code>float</code> to <code>int64</code>, using
1177    round-toward-zero. The same special case rules as for
1178    <code>float-to-int</code> apply here, except that out-of-range values
1179    get converted to either <code>0x7fffffffffffffff</code> or
1180    <code>-0x8000000000000000</code> depending on sign.
1181  </td>
1182</tr>
1183<tr>
1184  <td>float-to-double</td>
1185  <td>float a;<br/>
1186    double result = (double) a;
1187  </td>
1188  <td>Conversion of <code>float</code> to <code>double</code>, preserving
1189    the value exactly.
1190  </td>
1191</tr>
1192<tr>
1193  <td>double-to-int</td>
1194  <td>double a;<br/>
1195    int32 result = (int32) a;
1196  </td>
1197  <td>Conversion of <code>double</code> to <code>int32</code>, using
1198    round-toward-zero. The same special case rules as for
1199    <code>float-to-int</code> apply here.
1200  </td>
1201</tr>
1202<tr>
1203  <td>double-to-long</td>
1204  <td>double a;<br/>
1205    int64 result = (int64) a;
1206  </td>
1207  <td>Conversion of <code>double</code> to <code>int64</code>, using
1208    round-toward-zero. The same special case rules as for
1209    <code>float-to-long</code> apply here.
1210  </td>
1211</tr>
1212<tr>
1213  <td>double-to-float</td>
1214  <td>double a;<br/>
1215    float result = (float) a;
1216  </td>
1217  <td>Conversion of <code>double</code> to <code>float</code>, using
1218    round-to-nearest. This loses precision for some values.
1219  </td>
1220</tr>
1221<tr>
1222  <td>int-to-byte</td>
1223  <td>int32 a;<br/>
1224    int32 result = (a &lt;&lt; 24) &gt;&gt; 24;
1225  </td>
1226  <td>Truncation of <code>int32</code> to <code>int8</code>, sign
1227    extending the result.
1228  </td>
1229</tr>
1230<tr>
1231  <td>int-to-char</td>
1232  <td>int32 a;<br/>
1233    int32 result = a &amp; 0xffff;
1234  </td>
1235  <td>Truncation of <code>int32</code> to <code>uint16</code>, without
1236    sign extension.
1237  </td>
1238</tr>
1239<tr>
1240  <td>int-to-short</td>
1241  <td>int32 a;<br/>
1242    int32 result = (a &lt;&lt; 16) &gt;&gt; 16;
1243  </td>
1244  <td>Truncation of <code>int32</code> to <code>int16</code>, sign
1245    extending the result.
1246  </td>
1247</tr>
1248<tr>
1249  <td>add-int</td>
1250  <td>int32 a, b;<br/>
1251    int32 result = a + b;
1252  </td>
1253  <td>Twos-complement addition.</td>
1254</tr>
1255<tr>
1256  <td>sub-int</td>
1257  <td>int32 a, b;<br/>
1258    int32 result = a - b;
1259  </td>
1260  <td>Twos-complement subtraction.</td>
1261</tr>
1262<tr>
1263  <td>rsub-int</td>
1264  <td>int32 a, b;<br/>
1265    int32 result = b - a;
1266  </td>
1267  <td>Twos-complement reverse subtraction.</td>
1268</tr>
1269<tr>
1270  <td>mul-int</td>
1271  <td>int32 a, b;<br/>
1272    int32 result = a * b;
1273  </td>
1274  <td>Twos-complement multiplication.</td>
1275</tr>
1276<tr>
1277  <td>div-int</td>
1278  <td>int32 a, b;<br/>
1279    int32 result = a / b;
1280  </td>
1281  <td>Twos-complement division, rounded towards zero (that is, truncated to
1282    integer). This throws <code>ArithmeticException</code> if
1283    <code>b == 0</code>.
1284  </td>
1285</tr>
1286<tr>
1287  <td>rem-int</td>
1288  <td>int32 a, b;<br/>
1289    int32 result = a % b;
1290  </td>
1291  <td>Twos-complement remainder after division. The sign of the result
1292    is the same as that of <code>a</code>, and it is more precisely
1293    defined as <code>result == a - (a / b) * b</code>. This throws
1294    <code>ArithmeticException</code> if <code>b == 0</code>.
1295  </td>
1296</tr>
1297<tr>
1298  <td>and-int</td>
1299  <td>int32 a, b;<br/>
1300    int32 result = a &amp; b;
1301  </td>
1302  <td>Bitwise AND.</td>
1303</tr>
1304<tr>
1305  <td>or-int</td>
1306  <td>int32 a, b;<br/>
1307    int32 result = a | b;
1308  </td>
1309  <td>Bitwise OR.</td>
1310</tr>
1311<tr>
1312  <td>xor-int</td>
1313  <td>int32 a, b;<br/>
1314    int32 result = a ^ b;
1315  </td>
1316  <td>Bitwise XOR.</td>
1317</tr>
1318<tr>
1319  <td>shl-int</td>
1320  <td>int32 a, b;<br/>
1321    int32 result = a &lt;&lt; (b &amp; 0x1f);
1322  </td>
1323  <td>Bitwise shift left (with masked argument).</td>
1324</tr>
1325<tr>
1326  <td>shr-int</td>
1327  <td>int32 a, b;<br/>
1328    int32 result = a &gt;&gt; (b &amp; 0x1f);
1329  </td>
1330  <td>Bitwise signed shift right (with masked argument).</td>
1331</tr>
1332<tr>
1333  <td>ushr-int</td>
1334  <td>uint32 a, b;<br/>
1335    int32 result = a &gt;&gt; (b &amp; 0x1f);
1336  </td>
1337  <td>Bitwise unsigned shift right (with masked argument).</td>
1338</tr>
1339<tr>
1340  <td>add-long</td>
1341  <td>int64 a, b;<br/>
1342    int64 result = a + b;
1343  </td>
1344  <td>Twos-complement addition.</td>
1345</tr>
1346<tr>
1347  <td>sub-long</td>
1348  <td>int64 a, b;<br/>
1349    int64 result = a - b;
1350  </td>
1351  <td>Twos-complement subtraction.</td>
1352</tr>
1353<tr>
1354  <td>mul-long</td>
1355  <td>int64 a, b;<br/>
1356    int64 result = a * b;
1357  </td>
1358  <td>Twos-complement multiplication.</td>
1359</tr>
1360<tr>
1361  <td>div-long</td>
1362  <td>int64 a, b;<br/>
1363    int64 result = a / b;
1364  </td>
1365  <td>Twos-complement division, rounded towards zero (that is, truncated to
1366    integer). This throws <code>ArithmeticException</code> if
1367    <code>b == 0</code>.
1368  </td>
1369</tr>
1370<tr>
1371  <td>rem-long</td>
1372  <td>int64 a, b;<br/>
1373    int64 result = a % b;
1374  </td>
1375  <td>Twos-complement remainder after division. The sign of the result
1376    is the same as that of <code>a</code>, and it is more precisely
1377    defined as <code>result == a - (a / b) * b</code>. This throws
1378    <code>ArithmeticException</code> if <code>b == 0</code>.
1379  </td>
1380</tr>
1381<tr>
1382  <td>and-long</td>
1383  <td>int64 a, b;<br/>
1384    int64 result = a &amp; b;
1385  </td>
1386  <td>Bitwise AND.</td>
1387</tr>
1388<tr>
1389  <td>or-long</td>
1390  <td>int64 a, b;<br/>
1391    int64 result = a | b;
1392  </td>
1393  <td>Bitwise OR.</td>
1394</tr>
1395<tr>
1396  <td>xor-long</td>
1397  <td>int64 a, b;<br/>
1398    int64 result = a ^ b;
1399  </td>
1400  <td>Bitwise XOR.</td>
1401</tr>
1402<tr>
1403  <td>shl-long</td>
1404  <td>int64 a, b;<br/>
1405    int64 result = a &lt;&lt; (b &amp; 0x3f);
1406  </td>
1407  <td>Bitwise shift left (with masked argument).</td>
1408</tr>
1409<tr>
1410  <td>shr-long</td>
1411  <td>int64 a, b;<br/>
1412    int64 result = a &gt;&gt; (b &amp; 0x3f);
1413  </td>
1414  <td>Bitwise signed shift right (with masked argument).</td>
1415</tr>
1416<tr>
1417  <td>ushr-long</td>
1418  <td>uint64 a, b;<br/>
1419    int64 result = a &gt;&gt; (b &amp; 0x3f);
1420  </td>
1421  <td>Bitwise unsigned shift right (with masked argument).</td>
1422</tr>
1423<tr>
1424  <td>add-float</td>
1425  <td>float a, b;<br/>
1426    float result = a + b;
1427  </td>
1428  <td>Floating point addition.</td>
1429</tr>
1430<tr>
1431  <td>sub-float</td>
1432  <td>float a, b;<br/>
1433    float result = a - b;
1434  </td>
1435  <td>Floating point subtraction.</td>
1436</tr>
1437<tr>
1438  <td>mul-float</td>
1439  <td>float a, b;<br/>
1440    float result = a * b;
1441  </td>
1442  <td>Floating point multiplication.</td>
1443</tr>
1444<tr>
1445  <td>div-float</td>
1446  <td>float a, b;<br/>
1447    float result = a / b;
1448  </td>
1449  <td>Floating point division.</td>
1450</tr>
1451<tr>
1452  <td>rem-float</td>
1453  <td>float a, b;<br/>
1454    float result = a % b;
1455  </td>
1456  <td>Floating point remainder after division. This function is different
1457    than IEEE 754 remainder and is defined as
1458    <code>result == a - roundTowardZero(a / b) * b</code>.
1459  </td>
1460</tr>
1461<tr>
1462  <td>add-double</td>
1463  <td>double a, b;<br/>
1464    double result = a + b;
1465  </td>
1466  <td>Floating point addition.</td>
1467</tr>
1468<tr>
1469  <td>sub-double</td>
1470  <td>double a, b;<br/>
1471    double result = a - b;
1472  </td>
1473  <td>Floating point subtraction.</td>
1474</tr>
1475<tr>
1476  <td>mul-double</td>
1477  <td>double a, b;<br/>
1478    double result = a * b;
1479  </td>
1480  <td>Floating point multiplication.</td>
1481</tr>
1482<tr>
1483  <td>div-double</td>
1484  <td>double a, b;<br/>
1485    double result = a / b;
1486  </td>
1487  <td>Floating point division.</td>
1488</tr>
1489<tr>
1490  <td>rem-double</td>
1491  <td>double a, b;<br/>
1492    double result = a % b;
1493  </td>
1494  <td>Floating point remainder after division. This function is different
1495    than IEEE 754 remainder and is defined as
1496    <code>result == a - roundTowardZero(a / b) * b</code>.
1497  </td>
1498</tr>
1499</tbody>
1500</table>
1501
1502</body>
1503</html>
1504