1 // shortest-distance.h
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // Author: allauzen@cs.nyu.edu (Cyril Allauzen)
16 //
17 // \file
18 // Functions and classes to find shortest distance in an FST.
19
20 #ifndef FST_LIB_SHORTEST_DISTANCE_H__
21 #define FST_LIB_SHORTEST_DISTANCE_H__
22
23 #include <deque>
24
25 #include "fst/lib/arcfilter.h"
26 #include "fst/lib/cache.h"
27 #include "fst/lib/queue.h"
28 #include "fst/lib/reverse.h"
29 #include "fst/lib/test-properties.h"
30
31 namespace fst {
32
33 template <class Arc, class Queue, class ArcFilter>
34 struct ShortestDistanceOptions {
35 typedef typename Arc::StateId StateId;
36
37 Queue *state_queue; // Queue discipline used; owned by caller
38 ArcFilter arc_filter; // Arc filter (e.g., limit to only epsilon graph)
39 StateId source; // If kNoStateId, use the Fst's initial state
40 float delta; // Determines the degree of convergence required
41
42 ShortestDistanceOptions(Queue *q, ArcFilter filt, StateId src = kNoStateId,
43 float d = kDelta)
state_queueShortestDistanceOptions44 : state_queue(q), arc_filter(filt), source(src), delta(d) {}
45 };
46
47
48 // Computation state of the shortest-distance algorithm. Reusable
49 // information is maintained across calls to member function
50 // ShortestDistance(source) when 'retain' is true for improved
51 // efficiency when calling multiple times from different source states
52 // (e.g., in epsilon removal). Vector 'distance' should not be
53 // modified by the user between these calls.
54 template<class Arc, class Queue, class ArcFilter>
55 class ShortestDistanceState {
56 public:
57 typedef typename Arc::StateId StateId;
58 typedef typename Arc::Weight Weight;
59
ShortestDistanceState(const Fst<Arc> & fst,vector<Weight> * distance,const ShortestDistanceOptions<Arc,Queue,ArcFilter> & opts,bool retain)60 ShortestDistanceState(
61 const Fst<Arc> &fst,
62 vector<Weight> *distance,
63 const ShortestDistanceOptions<Arc, Queue, ArcFilter> &opts,
64 bool retain)
65 : fst_(fst.Copy()), distance_(distance), state_queue_(opts.state_queue),
66 arc_filter_(opts.arc_filter),
67 delta_(opts.delta), retain_(retain) {
68 distance_->clear();
69 }
70
~ShortestDistanceState()71 ~ShortestDistanceState() {
72 delete fst_;
73 }
74
75 void ShortestDistance(StateId source);
76
77 private:
78 const Fst<Arc> *fst_;
79 vector<Weight> *distance_;
80 Queue *state_queue_;
81 ArcFilter arc_filter_;
82 float delta_;
83 bool retain_; // Retain and reuse information across calls
84
85 vector<Weight> rdistance_; // Relaxation distance.
86 vector<bool> enqueued_; // Is state enqueued?
87 vector<StateId> sources_; // Source state for ith state in 'distance_',
88 // 'rdistance_', and 'enqueued_' if retained.
89 };
90
91 // Compute the shortest distance. If 'source' is kNoStateId, use
92 // the initial state of the Fst.
93 template <class Arc, class Queue, class ArcFilter>
ShortestDistance(StateId source)94 void ShortestDistanceState<Arc, Queue, ArcFilter>::ShortestDistance(
95 StateId source) {
96 if (fst_->Start() == kNoStateId)
97 return;
98
99 if (!(Weight::Properties() & kRightSemiring))
100 LOG(FATAL) << "ShortestDistance: Weight needs to be right distributive: "
101 << Weight::Type();
102
103 state_queue_->Clear();
104
105 if (!retain_) {
106 distance_->clear();
107 rdistance_.clear();
108 enqueued_.clear();
109 }
110
111 if (source == kNoStateId)
112 source = fst_->Start();
113
114 while ((StateId)distance_->size() <= source) {
115 distance_->push_back(Weight::Zero());
116 rdistance_.push_back(Weight::Zero());
117 enqueued_.push_back(false);
118 }
119 if (retain_) {
120 while ((StateId)sources_.size() <= source)
121 sources_.push_back(kNoStateId);
122 sources_[source] = source;
123 }
124 (*distance_)[source] = Weight::One();
125 rdistance_[source] = Weight::One();
126 enqueued_[source] = true;
127
128 state_queue_->Enqueue(source);
129
130 while (!state_queue_->Empty()) {
131 StateId s = state_queue_->Head();
132 state_queue_->Dequeue();
133 while ((StateId)distance_->size() <= s) {
134 distance_->push_back(Weight::Zero());
135 rdistance_.push_back(Weight::Zero());
136 enqueued_.push_back(false);
137 }
138 enqueued_[s] = false;
139 Weight r = rdistance_[s];
140 rdistance_[s] = Weight::Zero();
141 for (ArcIterator< Fst<Arc> > aiter(*fst_, s);
142 !aiter.Done();
143 aiter.Next()) {
144 const Arc &arc = aiter.Value();
145 if (!arc_filter_(arc) || arc.weight == Weight::Zero())
146 continue;
147 while ((StateId)distance_->size() <= arc.nextstate) {
148 distance_->push_back(Weight::Zero());
149 rdistance_.push_back(Weight::Zero());
150 enqueued_.push_back(false);
151 }
152 if (retain_) {
153 while ((StateId)sources_.size() <= arc.nextstate)
154 sources_.push_back(kNoStateId);
155 if (sources_[arc.nextstate] != source) {
156 (*distance_)[arc.nextstate] = Weight::Zero();
157 rdistance_[arc.nextstate] = Weight::Zero();
158 enqueued_[arc.nextstate] = false;
159 sources_[arc.nextstate] = source;
160 }
161 }
162 Weight &nd = (*distance_)[arc.nextstate];
163 Weight &nr = rdistance_[arc.nextstate];
164 Weight w = Times(r, arc.weight);
165 if (!ApproxEqual(nd, Plus(nd, w), delta_)) {
166 nd = Plus(nd, w);
167 nr = Plus(nr, w);
168 if (!enqueued_[arc.nextstate]) {
169 state_queue_->Enqueue(arc.nextstate);
170 enqueued_[arc.nextstate] = true;
171 } else {
172 state_queue_->Update(arc.nextstate);
173 }
174 }
175 }
176 }
177 }
178
179
180 // Shortest-distance algorithm: this version allows fine control
181 // via the options argument. See below for a simpler interface.
182 //
183 // This computes the shortest distance from the 'opts.source' state to
184 // each visited state S and stores the value in the 'distance' vector.
185 // An unvisited state S has distance Zero(), which will be stored in
186 // the 'distance' vector if S is less than the maximum visited state.
187 // The state queue discipline, arc filter, and convergence delta are
188 // taken in the options argument.
189
190 // The weights must must be right distributive and k-closed (i.e., 1 +
191 // x + x^2 + ... + x^(k +1) = 1 + x + x^2 + ... + x^k).
192 //
193 // The algorithm is from Mohri, "Semiring Framweork and Algorithms for
194 // Shortest-Distance Problems", Journal of Automata, Languages and
195 // Combinatorics 7(3):321-350, 2002. The complexity of algorithm
196 // depends on the properties of the semiring and the queue discipline
197 // used. Refer to the paper for more details.
198 template<class Arc, class Queue, class ArcFilter>
ShortestDistance(const Fst<Arc> & fst,vector<typename Arc::Weight> * distance,const ShortestDistanceOptions<Arc,Queue,ArcFilter> & opts)199 void ShortestDistance(
200 const Fst<Arc> &fst,
201 vector<typename Arc::Weight> *distance,
202 const ShortestDistanceOptions<Arc, Queue, ArcFilter> &opts) {
203
204 ShortestDistanceState<Arc, Queue, ArcFilter>
205 sd_state(fst, distance, opts, false);
206 sd_state.ShortestDistance(opts.source);
207 }
208
209 // Shortest-distance algorithm: simplified interface. See above for a
210 // version that allows finer control.
211 //
212 // If 'reverse' is false, this computes the shortest distance from the
213 // initial state to each state S and stores the value in the
214 // 'distance' vector. If 'reverse' is true, this computes the shortest
215 // distance from each state to the final states. An unvisited state S
216 // has distance Zero(), which will be stored in the 'distance' vector
217 // if S is less than the maximum visited state. The state queue
218 // discipline is automatically-selected.
219 //
220 // The weights must must be right (left) distributive if reverse is
221 // false (true) and k-closed (i.e., 1 + x + x^2 + ... + x^(k +1) = 1 +
222 // x + x^2 + ... + x^k).
223 //
224 // The algorithm is from Mohri, "Semiring Framweork and Algorithms for
225 // Shortest-Distance Problems", Journal of Automata, Languages and
226 // Combinatorics 7(3):321-350, 2002. The complexity of algorithm
227 // depends on the properties of the semiring and the queue discipline
228 // used. Refer to the paper for more details.
229 template<class Arc>
230 void ShortestDistance(const Fst<Arc> &fst,
231 vector<typename Arc::Weight> *distance,
232 bool reverse = false) {
233 typedef typename Arc::StateId StateId;
234 typedef typename Arc::Weight Weight;
235
236 if (!reverse) {
237 AnyArcFilter<Arc> arc_filter;
238 AutoQueue<StateId> state_queue(fst, distance, arc_filter);
239 ShortestDistanceOptions< Arc, AutoQueue<StateId>, AnyArcFilter<Arc> >
240 opts(&state_queue, arc_filter);
241 ShortestDistance(fst, distance, opts);
242 } else {
243 typedef ReverseArc<Arc> ReverseArc;
244 typedef typename ReverseArc::Weight ReverseWeight;
245 AnyArcFilter<ReverseArc> rarc_filter;
246 VectorFst<ReverseArc> rfst;
247 Reverse(fst, &rfst);
248 vector<ReverseWeight> rdistance;
249 AutoQueue<StateId> state_queue(rfst, &rdistance, rarc_filter);
250 ShortestDistanceOptions< ReverseArc, AutoQueue<StateId>,
251 AnyArcFilter<ReverseArc> >
252 ropts(&state_queue, rarc_filter);
253 ShortestDistance(rfst, &rdistance, ropts);
254 distance->clear();
255 while (distance->size() < rdistance.size() - 1)
256 distance->push_back(rdistance[distance->size() + 1].Reverse());
257 }
258 }
259
260 } // namespace fst
261
262 #endif // FST_LIB_SHORTEST_DISTANCE_H__
263