• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef __LINUX_CPUMASK_H
2 #define __LINUX_CPUMASK_H
3 
4 /*
5  * Cpumasks provide a bitmap suitable for representing the
6  * set of CPU's in a system, one bit position per CPU number.
7  *
8  * See detailed comments in the file linux/bitmap.h describing the
9  * data type on which these cpumasks are based.
10  *
11  * For details of cpumask_scnprintf() and cpumask_parse(),
12  * see bitmap_scnprintf() and bitmap_parse() in lib/bitmap.c.
13  * For details of cpulist_scnprintf() and cpulist_parse(), see
14  * bitmap_scnlistprintf() and bitmap_parselist(), also in bitmap.c.
15  * For details of cpu_remap(), see bitmap_bitremap in lib/bitmap.c
16  * For details of cpus_remap(), see bitmap_remap in lib/bitmap.c.
17  *
18  * The available cpumask operations are:
19  *
20  * void cpu_set(cpu, mask)		turn on bit 'cpu' in mask
21  * void cpu_clear(cpu, mask)		turn off bit 'cpu' in mask
22  * void cpus_setall(mask)		set all bits
23  * void cpus_clear(mask)		clear all bits
24  * int cpu_isset(cpu, mask)		true iff bit 'cpu' set in mask
25  * int cpu_test_and_set(cpu, mask)	test and set bit 'cpu' in mask
26  *
27  * void cpus_and(dst, src1, src2)	dst = src1 & src2  [intersection]
28  * void cpus_or(dst, src1, src2)	dst = src1 | src2  [union]
29  * void cpus_xor(dst, src1, src2)	dst = src1 ^ src2
30  * void cpus_andnot(dst, src1, src2)	dst = src1 & ~src2
31  * void cpus_complement(dst, src)	dst = ~src
32  *
33  * int cpus_equal(mask1, mask2)		Does mask1 == mask2?
34  * int cpus_intersects(mask1, mask2)	Do mask1 and mask2 intersect?
35  * int cpus_subset(mask1, mask2)	Is mask1 a subset of mask2?
36  * int cpus_empty(mask)			Is mask empty (no bits sets)?
37  * int cpus_full(mask)			Is mask full (all bits sets)?
38  * int cpus_weight(mask)		Hamming weigh - number of set bits
39  *
40  * void cpus_shift_right(dst, src, n)	Shift right
41  * void cpus_shift_left(dst, src, n)	Shift left
42  *
43  * int first_cpu(mask)			Number lowest set bit, or NR_CPUS
44  * int next_cpu(cpu, mask)		Next cpu past 'cpu', or NR_CPUS
45  *
46  * cpumask_t cpumask_of_cpu(cpu)	Return cpumask with bit 'cpu' set
47  * CPU_MASK_ALL				Initializer - all bits set
48  * CPU_MASK_NONE			Initializer - no bits set
49  * unsigned long *cpus_addr(mask)	Array of unsigned long's in mask
50  *
51  * int cpumask_scnprintf(buf, len, mask) Format cpumask for printing
52  * int cpumask_parse(ubuf, ulen, mask)	Parse ascii string as cpumask
53  * int cpulist_scnprintf(buf, len, mask) Format cpumask as list for printing
54  * int cpulist_parse(buf, map)		Parse ascii string as cpulist
55  * int cpu_remap(oldbit, old, new)	newbit = map(old, new)(oldbit)
56  * int cpus_remap(dst, src, old, new)	*dst = map(old, new)(src)
57  *
58  * for_each_cpu_mask(cpu, mask)		for-loop cpu over mask
59  *
60  * int num_online_cpus()		Number of online CPUs
61  * int num_possible_cpus()		Number of all possible CPUs
62  * int num_present_cpus()		Number of present CPUs
63  *
64  * int cpu_online(cpu)			Is some cpu online?
65  * int cpu_possible(cpu)		Is some cpu possible?
66  * int cpu_present(cpu)			Is some cpu present (can schedule)?
67  *
68  * int any_online_cpu(mask)		First online cpu in mask
69  *
70  * for_each_possible_cpu(cpu)		for-loop cpu over cpu_possible_map
71  * for_each_online_cpu(cpu)		for-loop cpu over cpu_online_map
72  * for_each_present_cpu(cpu)		for-loop cpu over cpu_present_map
73  *
74  * Subtlety:
75  * 1) The 'type-checked' form of cpu_isset() causes gcc (3.3.2, anyway)
76  *    to generate slightly worse code.  Note for example the additional
77  *    40 lines of assembly code compiling the "for each possible cpu"
78  *    loops buried in the disk_stat_read() macros calls when compiling
79  *    drivers/block/genhd.c (arch i386, CONFIG_SMP=y).  So use a simple
80  *    one-line #define for cpu_isset(), instead of wrapping an inline
81  *    inside a macro, the way we do the other calls.
82  */
83 
84 #include <linux/kernel.h>
85 #include <linux/threads.h>
86 #include <linux/bitmap.h>
87 
88 typedef struct { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t;
89 extern cpumask_t _unused_cpumask_arg_;
90 
91 #define cpu_set(cpu, dst) __cpu_set((cpu), &(dst))
__cpu_set(int cpu,volatile cpumask_t * dstp)92 static inline void __cpu_set(int cpu, volatile cpumask_t *dstp)
93 {
94 	set_bit(cpu, dstp->bits);
95 }
96 
97 #define cpu_clear(cpu, dst) __cpu_clear((cpu), &(dst))
__cpu_clear(int cpu,volatile cpumask_t * dstp)98 static inline void __cpu_clear(int cpu, volatile cpumask_t *dstp)
99 {
100 	clear_bit(cpu, dstp->bits);
101 }
102 
103 #define cpus_setall(dst) __cpus_setall(&(dst), NR_CPUS)
__cpus_setall(cpumask_t * dstp,int nbits)104 static inline void __cpus_setall(cpumask_t *dstp, int nbits)
105 {
106 	bitmap_fill(dstp->bits, nbits);
107 }
108 
109 #define cpus_clear(dst) __cpus_clear(&(dst), NR_CPUS)
__cpus_clear(cpumask_t * dstp,int nbits)110 static inline void __cpus_clear(cpumask_t *dstp, int nbits)
111 {
112 	bitmap_zero(dstp->bits, nbits);
113 }
114 
115 /* No static inline type checking - see Subtlety (1) above. */
116 #define cpu_isset(cpu, cpumask) test_bit((cpu), (cpumask).bits)
117 
118 #define cpu_test_and_set(cpu, cpumask) __cpu_test_and_set((cpu), &(cpumask))
__cpu_test_and_set(int cpu,cpumask_t * addr)119 static inline int __cpu_test_and_set(int cpu, cpumask_t *addr)
120 {
121 	return test_and_set_bit(cpu, addr->bits);
122 }
123 
124 #define cpus_and(dst, src1, src2) __cpus_and(&(dst), &(src1), &(src2), NR_CPUS)
__cpus_and(cpumask_t * dstp,const cpumask_t * src1p,const cpumask_t * src2p,int nbits)125 static inline void __cpus_and(cpumask_t *dstp, const cpumask_t *src1p,
126 					const cpumask_t *src2p, int nbits)
127 {
128 	bitmap_and(dstp->bits, src1p->bits, src2p->bits, nbits);
129 }
130 
131 #define cpus_or(dst, src1, src2) __cpus_or(&(dst), &(src1), &(src2), NR_CPUS)
__cpus_or(cpumask_t * dstp,const cpumask_t * src1p,const cpumask_t * src2p,int nbits)132 static inline void __cpus_or(cpumask_t *dstp, const cpumask_t *src1p,
133 					const cpumask_t *src2p, int nbits)
134 {
135 	bitmap_or(dstp->bits, src1p->bits, src2p->bits, nbits);
136 }
137 
138 #define cpus_xor(dst, src1, src2) __cpus_xor(&(dst), &(src1), &(src2), NR_CPUS)
__cpus_xor(cpumask_t * dstp,const cpumask_t * src1p,const cpumask_t * src2p,int nbits)139 static inline void __cpus_xor(cpumask_t *dstp, const cpumask_t *src1p,
140 					const cpumask_t *src2p, int nbits)
141 {
142 	bitmap_xor(dstp->bits, src1p->bits, src2p->bits, nbits);
143 }
144 
145 #define cpus_andnot(dst, src1, src2) \
146 				__cpus_andnot(&(dst), &(src1), &(src2), NR_CPUS)
__cpus_andnot(cpumask_t * dstp,const cpumask_t * src1p,const cpumask_t * src2p,int nbits)147 static inline void __cpus_andnot(cpumask_t *dstp, const cpumask_t *src1p,
148 					const cpumask_t *src2p, int nbits)
149 {
150 	bitmap_andnot(dstp->bits, src1p->bits, src2p->bits, nbits);
151 }
152 
153 #define cpus_complement(dst, src) __cpus_complement(&(dst), &(src), NR_CPUS)
__cpus_complement(cpumask_t * dstp,const cpumask_t * srcp,int nbits)154 static inline void __cpus_complement(cpumask_t *dstp,
155 					const cpumask_t *srcp, int nbits)
156 {
157 	bitmap_complement(dstp->bits, srcp->bits, nbits);
158 }
159 
160 #define cpus_equal(src1, src2) __cpus_equal(&(src1), &(src2), NR_CPUS)
__cpus_equal(const cpumask_t * src1p,const cpumask_t * src2p,int nbits)161 static inline int __cpus_equal(const cpumask_t *src1p,
162 					const cpumask_t *src2p, int nbits)
163 {
164 	return bitmap_equal(src1p->bits, src2p->bits, nbits);
165 }
166 
167 #define cpus_intersects(src1, src2) __cpus_intersects(&(src1), &(src2), NR_CPUS)
__cpus_intersects(const cpumask_t * src1p,const cpumask_t * src2p,int nbits)168 static inline int __cpus_intersects(const cpumask_t *src1p,
169 					const cpumask_t *src2p, int nbits)
170 {
171 	return bitmap_intersects(src1p->bits, src2p->bits, nbits);
172 }
173 
174 #define cpus_subset(src1, src2) __cpus_subset(&(src1), &(src2), NR_CPUS)
__cpus_subset(const cpumask_t * src1p,const cpumask_t * src2p,int nbits)175 static inline int __cpus_subset(const cpumask_t *src1p,
176 					const cpumask_t *src2p, int nbits)
177 {
178 	return bitmap_subset(src1p->bits, src2p->bits, nbits);
179 }
180 
181 #define cpus_empty(src) __cpus_empty(&(src), NR_CPUS)
__cpus_empty(const cpumask_t * srcp,int nbits)182 static inline int __cpus_empty(const cpumask_t *srcp, int nbits)
183 {
184 	return bitmap_empty(srcp->bits, nbits);
185 }
186 
187 #define cpus_full(cpumask) __cpus_full(&(cpumask), NR_CPUS)
__cpus_full(const cpumask_t * srcp,int nbits)188 static inline int __cpus_full(const cpumask_t *srcp, int nbits)
189 {
190 	return bitmap_full(srcp->bits, nbits);
191 }
192 
193 #define cpus_weight(cpumask) __cpus_weight(&(cpumask), NR_CPUS)
__cpus_weight(const cpumask_t * srcp,int nbits)194 static inline int __cpus_weight(const cpumask_t *srcp, int nbits)
195 {
196 	return bitmap_weight(srcp->bits, nbits);
197 }
198 
199 #define cpus_shift_right(dst, src, n) \
200 			__cpus_shift_right(&(dst), &(src), (n), NR_CPUS)
__cpus_shift_right(cpumask_t * dstp,const cpumask_t * srcp,int n,int nbits)201 static inline void __cpus_shift_right(cpumask_t *dstp,
202 					const cpumask_t *srcp, int n, int nbits)
203 {
204 	bitmap_shift_right(dstp->bits, srcp->bits, n, nbits);
205 }
206 
207 #define cpus_shift_left(dst, src, n) \
208 			__cpus_shift_left(&(dst), &(src), (n), NR_CPUS)
__cpus_shift_left(cpumask_t * dstp,const cpumask_t * srcp,int n,int nbits)209 static inline void __cpus_shift_left(cpumask_t *dstp,
210 					const cpumask_t *srcp, int n, int nbits)
211 {
212 	bitmap_shift_left(dstp->bits, srcp->bits, n, nbits);
213 }
214 
215 #ifdef CONFIG_SMP
216 int __first_cpu(const cpumask_t *srcp);
217 #define first_cpu(src) __first_cpu(&(src))
218 int __next_cpu(int n, const cpumask_t *srcp);
219 #define next_cpu(n, src) __next_cpu((n), &(src))
220 #else
221 #define first_cpu(src)		0
222 #define next_cpu(n, src)	1
223 #endif
224 
225 #define cpumask_of_cpu(cpu)						\
226 ({									\
227 	typeof(_unused_cpumask_arg_) m;					\
228 	if (sizeof(m) == sizeof(unsigned long)) {			\
229 		m.bits[0] = 1UL<<(cpu);					\
230 	} else {							\
231 		cpus_clear(m);						\
232 		cpu_set((cpu), m);					\
233 	}								\
234 	m;								\
235 })
236 
237 #define CPU_MASK_LAST_WORD BITMAP_LAST_WORD_MASK(NR_CPUS)
238 
239 #if NR_CPUS <= BITS_PER_LONG
240 
241 #define CPU_MASK_ALL							\
242 (cpumask_t) { {								\
243 	[BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD			\
244 } }
245 
246 #else
247 
248 #define CPU_MASK_ALL							\
249 (cpumask_t) { {								\
250 	[0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL,			\
251 	[BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD			\
252 } }
253 
254 #endif
255 
256 #define CPU_MASK_NONE							\
257 (cpumask_t) { {								\
258 	[0 ... BITS_TO_LONGS(NR_CPUS)-1] =  0UL				\
259 } }
260 
261 #define CPU_MASK_CPU0							\
262 (cpumask_t) { {								\
263 	[0] =  1UL							\
264 } }
265 
266 #define cpus_addr(src) ((src).bits)
267 
268 #define cpumask_scnprintf(buf, len, src) \
269 			__cpumask_scnprintf((buf), (len), &(src), NR_CPUS)
__cpumask_scnprintf(char * buf,int len,const cpumask_t * srcp,int nbits)270 static inline int __cpumask_scnprintf(char *buf, int len,
271 					const cpumask_t *srcp, int nbits)
272 {
273 	return bitmap_scnprintf(buf, len, srcp->bits, nbits);
274 }
275 
276 #define cpumask_parse(ubuf, ulen, dst) \
277 			__cpumask_parse((ubuf), (ulen), &(dst), NR_CPUS)
__cpumask_parse(const char __user * buf,int len,cpumask_t * dstp,int nbits)278 static inline int __cpumask_parse(const char __user *buf, int len,
279 					cpumask_t *dstp, int nbits)
280 {
281 	return bitmap_parse(buf, len, dstp->bits, nbits);
282 }
283 
284 #define cpulist_scnprintf(buf, len, src) \
285 			__cpulist_scnprintf((buf), (len), &(src), NR_CPUS)
__cpulist_scnprintf(char * buf,int len,const cpumask_t * srcp,int nbits)286 static inline int __cpulist_scnprintf(char *buf, int len,
287 					const cpumask_t *srcp, int nbits)
288 {
289 	return bitmap_scnlistprintf(buf, len, srcp->bits, nbits);
290 }
291 
292 #define cpulist_parse(buf, dst) __cpulist_parse((buf), &(dst), NR_CPUS)
__cpulist_parse(const char * buf,cpumask_t * dstp,int nbits)293 static inline int __cpulist_parse(const char *buf, cpumask_t *dstp, int nbits)
294 {
295 	return bitmap_parselist(buf, dstp->bits, nbits);
296 }
297 
298 #define cpu_remap(oldbit, old, new) \
299 		__cpu_remap((oldbit), &(old), &(new), NR_CPUS)
__cpu_remap(int oldbit,const cpumask_t * oldp,const cpumask_t * newp,int nbits)300 static inline int __cpu_remap(int oldbit,
301 		const cpumask_t *oldp, const cpumask_t *newp, int nbits)
302 {
303 	return bitmap_bitremap(oldbit, oldp->bits, newp->bits, nbits);
304 }
305 
306 #define cpus_remap(dst, src, old, new) \
307 		__cpus_remap(&(dst), &(src), &(old), &(new), NR_CPUS)
__cpus_remap(cpumask_t * dstp,const cpumask_t * srcp,const cpumask_t * oldp,const cpumask_t * newp,int nbits)308 static inline void __cpus_remap(cpumask_t *dstp, const cpumask_t *srcp,
309 		const cpumask_t *oldp, const cpumask_t *newp, int nbits)
310 {
311 	bitmap_remap(dstp->bits, srcp->bits, oldp->bits, newp->bits, nbits);
312 }
313 
314 #if NR_CPUS > 1
315 #define for_each_cpu_mask(cpu, mask)		\
316 	for ((cpu) = first_cpu(mask);		\
317 		(cpu) < NR_CPUS;		\
318 		(cpu) = next_cpu((cpu), (mask)))
319 #else /* NR_CPUS == 1 */
320 #define for_each_cpu_mask(cpu, mask)		\
321 	for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask)
322 #endif /* NR_CPUS */
323 
324 /*
325  * The following particular system cpumasks and operations manage
326  * possible, present and online cpus.  Each of them is a fixed size
327  * bitmap of size NR_CPUS.
328  *
329  *  #ifdef CONFIG_HOTPLUG_CPU
330  *     cpu_possible_map - has bit 'cpu' set iff cpu is populatable
331  *     cpu_present_map  - has bit 'cpu' set iff cpu is populated
332  *     cpu_online_map   - has bit 'cpu' set iff cpu available to scheduler
333  *  #else
334  *     cpu_possible_map - has bit 'cpu' set iff cpu is populated
335  *     cpu_present_map  - copy of cpu_possible_map
336  *     cpu_online_map   - has bit 'cpu' set iff cpu available to scheduler
337  *  #endif
338  *
339  *  In either case, NR_CPUS is fixed at compile time, as the static
340  *  size of these bitmaps.  The cpu_possible_map is fixed at boot
341  *  time, as the set of CPU id's that it is possible might ever
342  *  be plugged in at anytime during the life of that system boot.
343  *  The cpu_present_map is dynamic(*), representing which CPUs
344  *  are currently plugged in.  And cpu_online_map is the dynamic
345  *  subset of cpu_present_map, indicating those CPUs available
346  *  for scheduling.
347  *
348  *  If HOTPLUG is enabled, then cpu_possible_map is forced to have
349  *  all NR_CPUS bits set, otherwise it is just the set of CPUs that
350  *  ACPI reports present at boot.
351  *
352  *  If HOTPLUG is enabled, then cpu_present_map varies dynamically,
353  *  depending on what ACPI reports as currently plugged in, otherwise
354  *  cpu_present_map is just a copy of cpu_possible_map.
355  *
356  *  (*) Well, cpu_present_map is dynamic in the hotplug case.  If not
357  *      hotplug, it's a copy of cpu_possible_map, hence fixed at boot.
358  *
359  * Subtleties:
360  * 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode
361  *    assumption that their single CPU is online.  The UP
362  *    cpu_{online,possible,present}_maps are placebos.  Changing them
363  *    will have no useful affect on the following num_*_cpus()
364  *    and cpu_*() macros in the UP case.  This ugliness is a UP
365  *    optimization - don't waste any instructions or memory references
366  *    asking if you're online or how many CPUs there are if there is
367  *    only one CPU.
368  * 2) Most SMP arch's #define some of these maps to be some
369  *    other map specific to that arch.  Therefore, the following
370  *    must be #define macros, not inlines.  To see why, examine
371  *    the assembly code produced by the following.  Note that
372  *    set1() writes phys_x_map, but set2() writes x_map:
373  *        int x_map, phys_x_map;
374  *        #define set1(a) x_map = a
375  *        inline void set2(int a) { x_map = a; }
376  *        #define x_map phys_x_map
377  *        main(){ set1(3); set2(5); }
378  */
379 
380 extern cpumask_t cpu_possible_map;
381 extern cpumask_t cpu_online_map;
382 extern cpumask_t cpu_present_map;
383 
384 #if NR_CPUS > 1
385 #define num_online_cpus()	cpus_weight(cpu_online_map)
386 #define num_possible_cpus()	cpus_weight(cpu_possible_map)
387 #define num_present_cpus()	cpus_weight(cpu_present_map)
388 #define cpu_online(cpu)		cpu_isset((cpu), cpu_online_map)
389 #define cpu_possible(cpu)	cpu_isset((cpu), cpu_possible_map)
390 #define cpu_present(cpu)	cpu_isset((cpu), cpu_present_map)
391 #else
392 #define num_online_cpus()	1
393 #define num_possible_cpus()	1
394 #define num_present_cpus()	1
395 #define cpu_online(cpu)		((cpu) == 0)
396 #define cpu_possible(cpu)	((cpu) == 0)
397 #define cpu_present(cpu)	((cpu) == 0)
398 #endif
399 
400 #ifdef CONFIG_SMP
401 int highest_possible_processor_id(void);
402 #define any_online_cpu(mask) __any_online_cpu(&(mask))
403 int __any_online_cpu(const cpumask_t *mask);
404 #else
405 #define highest_possible_processor_id()	0
406 #define any_online_cpu(mask)		0
407 #endif
408 
409 #define for_each_possible_cpu(cpu)  for_each_cpu_mask((cpu), cpu_possible_map)
410 #define for_each_online_cpu(cpu)  for_each_cpu_mask((cpu), cpu_online_map)
411 #define for_each_present_cpu(cpu) for_each_cpu_mask((cpu), cpu_present_map)
412 
413 #endif /* __LINUX_CPUMASK_H */
414