• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2010 the V8 project authors. All rights reserved.
34 
35 
36 #ifndef V8_MIPS_ASSEMBLER_MIPS_H_
37 #define V8_MIPS_ASSEMBLER_MIPS_H_
38 
39 #include <stdio.h>
40 #include "assembler.h"
41 #include "constants-mips.h"
42 #include "serialize.h"
43 
44 using namespace assembler::mips;
45 
46 namespace v8 {
47 namespace internal {
48 
49 // CPU Registers.
50 //
51 // 1) We would prefer to use an enum, but enum values are assignment-
52 // compatible with int, which has caused code-generation bugs.
53 //
54 // 2) We would prefer to use a class instead of a struct but we don't like
55 // the register initialization to depend on the particular initialization
56 // order (which appears to be different on OS X, Linux, and Windows for the
57 // installed versions of C++ we tried). Using a struct permits C-style
58 // "initialization". Also, the Register objects cannot be const as this
59 // forces initialization stubs in MSVC, making us dependent on initialization
60 // order.
61 //
62 // 3) By not using an enum, we are possibly preventing the compiler from
63 // doing certain constant folds, which may significantly reduce the
64 // code generated for some assembly instructions (because they boil down
65 // to a few constants). If this is a problem, we could change the code
66 // such that we use an enum in optimized mode, and the struct in debug
67 // mode. This way we get the compile-time error checking in debug mode
68 // and best performance in optimized code.
69 
70 
71 // -----------------------------------------------------------------------------
72 // Implementation of Register and FPURegister
73 
74 // Core register.
75 struct Register {
is_validRegister76   bool is_valid() const  { return 0 <= code_ && code_ < kNumRegisters; }
isRegister77   bool is(Register reg) const  { return code_ == reg.code_; }
codeRegister78   int code() const  {
79     ASSERT(is_valid());
80     return code_;
81   }
bitRegister82   int bit() const  {
83     ASSERT(is_valid());
84     return 1 << code_;
85   }
86 
87   // Unfortunately we can't make this private in a struct.
88   int code_;
89 };
90 
91 extern const Register no_reg;
92 
93 extern const Register zero_reg;
94 extern const Register at;
95 extern const Register v0;
96 extern const Register v1;
97 extern const Register a0;
98 extern const Register a1;
99 extern const Register a2;
100 extern const Register a3;
101 extern const Register t0;
102 extern const Register t1;
103 extern const Register t2;
104 extern const Register t3;
105 extern const Register t4;
106 extern const Register t5;
107 extern const Register t6;
108 extern const Register t7;
109 extern const Register s0;
110 extern const Register s1;
111 extern const Register s2;
112 extern const Register s3;
113 extern const Register s4;
114 extern const Register s5;
115 extern const Register s6;
116 extern const Register s7;
117 extern const Register t8;
118 extern const Register t9;
119 extern const Register k0;
120 extern const Register k1;
121 extern const Register gp;
122 extern const Register sp;
123 extern const Register s8_fp;
124 extern const Register ra;
125 
126 int ToNumber(Register reg);
127 
128 Register ToRegister(int num);
129 
130 // Coprocessor register.
131 struct FPURegister {
is_validFPURegister132   bool is_valid() const  { return 0 <= code_ && code_ < kNumFPURegister ; }
isFPURegister133   bool is(FPURegister creg) const  { return code_ == creg.code_; }
codeFPURegister134   int code() const  {
135     ASSERT(is_valid());
136     return code_;
137   }
bitFPURegister138   int bit() const  {
139     ASSERT(is_valid());
140     return 1 << code_;
141   }
142 
143   // Unfortunately we can't make this private in a struct.
144   int code_;
145 };
146 
147 extern const FPURegister no_creg;
148 
149 extern const FPURegister f0;
150 extern const FPURegister f1;
151 extern const FPURegister f2;
152 extern const FPURegister f3;
153 extern const FPURegister f4;
154 extern const FPURegister f5;
155 extern const FPURegister f6;
156 extern const FPURegister f7;
157 extern const FPURegister f8;
158 extern const FPURegister f9;
159 extern const FPURegister f10;
160 extern const FPURegister f11;
161 extern const FPURegister f12;  // arg
162 extern const FPURegister f13;
163 extern const FPURegister f14;  // arg
164 extern const FPURegister f15;
165 extern const FPURegister f16;
166 extern const FPURegister f17;
167 extern const FPURegister f18;
168 extern const FPURegister f19;
169 extern const FPURegister f20;
170 extern const FPURegister f21;
171 extern const FPURegister f22;
172 extern const FPURegister f23;
173 extern const FPURegister f24;
174 extern const FPURegister f25;
175 extern const FPURegister f26;
176 extern const FPURegister f27;
177 extern const FPURegister f28;
178 extern const FPURegister f29;
179 extern const FPURegister f30;
180 extern const FPURegister f31;
181 
182 
183 // Returns the equivalent of !cc.
184 // Negation of the default no_condition (-1) results in a non-default
185 // no_condition value (-2). As long as tests for no_condition check
186 // for condition < 0, this will work as expected.
187 inline Condition NegateCondition(Condition cc);
188 
ReverseCondition(Condition cc)189 inline Condition ReverseCondition(Condition cc) {
190   switch (cc) {
191     case Uless:
192       return Ugreater;
193     case Ugreater:
194       return Uless;
195     case Ugreater_equal:
196       return Uless_equal;
197     case Uless_equal:
198       return Ugreater_equal;
199     case less:
200       return greater;
201     case greater:
202       return less;
203     case greater_equal:
204       return less_equal;
205     case less_equal:
206       return greater_equal;
207     default:
208       return cc;
209   };
210 }
211 
212 
213 enum Hint {
214   no_hint = 0
215 };
216 
NegateHint(Hint hint)217 inline Hint NegateHint(Hint hint) {
218   return no_hint;
219 }
220 
221 
222 // -----------------------------------------------------------------------------
223 // Machine instruction Operands.
224 
225 // Class Operand represents a shifter operand in data processing instructions.
226 class Operand BASE_EMBEDDED {
227  public:
228   // Immediate.
229   INLINE(explicit Operand(int32_t immediate,
230          RelocInfo::Mode rmode = RelocInfo::NONE));
231   INLINE(explicit Operand(const ExternalReference& f));
232   INLINE(explicit Operand(const char* s));
233   INLINE(explicit Operand(Object** opp));
234   INLINE(explicit Operand(Context** cpp));
235   explicit Operand(Handle<Object> handle);
236   INLINE(explicit Operand(Smi* value));
237 
238   // Register.
239   INLINE(explicit Operand(Register rm));
240 
241   // Return true if this is a register operand.
242   INLINE(bool is_reg() const);
243 
rm()244   Register rm() const { return rm_; }
245 
246  private:
247   Register rm_;
248   int32_t imm32_;  // Valid if rm_ == no_reg
249   RelocInfo::Mode rmode_;
250 
251   friend class Assembler;
252   friend class MacroAssembler;
253 };
254 
255 
256 // On MIPS we have only one adressing mode with base_reg + offset.
257 // Class MemOperand represents a memory operand in load and store instructions.
258 class MemOperand : public Operand {
259  public:
260 
261   explicit MemOperand(Register rn, int16_t offset = 0);
262 
263  private:
264   int16_t offset_;
265 
266   friend class Assembler;
267 };
268 
269 
270 class Assembler : public Malloced {
271  public:
272   // Create an assembler. Instructions and relocation information are emitted
273   // into a buffer, with the instructions starting from the beginning and the
274   // relocation information starting from the end of the buffer. See CodeDesc
275   // for a detailed comment on the layout (globals.h).
276   //
277   // If the provided buffer is NULL, the assembler allocates and grows its own
278   // buffer, and buffer_size determines the initial buffer size. The buffer is
279   // owned by the assembler and deallocated upon destruction of the assembler.
280   //
281   // If the provided buffer is not NULL, the assembler uses the provided buffer
282   // for code generation and assumes its size to be buffer_size. If the buffer
283   // is too small, a fatal error occurs. No deallocation of the buffer is done
284   // upon destruction of the assembler.
285   Assembler(void* buffer, int buffer_size);
286   ~Assembler();
287 
288   // GetCode emits any pending (non-emitted) code and fills the descriptor
289   // desc. GetCode() is idempotent; it returns the same result if no other
290   // Assembler functions are invoked in between GetCode() calls.
291   void GetCode(CodeDesc* desc);
292 
293   // Label operations & relative jumps (PPUM Appendix D).
294   //
295   // Takes a branch opcode (cc) and a label (L) and generates
296   // either a backward branch or a forward branch and links it
297   // to the label fixup chain. Usage:
298   //
299   // Label L;    // unbound label
300   // j(cc, &L);  // forward branch to unbound label
301   // bind(&L);   // bind label to the current pc
302   // j(cc, &L);  // backward branch to bound label
303   // bind(&L);   // illegal: a label may be bound only once
304   //
305   // Note: The same Label can be used for forward and backward branches
306   // but it may be bound only once.
307   void bind(Label* L);  // binds an unbound label L to the current code position
308 
309   // Returns the branch offset to the given label from the current code position
310   // Links the label to the current position if it is still unbound
311   // Manages the jump elimination optimization if the second parameter is true.
312   int32_t branch_offset(Label* L, bool jump_elimination_allowed);
shifted_branch_offset(Label * L,bool jump_elimination_allowed)313   int32_t shifted_branch_offset(Label* L, bool jump_elimination_allowed) {
314     int32_t o = branch_offset(L, jump_elimination_allowed);
315     ASSERT((o & 3) == 0);   // Assert the offset is aligned.
316     return o >> 2;
317   }
318 
319   // Puts a labels target address at the given position.
320   // The high 8 bits are set to zero.
321   void label_at_put(Label* L, int at_offset);
322 
323   // Size of an instruction.
324   static const int kInstrSize = sizeof(Instr);
325 
326   // Difference between address of current opcode and target address offset.
327   static const int kBranchPCOffset = 4;
328 
329   // Read/Modify the code target address in the branch/call instruction at pc.
330   static Address target_address_at(Address pc);
331   static void set_target_address_at(Address pc, Address target);
332 
333   // This sets the branch destination (which gets loaded at the call address).
334   // This is for calls and branches within generated code.
set_target_at(Address instruction_payload,Address target)335   inline static void set_target_at(Address instruction_payload,
336                                    Address target) {
337     set_target_address_at(instruction_payload, target);
338   }
339 
340   // This sets the branch destination.
341   // This is for calls and branches to runtime code.
set_external_target_at(Address instruction_payload,Address target)342   inline static void set_external_target_at(Address instruction_payload,
343                                             Address target) {
344     set_target_address_at(instruction_payload, target);
345   }
346 
347   static const int kCallTargetSize = 3 * kPointerSize;
348   static const int kExternalTargetSize = 3 * kPointerSize;
349 
350   // Distance between the instruction referring to the address of the call
351   // target and the return address.
352   static const int kCallTargetAddressOffset = 4 * kInstrSize;
353 
354   // Distance between start of patched return sequence and the emitted address
355   // to jump to.
356   static const int kPatchReturnSequenceAddressOffset = kInstrSize;
357 
358 
359   // ---------------------------------------------------------------------------
360   // Code generation.
361 
nop()362   void nop() { sll(zero_reg, zero_reg, 0); }
363 
364 
365   //------- Branch and jump  instructions --------
366   // We don't use likely variant of instructions.
367   void b(int16_t offset);
b(Label * L)368   void b(Label* L) { b(branch_offset(L, false)>>2); }
369   void bal(int16_t offset);
bal(Label * L)370   void bal(Label* L) { bal(branch_offset(L, false)>>2); }
371 
372   void beq(Register rs, Register rt, int16_t offset);
beq(Register rs,Register rt,Label * L)373   void beq(Register rs, Register rt, Label* L) {
374     beq(rs, rt, branch_offset(L, false) >> 2);
375   }
376   void bgez(Register rs, int16_t offset);
377   void bgezal(Register rs, int16_t offset);
378   void bgtz(Register rs, int16_t offset);
379   void blez(Register rs, int16_t offset);
380   void bltz(Register rs, int16_t offset);
381   void bltzal(Register rs, int16_t offset);
382   void bne(Register rs, Register rt, int16_t offset);
bne(Register rs,Register rt,Label * L)383   void bne(Register rs, Register rt, Label* L) {
384     bne(rs, rt, branch_offset(L, false)>>2);
385   }
386 
387   // Never use the int16_t b(l)cond version with a branch offset
388   // instead of using the Label* version. See Twiki for infos.
389 
390   // Jump targets must be in the current 256 MB-aligned region. ie 28 bits.
391   void j(int32_t target);
392   void jal(int32_t target);
393   void jalr(Register rs, Register rd = ra);
394   void jr(Register target);
395 
396 
397   //-------Data-processing-instructions---------
398 
399   // Arithmetic.
400   void add(Register rd, Register rs, Register rt);
401   void addu(Register rd, Register rs, Register rt);
402   void sub(Register rd, Register rs, Register rt);
403   void subu(Register rd, Register rs, Register rt);
404   void mult(Register rs, Register rt);
405   void multu(Register rs, Register rt);
406   void div(Register rs, Register rt);
407   void divu(Register rs, Register rt);
408   void mul(Register rd, Register rs, Register rt);
409 
410   void addi(Register rd, Register rs, int32_t j);
411   void addiu(Register rd, Register rs, int32_t j);
412 
413   // Logical.
414   void and_(Register rd, Register rs, Register rt);
415   void or_(Register rd, Register rs, Register rt);
416   void xor_(Register rd, Register rs, Register rt);
417   void nor(Register rd, Register rs, Register rt);
418 
419   void andi(Register rd, Register rs, int32_t j);
420   void ori(Register rd, Register rs, int32_t j);
421   void xori(Register rd, Register rs, int32_t j);
422   void lui(Register rd, int32_t j);
423 
424   // Shifts.
425   void sll(Register rd, Register rt, uint16_t sa);
426   void sllv(Register rd, Register rt, Register rs);
427   void srl(Register rd, Register rt, uint16_t sa);
428   void srlv(Register rd, Register rt, Register rs);
429   void sra(Register rt, Register rd, uint16_t sa);
430   void srav(Register rt, Register rd, Register rs);
431 
432 
433   //------------Memory-instructions-------------
434 
435   void lb(Register rd, const MemOperand& rs);
436   void lbu(Register rd, const MemOperand& rs);
437   void lw(Register rd, const MemOperand& rs);
438   void sb(Register rd, const MemOperand& rs);
439   void sw(Register rd, const MemOperand& rs);
440 
441 
442   //-------------Misc-instructions--------------
443 
444   // Break / Trap instructions.
445   void break_(uint32_t code);
446   void tge(Register rs, Register rt, uint16_t code);
447   void tgeu(Register rs, Register rt, uint16_t code);
448   void tlt(Register rs, Register rt, uint16_t code);
449   void tltu(Register rs, Register rt, uint16_t code);
450   void teq(Register rs, Register rt, uint16_t code);
451   void tne(Register rs, Register rt, uint16_t code);
452 
453   // Move from HI/LO register.
454   void mfhi(Register rd);
455   void mflo(Register rd);
456 
457   // Set on less than.
458   void slt(Register rd, Register rs, Register rt);
459   void sltu(Register rd, Register rs, Register rt);
460   void slti(Register rd, Register rs, int32_t j);
461   void sltiu(Register rd, Register rs, int32_t j);
462 
463 
464   //--------Coprocessor-instructions----------------
465 
466   // Load, store, and move.
467   void lwc1(FPURegister fd, const MemOperand& src);
468   void ldc1(FPURegister fd, const MemOperand& src);
469 
470   void swc1(FPURegister fs, const MemOperand& dst);
471   void sdc1(FPURegister fs, const MemOperand& dst);
472 
473   // When paired with MTC1 to write a value to a 64-bit FPR, the MTC1 must be
474   // executed first, followed by the MTHC1.
475   void mtc1(FPURegister fs, Register rt);
476   void mthc1(FPURegister fs, Register rt);
477   void mfc1(FPURegister fs, Register rt);
478   void mfhc1(FPURegister fs, Register rt);
479 
480   // Conversion.
481   void cvt_w_s(FPURegister fd, FPURegister fs);
482   void cvt_w_d(FPURegister fd, FPURegister fs);
483 
484   void cvt_l_s(FPURegister fd, FPURegister fs);
485   void cvt_l_d(FPURegister fd, FPURegister fs);
486 
487   void cvt_s_w(FPURegister fd, FPURegister fs);
488   void cvt_s_l(FPURegister fd, FPURegister fs);
489   void cvt_s_d(FPURegister fd, FPURegister fs);
490 
491   void cvt_d_w(FPURegister fd, FPURegister fs);
492   void cvt_d_l(FPURegister fd, FPURegister fs);
493   void cvt_d_s(FPURegister fd, FPURegister fs);
494 
495   // Conditions and branches.
496   void c(FPUCondition cond, SecondaryField fmt,
497          FPURegister ft, FPURegister fs, uint16_t cc = 0);
498 
499   void bc1f(int16_t offset, uint16_t cc = 0);
500   void bc1f(Label* L, uint16_t cc = 0) { bc1f(branch_offset(L, false)>>2, cc); }
501   void bc1t(int16_t offset, uint16_t cc = 0);
502   void bc1t(Label* L, uint16_t cc = 0) { bc1t(branch_offset(L, false)>>2, cc); }
503 
504 
505   // Check the code size generated from label to here.
InstructionsGeneratedSince(Label * l)506   int InstructionsGeneratedSince(Label* l) {
507     return (pc_offset() - l->pos()) / kInstrSize;
508   }
509 
510   // Debugging.
511 
512   // Mark address of the ExitJSFrame code.
513   void RecordJSReturn();
514 
515   // Record a comment relocation entry that can be used by a disassembler.
516   // Use --debug_code to enable.
517   void RecordComment(const char* msg);
518 
519   void RecordPosition(int pos);
520   void RecordStatementPosition(int pos);
521   void WriteRecordedPositions();
522 
pc_offset()523   int32_t pc_offset() const { return pc_ - buffer_; }
current_position()524   int32_t current_position() const { return current_position_; }
current_statement_position()525   int32_t current_statement_position() const { return current_position_; }
526 
527   // Check if there is less than kGap bytes available in the buffer.
528   // If this is the case, we need to grow the buffer before emitting
529   // an instruction or relocation information.
overflow()530   inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
531 
532   // Get the number of bytes available in the buffer.
available_space()533   inline int available_space() const { return reloc_info_writer.pos() - pc_; }
534 
535  protected:
buffer_space()536   int32_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
537 
538   // Read/patch instructions.
instr_at(byte * pc)539   static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
instr_at_put(byte * pc,Instr instr)540   void instr_at_put(byte* pc, Instr instr) {
541     *reinterpret_cast<Instr*>(pc) = instr;
542   }
instr_at(int pos)543   Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
instr_at_put(int pos,Instr instr)544   void instr_at_put(int pos, Instr instr) {
545     *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
546   }
547 
548   // Check if an instruction is a branch of some kind.
549   bool is_branch(Instr instr);
550 
551   // Decode branch instruction at pos and return branch target pos.
552   int target_at(int32_t pos);
553 
554   // Patch branch instruction at pos to branch to given branch target pos.
555   void target_at_put(int32_t pos, int32_t target_pos);
556 
557   // Say if we need to relocate with this mode.
558   bool MustUseAt(RelocInfo::Mode rmode);
559 
560   // Record reloc info for current pc_.
561   void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
562 
563  private:
564   // Code buffer:
565   // The buffer into which code and relocation info are generated.
566   byte* buffer_;
567   int buffer_size_;
568   // True if the assembler owns the buffer, false if buffer is external.
569   bool own_buffer_;
570 
571   // Buffer size and constant pool distance are checked together at regular
572   // intervals of kBufferCheckInterval emitted bytes.
573   static const int kBufferCheckInterval = 1*KB/2;
574 
575   // Code generation.
576   // The relocation writer's position is at least kGap bytes below the end of
577   // the generated instructions. This is so that multi-instruction sequences do
578   // not have to check for overflow. The same is true for writes of large
579   // relocation info entries.
580   static const int kGap = 32;
581   byte* pc_;  // The program counter - moves forward.
582 
583   // Relocation information generation.
584   // Each relocation is encoded as a variable size value.
585   static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
586   RelocInfoWriter reloc_info_writer;
587 
588   // The bound position, before this we cannot do instruction elimination.
589   int last_bound_pos_;
590 
591   // Source position information.
592   int current_position_;
593   int current_statement_position_;
594   int written_position_;
595   int written_statement_position_;
596 
597   // Code emission.
598   inline void CheckBuffer();
599   void GrowBuffer();
600   inline void emit(Instr x);
601 
602   // Instruction generation.
603   // We have 3 different kind of encoding layout on MIPS.
604   // However due to many different types of objects encoded in the same fields
605   // we have quite a few aliases for each mode.
606   // Using the same structure to refer to Register and FPURegister would spare a
607   // few aliases, but mixing both does not look clean to me.
608   // Anyway we could surely implement this differently.
609 
610   void GenInstrRegister(Opcode opcode,
611                         Register rs,
612                         Register rt,
613                         Register rd,
614                         uint16_t sa = 0,
615                         SecondaryField func = NULLSF);
616 
617   void GenInstrRegister(Opcode opcode,
618                         SecondaryField fmt,
619                         FPURegister ft,
620                         FPURegister fs,
621                         FPURegister fd,
622                         SecondaryField func = NULLSF);
623 
624   void GenInstrRegister(Opcode opcode,
625                         SecondaryField fmt,
626                         Register rt,
627                         FPURegister fs,
628                         FPURegister fd,
629                         SecondaryField func = NULLSF);
630 
631 
632   void GenInstrImmediate(Opcode opcode,
633                          Register rs,
634                          Register rt,
635                          int32_t  j);
636   void GenInstrImmediate(Opcode opcode,
637                          Register rs,
638                          SecondaryField SF,
639                          int32_t  j);
640   void GenInstrImmediate(Opcode opcode,
641                          Register r1,
642                          FPURegister r2,
643                          int32_t  j);
644 
645 
646   void GenInstrJump(Opcode opcode,
647                      uint32_t address);
648 
649 
650   // Labels.
651   void print(Label* L);
652   void bind_to(Label* L, int pos);
653   void link_to(Label* L, Label* appendix);
654   void next(Label* L);
655 
656   friend class RegExpMacroAssemblerMIPS;
657   friend class RelocInfo;
658 };
659 
660 } }  // namespace v8::internal
661 
662 #endif  // V8_ARM_ASSEMBLER_MIPS_H_
663 
664