1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions
6 // are met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the
14 // distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31 // OF THE POSSIBILITY OF SUCH DAMAGE.
32
33 // The original source code covered by the above license above has been
34 // modified significantly by Google Inc.
35 // Copyright 2010 the V8 project authors. All rights reserved.
36
37 #include "v8.h"
38
39 #include "arm/assembler-arm-inl.h"
40 #include "serialize.h"
41
42 namespace v8 {
43 namespace internal {
44
45 // Safe default is no features.
46 unsigned CpuFeatures::supported_ = 0;
47 unsigned CpuFeatures::enabled_ = 0;
48 unsigned CpuFeatures::found_by_runtime_probing_ = 0;
49
50
51 #ifdef __arm__
CpuFeaturesImpliedByCompiler()52 static uint64_t CpuFeaturesImpliedByCompiler() {
53 uint64_t answer = 0;
54 #ifdef CAN_USE_ARMV7_INSTRUCTIONS
55 answer |= 1u << ARMv7;
56 #endif // def CAN_USE_ARMV7_INSTRUCTIONS
57 // If the compiler is allowed to use VFP then we can use VFP too in our code
58 // generation even when generating snapshots. This won't work for cross
59 // compilation.
60 #if defined(__VFP_FP__) && !defined(__SOFTFP__)
61 answer |= 1u << VFP3;
62 #endif // defined(__VFP_FP__) && !defined(__SOFTFP__)
63 #ifdef CAN_USE_VFP_INSTRUCTIONS
64 answer |= 1u << VFP3;
65 #endif // def CAN_USE_VFP_INSTRUCTIONS
66 return answer;
67 }
68 #endif // def __arm__
69
70
Probe()71 void CpuFeatures::Probe() {
72 #ifndef __arm__
73 // For the simulator=arm build, use VFP when FLAG_enable_vfp3 is enabled.
74 if (FLAG_enable_vfp3) {
75 supported_ |= 1u << VFP3;
76 }
77 // For the simulator=arm build, use ARMv7 when FLAG_enable_armv7 is enabled
78 if (FLAG_enable_armv7) {
79 supported_ |= 1u << ARMv7;
80 }
81 #else // def __arm__
82 if (Serializer::enabled()) {
83 supported_ |= OS::CpuFeaturesImpliedByPlatform();
84 supported_ |= CpuFeaturesImpliedByCompiler();
85 return; // No features if we might serialize.
86 }
87
88 if (OS::ArmCpuHasFeature(VFP3)) {
89 // This implementation also sets the VFP flags if
90 // runtime detection of VFP returns true.
91 supported_ |= 1u << VFP3;
92 found_by_runtime_probing_ |= 1u << VFP3;
93 }
94
95 if (OS::ArmCpuHasFeature(ARMv7)) {
96 supported_ |= 1u << ARMv7;
97 found_by_runtime_probing_ |= 1u << ARMv7;
98 }
99 #endif // def __arm__
100 }
101
102
103 // -----------------------------------------------------------------------------
104 // Implementation of Register and CRegister
105
106 Register no_reg = { -1 };
107
108 Register r0 = { 0 };
109 Register r1 = { 1 };
110 Register r2 = { 2 };
111 Register r3 = { 3 };
112 Register r4 = { 4 };
113 Register r5 = { 5 };
114 Register r6 = { 6 };
115 Register r7 = { 7 };
116 Register r8 = { 8 }; // Used as context register.
117 Register r9 = { 9 };
118 Register r10 = { 10 }; // Used as roots register.
119 Register fp = { 11 };
120 Register ip = { 12 };
121 Register sp = { 13 };
122 Register lr = { 14 };
123 Register pc = { 15 };
124
125
126 CRegister no_creg = { -1 };
127
128 CRegister cr0 = { 0 };
129 CRegister cr1 = { 1 };
130 CRegister cr2 = { 2 };
131 CRegister cr3 = { 3 };
132 CRegister cr4 = { 4 };
133 CRegister cr5 = { 5 };
134 CRegister cr6 = { 6 };
135 CRegister cr7 = { 7 };
136 CRegister cr8 = { 8 };
137 CRegister cr9 = { 9 };
138 CRegister cr10 = { 10 };
139 CRegister cr11 = { 11 };
140 CRegister cr12 = { 12 };
141 CRegister cr13 = { 13 };
142 CRegister cr14 = { 14 };
143 CRegister cr15 = { 15 };
144
145 // Support for the VFP registers s0 to s31 (d0 to d15).
146 // Note that "sN:sM" is the same as "dN/2".
147 SwVfpRegister s0 = { 0 };
148 SwVfpRegister s1 = { 1 };
149 SwVfpRegister s2 = { 2 };
150 SwVfpRegister s3 = { 3 };
151 SwVfpRegister s4 = { 4 };
152 SwVfpRegister s5 = { 5 };
153 SwVfpRegister s6 = { 6 };
154 SwVfpRegister s7 = { 7 };
155 SwVfpRegister s8 = { 8 };
156 SwVfpRegister s9 = { 9 };
157 SwVfpRegister s10 = { 10 };
158 SwVfpRegister s11 = { 11 };
159 SwVfpRegister s12 = { 12 };
160 SwVfpRegister s13 = { 13 };
161 SwVfpRegister s14 = { 14 };
162 SwVfpRegister s15 = { 15 };
163 SwVfpRegister s16 = { 16 };
164 SwVfpRegister s17 = { 17 };
165 SwVfpRegister s18 = { 18 };
166 SwVfpRegister s19 = { 19 };
167 SwVfpRegister s20 = { 20 };
168 SwVfpRegister s21 = { 21 };
169 SwVfpRegister s22 = { 22 };
170 SwVfpRegister s23 = { 23 };
171 SwVfpRegister s24 = { 24 };
172 SwVfpRegister s25 = { 25 };
173 SwVfpRegister s26 = { 26 };
174 SwVfpRegister s27 = { 27 };
175 SwVfpRegister s28 = { 28 };
176 SwVfpRegister s29 = { 29 };
177 SwVfpRegister s30 = { 30 };
178 SwVfpRegister s31 = { 31 };
179
180 DwVfpRegister d0 = { 0 };
181 DwVfpRegister d1 = { 1 };
182 DwVfpRegister d2 = { 2 };
183 DwVfpRegister d3 = { 3 };
184 DwVfpRegister d4 = { 4 };
185 DwVfpRegister d5 = { 5 };
186 DwVfpRegister d6 = { 6 };
187 DwVfpRegister d7 = { 7 };
188 DwVfpRegister d8 = { 8 };
189 DwVfpRegister d9 = { 9 };
190 DwVfpRegister d10 = { 10 };
191 DwVfpRegister d11 = { 11 };
192 DwVfpRegister d12 = { 12 };
193 DwVfpRegister d13 = { 13 };
194 DwVfpRegister d14 = { 14 };
195 DwVfpRegister d15 = { 15 };
196
197 // -----------------------------------------------------------------------------
198 // Implementation of RelocInfo
199
200 const int RelocInfo::kApplyMask = 0;
201
202
PatchCode(byte * instructions,int instruction_count)203 void RelocInfo::PatchCode(byte* instructions, int instruction_count) {
204 // Patch the code at the current address with the supplied instructions.
205 Instr* pc = reinterpret_cast<Instr*>(pc_);
206 Instr* instr = reinterpret_cast<Instr*>(instructions);
207 for (int i = 0; i < instruction_count; i++) {
208 *(pc + i) = *(instr + i);
209 }
210
211 // Indicate that code has changed.
212 CPU::FlushICache(pc_, instruction_count * Assembler::kInstrSize);
213 }
214
215
216 // Patch the code at the current PC with a call to the target address.
217 // Additional guard instructions can be added if required.
PatchCodeWithCall(Address target,int guard_bytes)218 void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) {
219 // Patch the code at the current address with a call to the target.
220 UNIMPLEMENTED();
221 }
222
223
224 // -----------------------------------------------------------------------------
225 // Implementation of Operand and MemOperand
226 // See assembler-arm-inl.h for inlined constructors
227
Operand(Handle<Object> handle)228 Operand::Operand(Handle<Object> handle) {
229 rm_ = no_reg;
230 // Verify all Objects referred by code are NOT in new space.
231 Object* obj = *handle;
232 ASSERT(!Heap::InNewSpace(obj));
233 if (obj->IsHeapObject()) {
234 imm32_ = reinterpret_cast<intptr_t>(handle.location());
235 rmode_ = RelocInfo::EMBEDDED_OBJECT;
236 } else {
237 // no relocation needed
238 imm32_ = reinterpret_cast<intptr_t>(obj);
239 rmode_ = RelocInfo::NONE;
240 }
241 }
242
243
Operand(Register rm,ShiftOp shift_op,int shift_imm)244 Operand::Operand(Register rm, ShiftOp shift_op, int shift_imm) {
245 ASSERT(is_uint5(shift_imm));
246 ASSERT(shift_op != ROR || shift_imm != 0); // use RRX if you mean it
247 rm_ = rm;
248 rs_ = no_reg;
249 shift_op_ = shift_op;
250 shift_imm_ = shift_imm & 31;
251 if (shift_op == RRX) {
252 // encoded as ROR with shift_imm == 0
253 ASSERT(shift_imm == 0);
254 shift_op_ = ROR;
255 shift_imm_ = 0;
256 }
257 }
258
259
Operand(Register rm,ShiftOp shift_op,Register rs)260 Operand::Operand(Register rm, ShiftOp shift_op, Register rs) {
261 ASSERT(shift_op != RRX);
262 rm_ = rm;
263 rs_ = no_reg;
264 shift_op_ = shift_op;
265 rs_ = rs;
266 }
267
268
MemOperand(Register rn,int32_t offset,AddrMode am)269 MemOperand::MemOperand(Register rn, int32_t offset, AddrMode am) {
270 rn_ = rn;
271 rm_ = no_reg;
272 offset_ = offset;
273 am_ = am;
274 }
275
MemOperand(Register rn,Register rm,AddrMode am)276 MemOperand::MemOperand(Register rn, Register rm, AddrMode am) {
277 rn_ = rn;
278 rm_ = rm;
279 shift_op_ = LSL;
280 shift_imm_ = 0;
281 am_ = am;
282 }
283
284
MemOperand(Register rn,Register rm,ShiftOp shift_op,int shift_imm,AddrMode am)285 MemOperand::MemOperand(Register rn, Register rm,
286 ShiftOp shift_op, int shift_imm, AddrMode am) {
287 ASSERT(is_uint5(shift_imm));
288 rn_ = rn;
289 rm_ = rm;
290 shift_op_ = shift_op;
291 shift_imm_ = shift_imm & 31;
292 am_ = am;
293 }
294
295
296 // -----------------------------------------------------------------------------
297 // Implementation of Assembler.
298
299 // Instruction encoding bits.
300 enum {
301 H = 1 << 5, // halfword (or byte)
302 S6 = 1 << 6, // signed (or unsigned)
303 L = 1 << 20, // load (or store)
304 S = 1 << 20, // set condition code (or leave unchanged)
305 W = 1 << 21, // writeback base register (or leave unchanged)
306 A = 1 << 21, // accumulate in multiply instruction (or not)
307 B = 1 << 22, // unsigned byte (or word)
308 N = 1 << 22, // long (or short)
309 U = 1 << 23, // positive (or negative) offset/index
310 P = 1 << 24, // offset/pre-indexed addressing (or post-indexed addressing)
311 I = 1 << 25, // immediate shifter operand (or not)
312
313 B4 = 1 << 4,
314 B5 = 1 << 5,
315 B6 = 1 << 6,
316 B7 = 1 << 7,
317 B8 = 1 << 8,
318 B9 = 1 << 9,
319 B12 = 1 << 12,
320 B16 = 1 << 16,
321 B18 = 1 << 18,
322 B19 = 1 << 19,
323 B20 = 1 << 20,
324 B21 = 1 << 21,
325 B22 = 1 << 22,
326 B23 = 1 << 23,
327 B24 = 1 << 24,
328 B25 = 1 << 25,
329 B26 = 1 << 26,
330 B27 = 1 << 27,
331
332 // Instruction bit masks.
333 RdMask = 15 << 12, // in str instruction
334 CondMask = 15 << 28,
335 CoprocessorMask = 15 << 8,
336 OpCodeMask = 15 << 21, // in data-processing instructions
337 Imm24Mask = (1 << 24) - 1,
338 Off12Mask = (1 << 12) - 1,
339 // Reserved condition.
340 nv = 15 << 28
341 };
342
343
344 // add(sp, sp, 4) instruction (aka Pop())
345 static const Instr kPopInstruction =
346 al | 4 * B21 | 4 | LeaveCC | I | sp.code() * B16 | sp.code() * B12;
347 // str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r))
348 // register r is not encoded.
349 static const Instr kPushRegPattern =
350 al | B26 | 4 | NegPreIndex | sp.code() * B16;
351 // ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r))
352 // register r is not encoded.
353 static const Instr kPopRegPattern =
354 al | B26 | L | 4 | PostIndex | sp.code() * B16;
355 // mov lr, pc
356 const Instr kMovLrPc = al | 13*B21 | pc.code() | lr.code() * B12;
357 // ldr pc, [pc, #XXX]
358 const Instr kLdrPCPattern = al | B26 | L | pc.code() * B16;
359
360 // Spare buffer.
361 static const int kMinimalBufferSize = 4*KB;
362 static byte* spare_buffer_ = NULL;
363
Assembler(void * buffer,int buffer_size)364 Assembler::Assembler(void* buffer, int buffer_size) {
365 if (buffer == NULL) {
366 // Do our own buffer management.
367 if (buffer_size <= kMinimalBufferSize) {
368 buffer_size = kMinimalBufferSize;
369
370 if (spare_buffer_ != NULL) {
371 buffer = spare_buffer_;
372 spare_buffer_ = NULL;
373 }
374 }
375 if (buffer == NULL) {
376 buffer_ = NewArray<byte>(buffer_size);
377 } else {
378 buffer_ = static_cast<byte*>(buffer);
379 }
380 buffer_size_ = buffer_size;
381 own_buffer_ = true;
382
383 } else {
384 // Use externally provided buffer instead.
385 ASSERT(buffer_size > 0);
386 buffer_ = static_cast<byte*>(buffer);
387 buffer_size_ = buffer_size;
388 own_buffer_ = false;
389 }
390
391 // Setup buffer pointers.
392 ASSERT(buffer_ != NULL);
393 pc_ = buffer_;
394 reloc_info_writer.Reposition(buffer_ + buffer_size, pc_);
395 num_prinfo_ = 0;
396 next_buffer_check_ = 0;
397 no_const_pool_before_ = 0;
398 last_const_pool_end_ = 0;
399 last_bound_pos_ = 0;
400 current_statement_position_ = RelocInfo::kNoPosition;
401 current_position_ = RelocInfo::kNoPosition;
402 written_statement_position_ = current_statement_position_;
403 written_position_ = current_position_;
404 }
405
406
~Assembler()407 Assembler::~Assembler() {
408 if (own_buffer_) {
409 if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) {
410 spare_buffer_ = buffer_;
411 } else {
412 DeleteArray(buffer_);
413 }
414 }
415 }
416
417
GetCode(CodeDesc * desc)418 void Assembler::GetCode(CodeDesc* desc) {
419 // Emit constant pool if necessary.
420 CheckConstPool(true, false);
421 ASSERT(num_prinfo_ == 0);
422
423 // Setup code descriptor.
424 desc->buffer = buffer_;
425 desc->buffer_size = buffer_size_;
426 desc->instr_size = pc_offset();
427 desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
428 }
429
430
Align(int m)431 void Assembler::Align(int m) {
432 ASSERT(m >= 4 && IsPowerOf2(m));
433 while ((pc_offset() & (m - 1)) != 0) {
434 nop();
435 }
436 }
437
438
439 // Labels refer to positions in the (to be) generated code.
440 // There are bound, linked, and unused labels.
441 //
442 // Bound labels refer to known positions in the already
443 // generated code. pos() is the position the label refers to.
444 //
445 // Linked labels refer to unknown positions in the code
446 // to be generated; pos() is the position of the last
447 // instruction using the label.
448
449
450 // The link chain is terminated by a negative code position (must be aligned)
451 const int kEndOfChain = -4;
452
453
target_at(int pos)454 int Assembler::target_at(int pos) {
455 Instr instr = instr_at(pos);
456 if ((instr & ~Imm24Mask) == 0) {
457 // Emitted label constant, not part of a branch.
458 return instr - (Code::kHeaderSize - kHeapObjectTag);
459 }
460 ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx imm24
461 int imm26 = ((instr & Imm24Mask) << 8) >> 6;
462 if ((instr & CondMask) == nv && (instr & B24) != 0)
463 // blx uses bit 24 to encode bit 2 of imm26
464 imm26 += 2;
465
466 return pos + kPcLoadDelta + imm26;
467 }
468
469
target_at_put(int pos,int target_pos)470 void Assembler::target_at_put(int pos, int target_pos) {
471 Instr instr = instr_at(pos);
472 if ((instr & ~Imm24Mask) == 0) {
473 ASSERT(target_pos == kEndOfChain || target_pos >= 0);
474 // Emitted label constant, not part of a branch.
475 // Make label relative to Code* of generated Code object.
476 instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag));
477 return;
478 }
479 int imm26 = target_pos - (pos + kPcLoadDelta);
480 ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx imm24
481 if ((instr & CondMask) == nv) {
482 // blx uses bit 24 to encode bit 2 of imm26
483 ASSERT((imm26 & 1) == 0);
484 instr = (instr & ~(B24 | Imm24Mask)) | ((imm26 & 2) >> 1)*B24;
485 } else {
486 ASSERT((imm26 & 3) == 0);
487 instr &= ~Imm24Mask;
488 }
489 int imm24 = imm26 >> 2;
490 ASSERT(is_int24(imm24));
491 instr_at_put(pos, instr | (imm24 & Imm24Mask));
492 }
493
494
print(Label * L)495 void Assembler::print(Label* L) {
496 if (L->is_unused()) {
497 PrintF("unused label\n");
498 } else if (L->is_bound()) {
499 PrintF("bound label to %d\n", L->pos());
500 } else if (L->is_linked()) {
501 Label l = *L;
502 PrintF("unbound label");
503 while (l.is_linked()) {
504 PrintF("@ %d ", l.pos());
505 Instr instr = instr_at(l.pos());
506 if ((instr & ~Imm24Mask) == 0) {
507 PrintF("value\n");
508 } else {
509 ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx
510 int cond = instr & CondMask;
511 const char* b;
512 const char* c;
513 if (cond == nv) {
514 b = "blx";
515 c = "";
516 } else {
517 if ((instr & B24) != 0)
518 b = "bl";
519 else
520 b = "b";
521
522 switch (cond) {
523 case eq: c = "eq"; break;
524 case ne: c = "ne"; break;
525 case hs: c = "hs"; break;
526 case lo: c = "lo"; break;
527 case mi: c = "mi"; break;
528 case pl: c = "pl"; break;
529 case vs: c = "vs"; break;
530 case vc: c = "vc"; break;
531 case hi: c = "hi"; break;
532 case ls: c = "ls"; break;
533 case ge: c = "ge"; break;
534 case lt: c = "lt"; break;
535 case gt: c = "gt"; break;
536 case le: c = "le"; break;
537 case al: c = ""; break;
538 default:
539 c = "";
540 UNREACHABLE();
541 }
542 }
543 PrintF("%s%s\n", b, c);
544 }
545 next(&l);
546 }
547 } else {
548 PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
549 }
550 }
551
552
bind_to(Label * L,int pos)553 void Assembler::bind_to(Label* L, int pos) {
554 ASSERT(0 <= pos && pos <= pc_offset()); // must have a valid binding position
555 while (L->is_linked()) {
556 int fixup_pos = L->pos();
557 next(L); // call next before overwriting link with target at fixup_pos
558 target_at_put(fixup_pos, pos);
559 }
560 L->bind_to(pos);
561
562 // Keep track of the last bound label so we don't eliminate any instructions
563 // before a bound label.
564 if (pos > last_bound_pos_)
565 last_bound_pos_ = pos;
566 }
567
568
link_to(Label * L,Label * appendix)569 void Assembler::link_to(Label* L, Label* appendix) {
570 if (appendix->is_linked()) {
571 if (L->is_linked()) {
572 // Append appendix to L's list.
573 int fixup_pos;
574 int link = L->pos();
575 do {
576 fixup_pos = link;
577 link = target_at(fixup_pos);
578 } while (link > 0);
579 ASSERT(link == kEndOfChain);
580 target_at_put(fixup_pos, appendix->pos());
581 } else {
582 // L is empty, simply use appendix.
583 *L = *appendix;
584 }
585 }
586 appendix->Unuse(); // appendix should not be used anymore
587 }
588
589
bind(Label * L)590 void Assembler::bind(Label* L) {
591 ASSERT(!L->is_bound()); // label can only be bound once
592 bind_to(L, pc_offset());
593 }
594
595
next(Label * L)596 void Assembler::next(Label* L) {
597 ASSERT(L->is_linked());
598 int link = target_at(L->pos());
599 if (link > 0) {
600 L->link_to(link);
601 } else {
602 ASSERT(link == kEndOfChain);
603 L->Unuse();
604 }
605 }
606
607
608 // Low-level code emission routines depending on the addressing mode.
fits_shifter(uint32_t imm32,uint32_t * rotate_imm,uint32_t * immed_8,Instr * instr)609 static bool fits_shifter(uint32_t imm32,
610 uint32_t* rotate_imm,
611 uint32_t* immed_8,
612 Instr* instr) {
613 // imm32 must be unsigned.
614 for (int rot = 0; rot < 16; rot++) {
615 uint32_t imm8 = (imm32 << 2*rot) | (imm32 >> (32 - 2*rot));
616 if ((imm8 <= 0xff)) {
617 *rotate_imm = rot;
618 *immed_8 = imm8;
619 return true;
620 }
621 }
622 // If the opcode is mov or mvn and if ~imm32 fits, change the opcode.
623 if (instr != NULL && (*instr & 0xd*B21) == 0xd*B21) {
624 if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
625 *instr ^= 0x2*B21;
626 return true;
627 }
628 }
629 return false;
630 }
631
632
633 // We have to use the temporary register for things that can be relocated even
634 // if they can be encoded in the ARM's 12 bits of immediate-offset instruction
635 // space. There is no guarantee that the relocated location can be similarly
636 // encoded.
MustUseIp(RelocInfo::Mode rmode)637 static bool MustUseIp(RelocInfo::Mode rmode) {
638 if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
639 #ifdef DEBUG
640 if (!Serializer::enabled()) {
641 Serializer::TooLateToEnableNow();
642 }
643 #endif // def DEBUG
644 return Serializer::enabled();
645 } else if (rmode == RelocInfo::NONE) {
646 return false;
647 }
648 return true;
649 }
650
651
addrmod1(Instr instr,Register rn,Register rd,const Operand & x)652 void Assembler::addrmod1(Instr instr,
653 Register rn,
654 Register rd,
655 const Operand& x) {
656 CheckBuffer();
657 ASSERT((instr & ~(CondMask | OpCodeMask | S)) == 0);
658 if (!x.rm_.is_valid()) {
659 // Immediate.
660 uint32_t rotate_imm;
661 uint32_t immed_8;
662 if (MustUseIp(x.rmode_) ||
663 !fits_shifter(x.imm32_, &rotate_imm, &immed_8, &instr)) {
664 // The immediate operand cannot be encoded as a shifter operand, so load
665 // it first to register ip and change the original instruction to use ip.
666 // However, if the original instruction is a 'mov rd, x' (not setting the
667 // condition code), then replace it with a 'ldr rd, [pc]'.
668 RecordRelocInfo(x.rmode_, x.imm32_);
669 CHECK(!rn.is(ip)); // rn should never be ip, or will be trashed
670 Condition cond = static_cast<Condition>(instr & CondMask);
671 if ((instr & ~CondMask) == 13*B21) { // mov, S not set
672 ldr(rd, MemOperand(pc, 0), cond);
673 } else {
674 ldr(ip, MemOperand(pc, 0), cond);
675 addrmod1(instr, rn, rd, Operand(ip));
676 }
677 return;
678 }
679 instr |= I | rotate_imm*B8 | immed_8;
680 } else if (!x.rs_.is_valid()) {
681 // Immediate shift.
682 instr |= x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
683 } else {
684 // Register shift.
685 ASSERT(!rn.is(pc) && !rd.is(pc) && !x.rm_.is(pc) && !x.rs_.is(pc));
686 instr |= x.rs_.code()*B8 | x.shift_op_ | B4 | x.rm_.code();
687 }
688 emit(instr | rn.code()*B16 | rd.code()*B12);
689 if (rn.is(pc) || x.rm_.is(pc))
690 // Block constant pool emission for one instruction after reading pc.
691 BlockConstPoolBefore(pc_offset() + kInstrSize);
692 }
693
694
addrmod2(Instr instr,Register rd,const MemOperand & x)695 void Assembler::addrmod2(Instr instr, Register rd, const MemOperand& x) {
696 ASSERT((instr & ~(CondMask | B | L)) == B26);
697 int am = x.am_;
698 if (!x.rm_.is_valid()) {
699 // Immediate offset.
700 int offset_12 = x.offset_;
701 if (offset_12 < 0) {
702 offset_12 = -offset_12;
703 am ^= U;
704 }
705 if (!is_uint12(offset_12)) {
706 // Immediate offset cannot be encoded, load it first to register ip
707 // rn (and rd in a load) should never be ip, or will be trashed.
708 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
709 mov(ip, Operand(x.offset_), LeaveCC,
710 static_cast<Condition>(instr & CondMask));
711 addrmod2(instr, rd, MemOperand(x.rn_, ip, x.am_));
712 return;
713 }
714 ASSERT(offset_12 >= 0); // no masking needed
715 instr |= offset_12;
716 } else {
717 // Register offset (shift_imm_ and shift_op_ are 0) or scaled
718 // register offset the constructors make sure than both shift_imm_
719 // and shift_op_ are initialized.
720 ASSERT(!x.rm_.is(pc));
721 instr |= B25 | x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
722 }
723 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback
724 emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
725 }
726
727
addrmod3(Instr instr,Register rd,const MemOperand & x)728 void Assembler::addrmod3(Instr instr, Register rd, const MemOperand& x) {
729 ASSERT((instr & ~(CondMask | L | S6 | H)) == (B4 | B7));
730 ASSERT(x.rn_.is_valid());
731 int am = x.am_;
732 if (!x.rm_.is_valid()) {
733 // Immediate offset.
734 int offset_8 = x.offset_;
735 if (offset_8 < 0) {
736 offset_8 = -offset_8;
737 am ^= U;
738 }
739 if (!is_uint8(offset_8)) {
740 // Immediate offset cannot be encoded, load it first to register ip
741 // rn (and rd in a load) should never be ip, or will be trashed.
742 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
743 mov(ip, Operand(x.offset_), LeaveCC,
744 static_cast<Condition>(instr & CondMask));
745 addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
746 return;
747 }
748 ASSERT(offset_8 >= 0); // no masking needed
749 instr |= B | (offset_8 >> 4)*B8 | (offset_8 & 0xf);
750 } else if (x.shift_imm_ != 0) {
751 // Scaled register offset not supported, load index first
752 // rn (and rd in a load) should never be ip, or will be trashed.
753 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
754 mov(ip, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC,
755 static_cast<Condition>(instr & CondMask));
756 addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
757 return;
758 } else {
759 // Register offset.
760 ASSERT((am & (P|W)) == P || !x.rm_.is(pc)); // no pc index with writeback
761 instr |= x.rm_.code();
762 }
763 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback
764 emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
765 }
766
767
addrmod4(Instr instr,Register rn,RegList rl)768 void Assembler::addrmod4(Instr instr, Register rn, RegList rl) {
769 ASSERT((instr & ~(CondMask | P | U | W | L)) == B27);
770 ASSERT(rl != 0);
771 ASSERT(!rn.is(pc));
772 emit(instr | rn.code()*B16 | rl);
773 }
774
775
addrmod5(Instr instr,CRegister crd,const MemOperand & x)776 void Assembler::addrmod5(Instr instr, CRegister crd, const MemOperand& x) {
777 // Unindexed addressing is not encoded by this function.
778 ASSERT_EQ((B27 | B26),
779 (instr & ~(CondMask | CoprocessorMask | P | U | N | W | L)));
780 ASSERT(x.rn_.is_valid() && !x.rm_.is_valid());
781 int am = x.am_;
782 int offset_8 = x.offset_;
783 ASSERT((offset_8 & 3) == 0); // offset must be an aligned word offset
784 offset_8 >>= 2;
785 if (offset_8 < 0) {
786 offset_8 = -offset_8;
787 am ^= U;
788 }
789 ASSERT(is_uint8(offset_8)); // unsigned word offset must fit in a byte
790 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback
791
792 // Post-indexed addressing requires W == 1; different than in addrmod2/3.
793 if ((am & P) == 0)
794 am |= W;
795
796 ASSERT(offset_8 >= 0); // no masking needed
797 emit(instr | am | x.rn_.code()*B16 | crd.code()*B12 | offset_8);
798 }
799
800
branch_offset(Label * L,bool jump_elimination_allowed)801 int Assembler::branch_offset(Label* L, bool jump_elimination_allowed) {
802 int target_pos;
803 if (L->is_bound()) {
804 target_pos = L->pos();
805 } else {
806 if (L->is_linked()) {
807 target_pos = L->pos(); // L's link
808 } else {
809 target_pos = kEndOfChain;
810 }
811 L->link_to(pc_offset());
812 }
813
814 // Block the emission of the constant pool, since the branch instruction must
815 // be emitted at the pc offset recorded by the label.
816 BlockConstPoolBefore(pc_offset() + kInstrSize);
817 return target_pos - (pc_offset() + kPcLoadDelta);
818 }
819
820
label_at_put(Label * L,int at_offset)821 void Assembler::label_at_put(Label* L, int at_offset) {
822 int target_pos;
823 if (L->is_bound()) {
824 target_pos = L->pos();
825 } else {
826 if (L->is_linked()) {
827 target_pos = L->pos(); // L's link
828 } else {
829 target_pos = kEndOfChain;
830 }
831 L->link_to(at_offset);
832 instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag));
833 }
834 }
835
836
837 // Branch instructions.
b(int branch_offset,Condition cond)838 void Assembler::b(int branch_offset, Condition cond) {
839 ASSERT((branch_offset & 3) == 0);
840 int imm24 = branch_offset >> 2;
841 ASSERT(is_int24(imm24));
842 emit(cond | B27 | B25 | (imm24 & Imm24Mask));
843
844 if (cond == al)
845 // Dead code is a good location to emit the constant pool.
846 CheckConstPool(false, false);
847 }
848
849
bl(int branch_offset,Condition cond)850 void Assembler::bl(int branch_offset, Condition cond) {
851 ASSERT((branch_offset & 3) == 0);
852 int imm24 = branch_offset >> 2;
853 ASSERT(is_int24(imm24));
854 emit(cond | B27 | B25 | B24 | (imm24 & Imm24Mask));
855 }
856
857
blx(int branch_offset)858 void Assembler::blx(int branch_offset) { // v5 and above
859 WriteRecordedPositions();
860 ASSERT((branch_offset & 1) == 0);
861 int h = ((branch_offset & 2) >> 1)*B24;
862 int imm24 = branch_offset >> 2;
863 ASSERT(is_int24(imm24));
864 emit(15 << 28 | B27 | B25 | h | (imm24 & Imm24Mask));
865 }
866
867
blx(Register target,Condition cond)868 void Assembler::blx(Register target, Condition cond) { // v5 and above
869 WriteRecordedPositions();
870 ASSERT(!target.is(pc));
871 emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | 3*B4 | target.code());
872 }
873
874
bx(Register target,Condition cond)875 void Assembler::bx(Register target, Condition cond) { // v5 and above, plus v4t
876 WriteRecordedPositions();
877 ASSERT(!target.is(pc)); // use of pc is actually allowed, but discouraged
878 emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | B4 | target.code());
879 }
880
881
882 // Data-processing instructions.
883
884 // UBFX <Rd>,<Rn>,#<lsb>,#<width - 1>
885 // Instruction details available in ARM DDI 0406A, A8-464.
886 // cond(31-28) | 01111(27-23)| 1(22) | 1(21) | widthm1(20-16) |
887 // Rd(15-12) | lsb(11-7) | 101(6-4) | Rn(3-0)
ubfx(Register dst,Register src1,const Operand & src2,const Operand & src3,Condition cond)888 void Assembler::ubfx(Register dst, Register src1, const Operand& src2,
889 const Operand& src3, Condition cond) {
890 ASSERT(!src2.rm_.is_valid() && !src3.rm_.is_valid());
891 ASSERT(static_cast<uint32_t>(src2.imm32_) <= 0x1f);
892 ASSERT(static_cast<uint32_t>(src3.imm32_) <= 0x1f);
893 emit(cond | 0x3F*B21 | src3.imm32_*B16 |
894 dst.code()*B12 | src2.imm32_*B7 | 0x5*B4 | src1.code());
895 }
896
897
and_(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)898 void Assembler::and_(Register dst, Register src1, const Operand& src2,
899 SBit s, Condition cond) {
900 addrmod1(cond | 0*B21 | s, src1, dst, src2);
901 }
902
903
eor(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)904 void Assembler::eor(Register dst, Register src1, const Operand& src2,
905 SBit s, Condition cond) {
906 addrmod1(cond | 1*B21 | s, src1, dst, src2);
907 }
908
909
sub(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)910 void Assembler::sub(Register dst, Register src1, const Operand& src2,
911 SBit s, Condition cond) {
912 addrmod1(cond | 2*B21 | s, src1, dst, src2);
913 }
914
915
rsb(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)916 void Assembler::rsb(Register dst, Register src1, const Operand& src2,
917 SBit s, Condition cond) {
918 addrmod1(cond | 3*B21 | s, src1, dst, src2);
919 }
920
921
add(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)922 void Assembler::add(Register dst, Register src1, const Operand& src2,
923 SBit s, Condition cond) {
924 addrmod1(cond | 4*B21 | s, src1, dst, src2);
925
926 // Eliminate pattern: push(r), pop()
927 // str(src, MemOperand(sp, 4, NegPreIndex), al);
928 // add(sp, sp, Operand(kPointerSize));
929 // Both instructions can be eliminated.
930 int pattern_size = 2 * kInstrSize;
931 if (FLAG_push_pop_elimination &&
932 last_bound_pos_ <= (pc_offset() - pattern_size) &&
933 reloc_info_writer.last_pc() <= (pc_ - pattern_size) &&
934 // Pattern.
935 instr_at(pc_ - 1 * kInstrSize) == kPopInstruction &&
936 (instr_at(pc_ - 2 * kInstrSize) & ~RdMask) == kPushRegPattern) {
937 pc_ -= 2 * kInstrSize;
938 if (FLAG_print_push_pop_elimination) {
939 PrintF("%x push(reg)/pop() eliminated\n", pc_offset());
940 }
941 }
942 }
943
944
adc(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)945 void Assembler::adc(Register dst, Register src1, const Operand& src2,
946 SBit s, Condition cond) {
947 addrmod1(cond | 5*B21 | s, src1, dst, src2);
948 }
949
950
sbc(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)951 void Assembler::sbc(Register dst, Register src1, const Operand& src2,
952 SBit s, Condition cond) {
953 addrmod1(cond | 6*B21 | s, src1, dst, src2);
954 }
955
956
rsc(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)957 void Assembler::rsc(Register dst, Register src1, const Operand& src2,
958 SBit s, Condition cond) {
959 addrmod1(cond | 7*B21 | s, src1, dst, src2);
960 }
961
962
tst(Register src1,const Operand & src2,Condition cond)963 void Assembler::tst(Register src1, const Operand& src2, Condition cond) {
964 addrmod1(cond | 8*B21 | S, src1, r0, src2);
965 }
966
967
teq(Register src1,const Operand & src2,Condition cond)968 void Assembler::teq(Register src1, const Operand& src2, Condition cond) {
969 addrmod1(cond | 9*B21 | S, src1, r0, src2);
970 }
971
972
cmp(Register src1,const Operand & src2,Condition cond)973 void Assembler::cmp(Register src1, const Operand& src2, Condition cond) {
974 addrmod1(cond | 10*B21 | S, src1, r0, src2);
975 }
976
977
cmn(Register src1,const Operand & src2,Condition cond)978 void Assembler::cmn(Register src1, const Operand& src2, Condition cond) {
979 addrmod1(cond | 11*B21 | S, src1, r0, src2);
980 }
981
982
orr(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)983 void Assembler::orr(Register dst, Register src1, const Operand& src2,
984 SBit s, Condition cond) {
985 addrmod1(cond | 12*B21 | s, src1, dst, src2);
986 }
987
988
mov(Register dst,const Operand & src,SBit s,Condition cond)989 void Assembler::mov(Register dst, const Operand& src, SBit s, Condition cond) {
990 if (dst.is(pc)) {
991 WriteRecordedPositions();
992 }
993 addrmod1(cond | 13*B21 | s, r0, dst, src);
994 }
995
996
bic(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)997 void Assembler::bic(Register dst, Register src1, const Operand& src2,
998 SBit s, Condition cond) {
999 addrmod1(cond | 14*B21 | s, src1, dst, src2);
1000 }
1001
1002
mvn(Register dst,const Operand & src,SBit s,Condition cond)1003 void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) {
1004 addrmod1(cond | 15*B21 | s, r0, dst, src);
1005 }
1006
1007
1008 // Multiply instructions.
mla(Register dst,Register src1,Register src2,Register srcA,SBit s,Condition cond)1009 void Assembler::mla(Register dst, Register src1, Register src2, Register srcA,
1010 SBit s, Condition cond) {
1011 ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
1012 emit(cond | A | s | dst.code()*B16 | srcA.code()*B12 |
1013 src2.code()*B8 | B7 | B4 | src1.code());
1014 }
1015
1016
mul(Register dst,Register src1,Register src2,SBit s,Condition cond)1017 void Assembler::mul(Register dst, Register src1, Register src2,
1018 SBit s, Condition cond) {
1019 ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
1020 // dst goes in bits 16-19 for this instruction!
1021 emit(cond | s | dst.code()*B16 | src2.code()*B8 | B7 | B4 | src1.code());
1022 }
1023
1024
smlal(Register dstL,Register dstH,Register src1,Register src2,SBit s,Condition cond)1025 void Assembler::smlal(Register dstL,
1026 Register dstH,
1027 Register src1,
1028 Register src2,
1029 SBit s,
1030 Condition cond) {
1031 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1032 ASSERT(!dstL.is(dstH));
1033 emit(cond | B23 | B22 | A | s | dstH.code()*B16 | dstL.code()*B12 |
1034 src2.code()*B8 | B7 | B4 | src1.code());
1035 }
1036
1037
smull(Register dstL,Register dstH,Register src1,Register src2,SBit s,Condition cond)1038 void Assembler::smull(Register dstL,
1039 Register dstH,
1040 Register src1,
1041 Register src2,
1042 SBit s,
1043 Condition cond) {
1044 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1045 ASSERT(!dstL.is(dstH));
1046 emit(cond | B23 | B22 | s | dstH.code()*B16 | dstL.code()*B12 |
1047 src2.code()*B8 | B7 | B4 | src1.code());
1048 }
1049
1050
umlal(Register dstL,Register dstH,Register src1,Register src2,SBit s,Condition cond)1051 void Assembler::umlal(Register dstL,
1052 Register dstH,
1053 Register src1,
1054 Register src2,
1055 SBit s,
1056 Condition cond) {
1057 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1058 ASSERT(!dstL.is(dstH));
1059 emit(cond | B23 | A | s | dstH.code()*B16 | dstL.code()*B12 |
1060 src2.code()*B8 | B7 | B4 | src1.code());
1061 }
1062
1063
umull(Register dstL,Register dstH,Register src1,Register src2,SBit s,Condition cond)1064 void Assembler::umull(Register dstL,
1065 Register dstH,
1066 Register src1,
1067 Register src2,
1068 SBit s,
1069 Condition cond) {
1070 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1071 ASSERT(!dstL.is(dstH));
1072 emit(cond | B23 | s | dstH.code()*B16 | dstL.code()*B12 |
1073 src2.code()*B8 | B7 | B4 | src1.code());
1074 }
1075
1076
1077 // Miscellaneous arithmetic instructions.
clz(Register dst,Register src,Condition cond)1078 void Assembler::clz(Register dst, Register src, Condition cond) {
1079 // v5 and above.
1080 ASSERT(!dst.is(pc) && !src.is(pc));
1081 emit(cond | B24 | B22 | B21 | 15*B16 | dst.code()*B12 |
1082 15*B8 | B4 | src.code());
1083 }
1084
1085
1086 // Status register access instructions.
mrs(Register dst,SRegister s,Condition cond)1087 void Assembler::mrs(Register dst, SRegister s, Condition cond) {
1088 ASSERT(!dst.is(pc));
1089 emit(cond | B24 | s | 15*B16 | dst.code()*B12);
1090 }
1091
1092
msr(SRegisterFieldMask fields,const Operand & src,Condition cond)1093 void Assembler::msr(SRegisterFieldMask fields, const Operand& src,
1094 Condition cond) {
1095 ASSERT(fields >= B16 && fields < B20); // at least one field set
1096 Instr instr;
1097 if (!src.rm_.is_valid()) {
1098 // Immediate.
1099 uint32_t rotate_imm;
1100 uint32_t immed_8;
1101 if (MustUseIp(src.rmode_) ||
1102 !fits_shifter(src.imm32_, &rotate_imm, &immed_8, NULL)) {
1103 // Immediate operand cannot be encoded, load it first to register ip.
1104 RecordRelocInfo(src.rmode_, src.imm32_);
1105 ldr(ip, MemOperand(pc, 0), cond);
1106 msr(fields, Operand(ip), cond);
1107 return;
1108 }
1109 instr = I | rotate_imm*B8 | immed_8;
1110 } else {
1111 ASSERT(!src.rs_.is_valid() && src.shift_imm_ == 0); // only rm allowed
1112 instr = src.rm_.code();
1113 }
1114 emit(cond | instr | B24 | B21 | fields | 15*B12);
1115 }
1116
1117
1118 // Load/Store instructions.
ldr(Register dst,const MemOperand & src,Condition cond)1119 void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) {
1120 if (dst.is(pc)) {
1121 WriteRecordedPositions();
1122 }
1123 addrmod2(cond | B26 | L, dst, src);
1124
1125 // Eliminate pattern: push(r), pop(r)
1126 // str(r, MemOperand(sp, 4, NegPreIndex), al)
1127 // ldr(r, MemOperand(sp, 4, PostIndex), al)
1128 // Both instructions can be eliminated.
1129 int pattern_size = 2 * kInstrSize;
1130 if (FLAG_push_pop_elimination &&
1131 last_bound_pos_ <= (pc_offset() - pattern_size) &&
1132 reloc_info_writer.last_pc() <= (pc_ - pattern_size) &&
1133 // Pattern.
1134 instr_at(pc_ - 1 * kInstrSize) == (kPopRegPattern | dst.code() * B12) &&
1135 instr_at(pc_ - 2 * kInstrSize) == (kPushRegPattern | dst.code() * B12)) {
1136 pc_ -= 2 * kInstrSize;
1137 if (FLAG_print_push_pop_elimination) {
1138 PrintF("%x push/pop (same reg) eliminated\n", pc_offset());
1139 }
1140 }
1141 }
1142
1143
str(Register src,const MemOperand & dst,Condition cond)1144 void Assembler::str(Register src, const MemOperand& dst, Condition cond) {
1145 addrmod2(cond | B26, src, dst);
1146
1147 // Eliminate pattern: pop(), push(r)
1148 // add sp, sp, #4 LeaveCC, al; str r, [sp, #-4], al
1149 // -> str r, [sp, 0], al
1150 int pattern_size = 2 * kInstrSize;
1151 if (FLAG_push_pop_elimination &&
1152 last_bound_pos_ <= (pc_offset() - pattern_size) &&
1153 reloc_info_writer.last_pc() <= (pc_ - pattern_size) &&
1154 // Pattern.
1155 instr_at(pc_ - 1 * kInstrSize) == (kPushRegPattern | src.code() * B12) &&
1156 instr_at(pc_ - 2 * kInstrSize) == kPopInstruction) {
1157 pc_ -= 2 * kInstrSize;
1158 emit(al | B26 | 0 | Offset | sp.code() * B16 | src.code() * B12);
1159 if (FLAG_print_push_pop_elimination) {
1160 PrintF("%x pop()/push(reg) eliminated\n", pc_offset());
1161 }
1162 }
1163 }
1164
1165
ldrb(Register dst,const MemOperand & src,Condition cond)1166 void Assembler::ldrb(Register dst, const MemOperand& src, Condition cond) {
1167 addrmod2(cond | B26 | B | L, dst, src);
1168 }
1169
1170
strb(Register src,const MemOperand & dst,Condition cond)1171 void Assembler::strb(Register src, const MemOperand& dst, Condition cond) {
1172 addrmod2(cond | B26 | B, src, dst);
1173 }
1174
1175
ldrh(Register dst,const MemOperand & src,Condition cond)1176 void Assembler::ldrh(Register dst, const MemOperand& src, Condition cond) {
1177 addrmod3(cond | L | B7 | H | B4, dst, src);
1178 }
1179
1180
strh(Register src,const MemOperand & dst,Condition cond)1181 void Assembler::strh(Register src, const MemOperand& dst, Condition cond) {
1182 addrmod3(cond | B7 | H | B4, src, dst);
1183 }
1184
1185
ldrsb(Register dst,const MemOperand & src,Condition cond)1186 void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) {
1187 addrmod3(cond | L | B7 | S6 | B4, dst, src);
1188 }
1189
1190
ldrsh(Register dst,const MemOperand & src,Condition cond)1191 void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) {
1192 addrmod3(cond | L | B7 | S6 | H | B4, dst, src);
1193 }
1194
1195
1196 // Load/Store multiple instructions.
ldm(BlockAddrMode am,Register base,RegList dst,Condition cond)1197 void Assembler::ldm(BlockAddrMode am,
1198 Register base,
1199 RegList dst,
1200 Condition cond) {
1201 // ABI stack constraint: ldmxx base, {..sp..} base != sp is not restartable.
1202 ASSERT(base.is(sp) || (dst & sp.bit()) == 0);
1203
1204 addrmod4(cond | B27 | am | L, base, dst);
1205
1206 // Emit the constant pool after a function return implemented by ldm ..{..pc}.
1207 if (cond == al && (dst & pc.bit()) != 0) {
1208 // There is a slight chance that the ldm instruction was actually a call,
1209 // in which case it would be wrong to return into the constant pool; we
1210 // recognize this case by checking if the emission of the pool was blocked
1211 // at the pc of the ldm instruction by a mov lr, pc instruction; if this is
1212 // the case, we emit a jump over the pool.
1213 CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize);
1214 }
1215 }
1216
1217
stm(BlockAddrMode am,Register base,RegList src,Condition cond)1218 void Assembler::stm(BlockAddrMode am,
1219 Register base,
1220 RegList src,
1221 Condition cond) {
1222 addrmod4(cond | B27 | am, base, src);
1223 }
1224
1225
1226 // Semaphore instructions.
swp(Register dst,Register src,Register base,Condition cond)1227 void Assembler::swp(Register dst, Register src, Register base, Condition cond) {
1228 ASSERT(!dst.is(pc) && !src.is(pc) && !base.is(pc));
1229 ASSERT(!dst.is(base) && !src.is(base));
1230 emit(cond | P | base.code()*B16 | dst.code()*B12 |
1231 B7 | B4 | src.code());
1232 }
1233
1234
swpb(Register dst,Register src,Register base,Condition cond)1235 void Assembler::swpb(Register dst,
1236 Register src,
1237 Register base,
1238 Condition cond) {
1239 ASSERT(!dst.is(pc) && !src.is(pc) && !base.is(pc));
1240 ASSERT(!dst.is(base) && !src.is(base));
1241 emit(cond | P | B | base.code()*B16 | dst.code()*B12 |
1242 B7 | B4 | src.code());
1243 }
1244
1245
1246 // Exception-generating instructions and debugging support.
stop(const char * msg)1247 void Assembler::stop(const char* msg) {
1248 #ifndef __arm__
1249 // The simulator handles these special instructions and stops execution.
1250 emit(15 << 28 | ((intptr_t) msg));
1251 #else // def __arm__
1252 #ifdef CAN_USE_ARMV5_INSTRUCTIONS
1253 bkpt(0);
1254 #else // ndef CAN_USE_ARMV5_INSTRUCTIONS
1255 swi(0x9f0001);
1256 #endif // ndef CAN_USE_ARMV5_INSTRUCTIONS
1257 #endif // def __arm__
1258 }
1259
1260
bkpt(uint32_t imm16)1261 void Assembler::bkpt(uint32_t imm16) { // v5 and above
1262 ASSERT(is_uint16(imm16));
1263 emit(al | B24 | B21 | (imm16 >> 4)*B8 | 7*B4 | (imm16 & 0xf));
1264 }
1265
1266
swi(uint32_t imm24,Condition cond)1267 void Assembler::swi(uint32_t imm24, Condition cond) {
1268 ASSERT(is_uint24(imm24));
1269 emit(cond | 15*B24 | imm24);
1270 }
1271
1272
1273 // Coprocessor instructions.
cdp(Coprocessor coproc,int opcode_1,CRegister crd,CRegister crn,CRegister crm,int opcode_2,Condition cond)1274 void Assembler::cdp(Coprocessor coproc,
1275 int opcode_1,
1276 CRegister crd,
1277 CRegister crn,
1278 CRegister crm,
1279 int opcode_2,
1280 Condition cond) {
1281 ASSERT(is_uint4(opcode_1) && is_uint3(opcode_2));
1282 emit(cond | B27 | B26 | B25 | (opcode_1 & 15)*B20 | crn.code()*B16 |
1283 crd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | crm.code());
1284 }
1285
1286
cdp2(Coprocessor coproc,int opcode_1,CRegister crd,CRegister crn,CRegister crm,int opcode_2)1287 void Assembler::cdp2(Coprocessor coproc,
1288 int opcode_1,
1289 CRegister crd,
1290 CRegister crn,
1291 CRegister crm,
1292 int opcode_2) { // v5 and above
1293 cdp(coproc, opcode_1, crd, crn, crm, opcode_2, static_cast<Condition>(nv));
1294 }
1295
1296
mcr(Coprocessor coproc,int opcode_1,Register rd,CRegister crn,CRegister crm,int opcode_2,Condition cond)1297 void Assembler::mcr(Coprocessor coproc,
1298 int opcode_1,
1299 Register rd,
1300 CRegister crn,
1301 CRegister crm,
1302 int opcode_2,
1303 Condition cond) {
1304 ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2));
1305 emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | crn.code()*B16 |
1306 rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
1307 }
1308
1309
mcr2(Coprocessor coproc,int opcode_1,Register rd,CRegister crn,CRegister crm,int opcode_2)1310 void Assembler::mcr2(Coprocessor coproc,
1311 int opcode_1,
1312 Register rd,
1313 CRegister crn,
1314 CRegister crm,
1315 int opcode_2) { // v5 and above
1316 mcr(coproc, opcode_1, rd, crn, crm, opcode_2, static_cast<Condition>(nv));
1317 }
1318
1319
mrc(Coprocessor coproc,int opcode_1,Register rd,CRegister crn,CRegister crm,int opcode_2,Condition cond)1320 void Assembler::mrc(Coprocessor coproc,
1321 int opcode_1,
1322 Register rd,
1323 CRegister crn,
1324 CRegister crm,
1325 int opcode_2,
1326 Condition cond) {
1327 ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2));
1328 emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | L | crn.code()*B16 |
1329 rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
1330 }
1331
1332
mrc2(Coprocessor coproc,int opcode_1,Register rd,CRegister crn,CRegister crm,int opcode_2)1333 void Assembler::mrc2(Coprocessor coproc,
1334 int opcode_1,
1335 Register rd,
1336 CRegister crn,
1337 CRegister crm,
1338 int opcode_2) { // v5 and above
1339 mrc(coproc, opcode_1, rd, crn, crm, opcode_2, static_cast<Condition>(nv));
1340 }
1341
1342
ldc(Coprocessor coproc,CRegister crd,const MemOperand & src,LFlag l,Condition cond)1343 void Assembler::ldc(Coprocessor coproc,
1344 CRegister crd,
1345 const MemOperand& src,
1346 LFlag l,
1347 Condition cond) {
1348 addrmod5(cond | B27 | B26 | l | L | coproc*B8, crd, src);
1349 }
1350
1351
ldc(Coprocessor coproc,CRegister crd,Register rn,int option,LFlag l,Condition cond)1352 void Assembler::ldc(Coprocessor coproc,
1353 CRegister crd,
1354 Register rn,
1355 int option,
1356 LFlag l,
1357 Condition cond) {
1358 // Unindexed addressing.
1359 ASSERT(is_uint8(option));
1360 emit(cond | B27 | B26 | U | l | L | rn.code()*B16 | crd.code()*B12 |
1361 coproc*B8 | (option & 255));
1362 }
1363
1364
ldc2(Coprocessor coproc,CRegister crd,const MemOperand & src,LFlag l)1365 void Assembler::ldc2(Coprocessor coproc,
1366 CRegister crd,
1367 const MemOperand& src,
1368 LFlag l) { // v5 and above
1369 ldc(coproc, crd, src, l, static_cast<Condition>(nv));
1370 }
1371
1372
ldc2(Coprocessor coproc,CRegister crd,Register rn,int option,LFlag l)1373 void Assembler::ldc2(Coprocessor coproc,
1374 CRegister crd,
1375 Register rn,
1376 int option,
1377 LFlag l) { // v5 and above
1378 ldc(coproc, crd, rn, option, l, static_cast<Condition>(nv));
1379 }
1380
1381
stc(Coprocessor coproc,CRegister crd,const MemOperand & dst,LFlag l,Condition cond)1382 void Assembler::stc(Coprocessor coproc,
1383 CRegister crd,
1384 const MemOperand& dst,
1385 LFlag l,
1386 Condition cond) {
1387 addrmod5(cond | B27 | B26 | l | coproc*B8, crd, dst);
1388 }
1389
1390
stc(Coprocessor coproc,CRegister crd,Register rn,int option,LFlag l,Condition cond)1391 void Assembler::stc(Coprocessor coproc,
1392 CRegister crd,
1393 Register rn,
1394 int option,
1395 LFlag l,
1396 Condition cond) {
1397 // Unindexed addressing.
1398 ASSERT(is_uint8(option));
1399 emit(cond | B27 | B26 | U | l | rn.code()*B16 | crd.code()*B12 |
1400 coproc*B8 | (option & 255));
1401 }
1402
1403
stc2(Coprocessor coproc,CRegister crd,const MemOperand & dst,LFlag l)1404 void Assembler::stc2(Coprocessor
1405 coproc, CRegister crd,
1406 const MemOperand& dst,
1407 LFlag l) { // v5 and above
1408 stc(coproc, crd, dst, l, static_cast<Condition>(nv));
1409 }
1410
1411
stc2(Coprocessor coproc,CRegister crd,Register rn,int option,LFlag l)1412 void Assembler::stc2(Coprocessor coproc,
1413 CRegister crd,
1414 Register rn,
1415 int option,
1416 LFlag l) { // v5 and above
1417 stc(coproc, crd, rn, option, l, static_cast<Condition>(nv));
1418 }
1419
1420
1421 // Support for VFP.
vldr(const DwVfpRegister dst,const Register base,int offset,const Condition cond)1422 void Assembler::vldr(const DwVfpRegister dst,
1423 const Register base,
1424 int offset,
1425 const Condition cond) {
1426 // Ddst = MEM(Rbase + offset).
1427 // Instruction details available in ARM DDI 0406A, A8-628.
1428 // cond(31-28) | 1101(27-24)| 1001(23-20) | Rbase(19-16) |
1429 // Vdst(15-12) | 1011(11-8) | offset
1430 ASSERT(CpuFeatures::IsEnabled(VFP3));
1431 ASSERT(offset % 4 == 0);
1432 emit(cond | 0xD9*B20 | base.code()*B16 | dst.code()*B12 |
1433 0xB*B8 | ((offset / 4) & 255));
1434 }
1435
1436
vstr(const DwVfpRegister src,const Register base,int offset,const Condition cond)1437 void Assembler::vstr(const DwVfpRegister src,
1438 const Register base,
1439 int offset,
1440 const Condition cond) {
1441 // MEM(Rbase + offset) = Dsrc.
1442 // Instruction details available in ARM DDI 0406A, A8-786.
1443 // cond(31-28) | 1101(27-24)| 1000(23-20) | | Rbase(19-16) |
1444 // Vsrc(15-12) | 1011(11-8) | (offset/4)
1445 ASSERT(CpuFeatures::IsEnabled(VFP3));
1446 ASSERT(offset % 4 == 0);
1447 emit(cond | 0xD8*B20 | base.code()*B16 | src.code()*B12 |
1448 0xB*B8 | ((offset / 4) & 255));
1449 }
1450
1451
vmov(const DwVfpRegister dst,const Register src1,const Register src2,const Condition cond)1452 void Assembler::vmov(const DwVfpRegister dst,
1453 const Register src1,
1454 const Register src2,
1455 const Condition cond) {
1456 // Dm = <Rt,Rt2>.
1457 // Instruction details available in ARM DDI 0406A, A8-646.
1458 // cond(31-28) | 1100(27-24)| 010(23-21) | op=0(20) | Rt2(19-16) |
1459 // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
1460 ASSERT(CpuFeatures::IsEnabled(VFP3));
1461 ASSERT(!src1.is(pc) && !src2.is(pc));
1462 emit(cond | 0xC*B24 | B22 | src2.code()*B16 |
1463 src1.code()*B12 | 0xB*B8 | B4 | dst.code());
1464 }
1465
1466
vmov(const Register dst1,const Register dst2,const DwVfpRegister src,const Condition cond)1467 void Assembler::vmov(const Register dst1,
1468 const Register dst2,
1469 const DwVfpRegister src,
1470 const Condition cond) {
1471 // <Rt,Rt2> = Dm.
1472 // Instruction details available in ARM DDI 0406A, A8-646.
1473 // cond(31-28) | 1100(27-24)| 010(23-21) | op=1(20) | Rt2(19-16) |
1474 // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
1475 ASSERT(CpuFeatures::IsEnabled(VFP3));
1476 ASSERT(!dst1.is(pc) && !dst2.is(pc));
1477 emit(cond | 0xC*B24 | B22 | B20 | dst2.code()*B16 |
1478 dst1.code()*B12 | 0xB*B8 | B4 | src.code());
1479 }
1480
1481
vmov(const SwVfpRegister dst,const Register src,const Condition cond)1482 void Assembler::vmov(const SwVfpRegister dst,
1483 const Register src,
1484 const Condition cond) {
1485 // Sn = Rt.
1486 // Instruction details available in ARM DDI 0406A, A8-642.
1487 // cond(31-28) | 1110(27-24)| 000(23-21) | op=0(20) | Vn(19-16) |
1488 // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
1489 ASSERT(CpuFeatures::IsEnabled(VFP3));
1490 ASSERT(!src.is(pc));
1491 emit(cond | 0xE*B24 | (dst.code() >> 1)*B16 |
1492 src.code()*B12 | 0xA*B8 | (0x1 & dst.code())*B7 | B4);
1493 }
1494
1495
vmov(const Register dst,const SwVfpRegister src,const Condition cond)1496 void Assembler::vmov(const Register dst,
1497 const SwVfpRegister src,
1498 const Condition cond) {
1499 // Rt = Sn.
1500 // Instruction details available in ARM DDI 0406A, A8-642.
1501 // cond(31-28) | 1110(27-24)| 000(23-21) | op=1(20) | Vn(19-16) |
1502 // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
1503 ASSERT(CpuFeatures::IsEnabled(VFP3));
1504 ASSERT(!dst.is(pc));
1505 emit(cond | 0xE*B24 | B20 | (src.code() >> 1)*B16 |
1506 dst.code()*B12 | 0xA*B8 | (0x1 & src.code())*B7 | B4);
1507 }
1508
1509
vcvt(const DwVfpRegister dst,const SwVfpRegister src,const Condition cond)1510 void Assembler::vcvt(const DwVfpRegister dst,
1511 const SwVfpRegister src,
1512 const Condition cond) {
1513 // Dd = Sm (integer in Sm converted to IEEE 64-bit doubles in Dd).
1514 // Instruction details available in ARM DDI 0406A, A8-576.
1515 // cond(31-28) | 11101(27-23)| D=?(22) | 11(21-20) | 1(19) | opc2=000(18-16) |
1516 // Vd(15-12) | 101(11-9) | sz(8)=1 | op(7)=1 | 1(6) | M=?(5) | 0(4) | Vm(3-0)
1517 ASSERT(CpuFeatures::IsEnabled(VFP3));
1518 emit(cond | 0xE*B24 | B23 | 0x3*B20 | B19 |
1519 dst.code()*B12 | 0x5*B9 | B8 | B7 | B6 |
1520 (0x1 & src.code())*B5 | (src.code() >> 1));
1521 }
1522
1523
vcvt(const SwVfpRegister dst,const DwVfpRegister src,const Condition cond)1524 void Assembler::vcvt(const SwVfpRegister dst,
1525 const DwVfpRegister src,
1526 const Condition cond) {
1527 // Sd = Dm (IEEE 64-bit doubles in Dm converted to 32 bit integer in Sd).
1528 // Instruction details available in ARM DDI 0406A, A8-576.
1529 // cond(31-28) | 11101(27-23)| D=?(22) | 11(21-20) | 1(19) | opc2=101(18-16)|
1530 // Vd(15-12) | 101(11-9) | sz(8)=1 | op(7)=? | 1(6) | M=?(5) | 0(4) | Vm(3-0)
1531 ASSERT(CpuFeatures::IsEnabled(VFP3));
1532 emit(cond | 0xE*B24 | B23 |(0x1 & dst.code())*B22 |
1533 0x3*B20 | B19 | 0x5*B16 | (dst.code() >> 1)*B12 |
1534 0x5*B9 | B8 | B7 | B6 | src.code());
1535 }
1536
1537
vadd(const DwVfpRegister dst,const DwVfpRegister src1,const DwVfpRegister src2,const Condition cond)1538 void Assembler::vadd(const DwVfpRegister dst,
1539 const DwVfpRegister src1,
1540 const DwVfpRegister src2,
1541 const Condition cond) {
1542 // Dd = vadd(Dn, Dm) double precision floating point addition.
1543 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
1544 // Instruction details available in ARM DDI 0406A, A8-536.
1545 // cond(31-28) | 11100(27-23)| D=?(22) | 11(21-20) | Vn(19-16) |
1546 // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 0(6) | M=?(5) | 0(4) | Vm(3-0)
1547 ASSERT(CpuFeatures::IsEnabled(VFP3));
1548 emit(cond | 0xE*B24 | 0x3*B20 | src1.code()*B16 |
1549 dst.code()*B12 | 0x5*B9 | B8 | src2.code());
1550 }
1551
1552
vsub(const DwVfpRegister dst,const DwVfpRegister src1,const DwVfpRegister src2,const Condition cond)1553 void Assembler::vsub(const DwVfpRegister dst,
1554 const DwVfpRegister src1,
1555 const DwVfpRegister src2,
1556 const Condition cond) {
1557 // Dd = vsub(Dn, Dm) double precision floating point subtraction.
1558 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
1559 // Instruction details available in ARM DDI 0406A, A8-784.
1560 // cond(31-28) | 11100(27-23)| D=?(22) | 11(21-20) | Vn(19-16) |
1561 // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 1(6) | M=?(5) | 0(4) | Vm(3-0)
1562 ASSERT(CpuFeatures::IsEnabled(VFP3));
1563 emit(cond | 0xE*B24 | 0x3*B20 | src1.code()*B16 |
1564 dst.code()*B12 | 0x5*B9 | B8 | B6 | src2.code());
1565 }
1566
1567
vmul(const DwVfpRegister dst,const DwVfpRegister src1,const DwVfpRegister src2,const Condition cond)1568 void Assembler::vmul(const DwVfpRegister dst,
1569 const DwVfpRegister src1,
1570 const DwVfpRegister src2,
1571 const Condition cond) {
1572 // Dd = vmul(Dn, Dm) double precision floating point multiplication.
1573 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
1574 // Instruction details available in ARM DDI 0406A, A8-784.
1575 // cond(31-28) | 11100(27-23)| D=?(22) | 10(21-20) | Vn(19-16) |
1576 // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 0(6) | M=?(5) | 0(4) | Vm(3-0)
1577 ASSERT(CpuFeatures::IsEnabled(VFP3));
1578 emit(cond | 0xE*B24 | 0x2*B20 | src1.code()*B16 |
1579 dst.code()*B12 | 0x5*B9 | B8 | src2.code());
1580 }
1581
1582
vdiv(const DwVfpRegister dst,const DwVfpRegister src1,const DwVfpRegister src2,const Condition cond)1583 void Assembler::vdiv(const DwVfpRegister dst,
1584 const DwVfpRegister src1,
1585 const DwVfpRegister src2,
1586 const Condition cond) {
1587 // Dd = vdiv(Dn, Dm) double precision floating point division.
1588 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
1589 // Instruction details available in ARM DDI 0406A, A8-584.
1590 // cond(31-28) | 11101(27-23)| D=?(22) | 00(21-20) | Vn(19-16) |
1591 // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=? | 0(6) | M=?(5) | 0(4) | Vm(3-0)
1592 ASSERT(CpuFeatures::IsEnabled(VFP3));
1593 emit(cond | 0xE*B24 | B23 | src1.code()*B16 |
1594 dst.code()*B12 | 0x5*B9 | B8 | src2.code());
1595 }
1596
1597
vcmp(const DwVfpRegister src1,const DwVfpRegister src2,const SBit s,const Condition cond)1598 void Assembler::vcmp(const DwVfpRegister src1,
1599 const DwVfpRegister src2,
1600 const SBit s,
1601 const Condition cond) {
1602 // vcmp(Dd, Dm) double precision floating point comparison.
1603 // Instruction details available in ARM DDI 0406A, A8-570.
1604 // cond(31-28) | 11101 (27-23)| D=?(22) | 11 (21-20) | 0100 (19-16) |
1605 // Vd(15-12) | 101(11-9) | sz(8)=1 | E(7)=? | 1(6) | M(5)=? | 0(4) | Vm(3-0)
1606 ASSERT(CpuFeatures::IsEnabled(VFP3));
1607 emit(cond | 0xE*B24 |B23 | 0x3*B20 | B18 |
1608 src1.code()*B12 | 0x5*B9 | B8 | B6 | src2.code());
1609 }
1610
1611
vmrs(Register dst,Condition cond)1612 void Assembler::vmrs(Register dst, Condition cond) {
1613 // Instruction details available in ARM DDI 0406A, A8-652.
1614 // cond(31-28) | 1110 (27-24) | 1111(23-20)| 0001 (19-16) |
1615 // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
1616 ASSERT(CpuFeatures::IsEnabled(VFP3));
1617 emit(cond | 0xE*B24 | 0xF*B20 | B16 |
1618 dst.code()*B12 | 0xA*B8 | B4);
1619 }
1620
1621
1622 // Pseudo instructions.
lea(Register dst,const MemOperand & x,SBit s,Condition cond)1623 void Assembler::lea(Register dst,
1624 const MemOperand& x,
1625 SBit s,
1626 Condition cond) {
1627 int am = x.am_;
1628 if (!x.rm_.is_valid()) {
1629 // Immediate offset.
1630 if ((am & P) == 0) // post indexing
1631 mov(dst, Operand(x.rn_), s, cond);
1632 else if ((am & U) == 0) // negative indexing
1633 sub(dst, x.rn_, Operand(x.offset_), s, cond);
1634 else
1635 add(dst, x.rn_, Operand(x.offset_), s, cond);
1636 } else {
1637 // Register offset (shift_imm_ and shift_op_ are 0) or scaled
1638 // register offset the constructors make sure than both shift_imm_
1639 // and shift_op_ are initialized.
1640 ASSERT(!x.rm_.is(pc));
1641 if ((am & P) == 0) // post indexing
1642 mov(dst, Operand(x.rn_), s, cond);
1643 else if ((am & U) == 0) // negative indexing
1644 sub(dst, x.rn_, Operand(x.rm_, x.shift_op_, x.shift_imm_), s, cond);
1645 else
1646 add(dst, x.rn_, Operand(x.rm_, x.shift_op_, x.shift_imm_), s, cond);
1647 }
1648 }
1649
1650
ImmediateFitsAddrMode1Instruction(int32_t imm32)1651 bool Assembler::ImmediateFitsAddrMode1Instruction(int32_t imm32) {
1652 uint32_t dummy1;
1653 uint32_t dummy2;
1654 return fits_shifter(imm32, &dummy1, &dummy2, NULL);
1655 }
1656
1657
BlockConstPoolFor(int instructions)1658 void Assembler::BlockConstPoolFor(int instructions) {
1659 BlockConstPoolBefore(pc_offset() + instructions * kInstrSize);
1660 }
1661
1662
1663 // Debugging.
RecordJSReturn()1664 void Assembler::RecordJSReturn() {
1665 WriteRecordedPositions();
1666 CheckBuffer();
1667 RecordRelocInfo(RelocInfo::JS_RETURN);
1668 }
1669
1670
RecordComment(const char * msg)1671 void Assembler::RecordComment(const char* msg) {
1672 if (FLAG_debug_code) {
1673 CheckBuffer();
1674 RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
1675 }
1676 }
1677
1678
RecordPosition(int pos)1679 void Assembler::RecordPosition(int pos) {
1680 if (pos == RelocInfo::kNoPosition) return;
1681 ASSERT(pos >= 0);
1682 current_position_ = pos;
1683 }
1684
1685
RecordStatementPosition(int pos)1686 void Assembler::RecordStatementPosition(int pos) {
1687 if (pos == RelocInfo::kNoPosition) return;
1688 ASSERT(pos >= 0);
1689 current_statement_position_ = pos;
1690 }
1691
1692
WriteRecordedPositions()1693 void Assembler::WriteRecordedPositions() {
1694 // Write the statement position if it is different from what was written last
1695 // time.
1696 if (current_statement_position_ != written_statement_position_) {
1697 CheckBuffer();
1698 RecordRelocInfo(RelocInfo::STATEMENT_POSITION, current_statement_position_);
1699 written_statement_position_ = current_statement_position_;
1700 }
1701
1702 // Write the position if it is different from what was written last time and
1703 // also different from the written statement position.
1704 if (current_position_ != written_position_ &&
1705 current_position_ != written_statement_position_) {
1706 CheckBuffer();
1707 RecordRelocInfo(RelocInfo::POSITION, current_position_);
1708 written_position_ = current_position_;
1709 }
1710 }
1711
1712
GrowBuffer()1713 void Assembler::GrowBuffer() {
1714 if (!own_buffer_) FATAL("external code buffer is too small");
1715
1716 // Compute new buffer size.
1717 CodeDesc desc; // the new buffer
1718 if (buffer_size_ < 4*KB) {
1719 desc.buffer_size = 4*KB;
1720 } else if (buffer_size_ < 1*MB) {
1721 desc.buffer_size = 2*buffer_size_;
1722 } else {
1723 desc.buffer_size = buffer_size_ + 1*MB;
1724 }
1725 CHECK_GT(desc.buffer_size, 0); // no overflow
1726
1727 // Setup new buffer.
1728 desc.buffer = NewArray<byte>(desc.buffer_size);
1729
1730 desc.instr_size = pc_offset();
1731 desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
1732
1733 // Copy the data.
1734 int pc_delta = desc.buffer - buffer_;
1735 int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
1736 memmove(desc.buffer, buffer_, desc.instr_size);
1737 memmove(reloc_info_writer.pos() + rc_delta,
1738 reloc_info_writer.pos(), desc.reloc_size);
1739
1740 // Switch buffers.
1741 DeleteArray(buffer_);
1742 buffer_ = desc.buffer;
1743 buffer_size_ = desc.buffer_size;
1744 pc_ += pc_delta;
1745 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
1746 reloc_info_writer.last_pc() + pc_delta);
1747
1748 // None of our relocation types are pc relative pointing outside the code
1749 // buffer nor pc absolute pointing inside the code buffer, so there is no need
1750 // to relocate any emitted relocation entries.
1751
1752 // Relocate pending relocation entries.
1753 for (int i = 0; i < num_prinfo_; i++) {
1754 RelocInfo& rinfo = prinfo_[i];
1755 ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
1756 rinfo.rmode() != RelocInfo::POSITION);
1757 if (rinfo.rmode() != RelocInfo::JS_RETURN) {
1758 rinfo.set_pc(rinfo.pc() + pc_delta);
1759 }
1760 }
1761 }
1762
1763
RecordRelocInfo(RelocInfo::Mode rmode,intptr_t data)1764 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
1765 RelocInfo rinfo(pc_, rmode, data); // we do not try to reuse pool constants
1766 if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::STATEMENT_POSITION) {
1767 // Adjust code for new modes.
1768 ASSERT(RelocInfo::IsJSReturn(rmode)
1769 || RelocInfo::IsComment(rmode)
1770 || RelocInfo::IsPosition(rmode));
1771 // These modes do not need an entry in the constant pool.
1772 } else {
1773 ASSERT(num_prinfo_ < kMaxNumPRInfo);
1774 prinfo_[num_prinfo_++] = rinfo;
1775 // Make sure the constant pool is not emitted in place of the next
1776 // instruction for which we just recorded relocation info.
1777 BlockConstPoolBefore(pc_offset() + kInstrSize);
1778 }
1779 if (rinfo.rmode() != RelocInfo::NONE) {
1780 // Don't record external references unless the heap will be serialized.
1781 if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
1782 #ifdef DEBUG
1783 if (!Serializer::enabled()) {
1784 Serializer::TooLateToEnableNow();
1785 }
1786 #endif
1787 if (!Serializer::enabled() && !FLAG_debug_code) {
1788 return;
1789 }
1790 }
1791 ASSERT(buffer_space() >= kMaxRelocSize); // too late to grow buffer here
1792 reloc_info_writer.Write(&rinfo);
1793 }
1794 }
1795
1796
CheckConstPool(bool force_emit,bool require_jump)1797 void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
1798 // Calculate the offset of the next check. It will be overwritten
1799 // when a const pool is generated or when const pools are being
1800 // blocked for a specific range.
1801 next_buffer_check_ = pc_offset() + kCheckConstInterval;
1802
1803 // There is nothing to do if there are no pending relocation info entries.
1804 if (num_prinfo_ == 0) return;
1805
1806 // We emit a constant pool at regular intervals of about kDistBetweenPools
1807 // or when requested by parameter force_emit (e.g. after each function).
1808 // We prefer not to emit a jump unless the max distance is reached or if we
1809 // are running low on slots, which can happen if a lot of constants are being
1810 // emitted (e.g. --debug-code and many static references).
1811 int dist = pc_offset() - last_const_pool_end_;
1812 if (!force_emit && dist < kMaxDistBetweenPools &&
1813 (require_jump || dist < kDistBetweenPools) &&
1814 // TODO(1236125): Cleanup the "magic" number below. We know that
1815 // the code generation will test every kCheckConstIntervalInst.
1816 // Thus we are safe as long as we generate less than 7 constant
1817 // entries per instruction.
1818 (num_prinfo_ < (kMaxNumPRInfo - (7 * kCheckConstIntervalInst)))) {
1819 return;
1820 }
1821
1822 // If we did not return by now, we need to emit the constant pool soon.
1823
1824 // However, some small sequences of instructions must not be broken up by the
1825 // insertion of a constant pool; such sequences are protected by setting
1826 // no_const_pool_before_, which is checked here. Also, recursive calls to
1827 // CheckConstPool are blocked by no_const_pool_before_.
1828 if (pc_offset() < no_const_pool_before_) {
1829 // Emission is currently blocked; make sure we try again as soon as
1830 // possible.
1831 next_buffer_check_ = no_const_pool_before_;
1832
1833 // Something is wrong if emission is forced and blocked at the same time.
1834 ASSERT(!force_emit);
1835 return;
1836 }
1837
1838 int jump_instr = require_jump ? kInstrSize : 0;
1839
1840 // Check that the code buffer is large enough before emitting the constant
1841 // pool and relocation information (include the jump over the pool and the
1842 // constant pool marker).
1843 int max_needed_space =
1844 jump_instr + kInstrSize + num_prinfo_*(kInstrSize + kMaxRelocSize);
1845 while (buffer_space() <= (max_needed_space + kGap)) GrowBuffer();
1846
1847 // Block recursive calls to CheckConstPool.
1848 BlockConstPoolBefore(pc_offset() + jump_instr + kInstrSize +
1849 num_prinfo_*kInstrSize);
1850 // Don't bother to check for the emit calls below.
1851 next_buffer_check_ = no_const_pool_before_;
1852
1853 // Emit jump over constant pool if necessary.
1854 Label after_pool;
1855 if (require_jump) b(&after_pool);
1856
1857 RecordComment("[ Constant Pool");
1858
1859 // Put down constant pool marker "Undefined instruction" as specified by
1860 // A3.1 Instruction set encoding.
1861 emit(0x03000000 | num_prinfo_);
1862
1863 // Emit constant pool entries.
1864 for (int i = 0; i < num_prinfo_; i++) {
1865 RelocInfo& rinfo = prinfo_[i];
1866 ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
1867 rinfo.rmode() != RelocInfo::POSITION &&
1868 rinfo.rmode() != RelocInfo::STATEMENT_POSITION);
1869 Instr instr = instr_at(rinfo.pc());
1870
1871 // Instruction to patch must be a ldr/str [pc, #offset].
1872 // P and U set, B and W clear, Rn == pc, offset12 still 0.
1873 ASSERT((instr & (7*B25 | P | U | B | W | 15*B16 | Off12Mask)) ==
1874 (2*B25 | P | U | pc.code()*B16));
1875 int delta = pc_ - rinfo.pc() - 8;
1876 ASSERT(delta >= -4); // instr could be ldr pc, [pc, #-4] followed by targ32
1877 if (delta < 0) {
1878 instr &= ~U;
1879 delta = -delta;
1880 }
1881 ASSERT(is_uint12(delta));
1882 instr_at_put(rinfo.pc(), instr + delta);
1883 emit(rinfo.data());
1884 }
1885 num_prinfo_ = 0;
1886 last_const_pool_end_ = pc_offset();
1887
1888 RecordComment("]");
1889
1890 if (after_pool.is_linked()) {
1891 bind(&after_pool);
1892 }
1893
1894 // Since a constant pool was just emitted, move the check offset forward by
1895 // the standard interval.
1896 next_buffer_check_ = pc_offset() + kCheckConstInterval;
1897 }
1898
1899
1900 } } // namespace v8::internal
1901