• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // test-properties.h
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 //
16 // \file
17 // Functions to manipulate and test property bits
18 
19 #ifndef FST_LIB_TEST_PROPERTIES_H__
20 #define FST_LIB_TEST_PROPERTIES_H__
21 
22 #include <ext/hash_set>
23 using __gnu_cxx::hash_set;
24 
25 
26 #include "fst/lib/connect.h"
27 #include "fst/lib/dfs-visit.h"
28 #include "fst/lib/mutable-fst.h"
29 
30 DECLARE_bool(fst_verify_properties);
31 
32 namespace fst {
33 
34 // For a binary property, the bit is always returned set.
35 // For a trinary (i.e. two-bit) property, both bits are
36 // returned set iff either corresponding input bit is set.
KnownProperties(uint64 props)37 inline uint64 KnownProperties(uint64 props) {
38   return kBinaryProperties | props & kTrinaryProperties |
39     (props & kPosTrinaryProperties) << 1 |
40     (props & kNegTrinaryProperties) >> 1;
41 }
42 
43 // Tests compatibility between two sets of properties
CompatProperties(uint64 props1,uint64 props2)44 inline bool CompatProperties(uint64 props1, uint64 props2) {
45   uint64 known_props1 = KnownProperties(props1);
46   uint64 known_props2 = KnownProperties(props2);
47   uint64 known_props = known_props1 & known_props2;
48   uint64 incompat_props = (props1 & known_props) ^ (props2 & known_props);
49   if (incompat_props) {
50     uint64 prop = 1;
51     for (int i = 0; i < 64; ++i, prop <<= 1)
52       if (prop & incompat_props)
53         LOG(ERROR) << "CompatProperties: mismatch: " << PropertyNames[i]
54                    << ": props1 = " << (props1 & prop ? "true" : "false")
55                    << ", props2 = " << (props2 & prop ? "true" : "false");
56     return false;
57   } else {
58     return true;
59   }
60 }
61 
62 // Computes FST property values defined in properties.h.  The value of
63 // each property indicated in the mask will be determined and returned
64 // (these will never be unknown here). In the course of determining
65 // the properties specifically requested in the mask, certain other
66 // properties may be determined (those with little additional expense)
67 // and their values will be returned as well. The complete set of
68 // known properties (whether true or false) determined by this
69 // operation will be assigned to the the value pointed to by KNOWN.
70 // If 'use_stored' is true, pre-computed FST properties may be used
71 // when possible. This routine is seldom called directly; instead it
72 // is used to implement fst.Properties(mask, true).
73 template<class Arc>
ComputeProperties(const Fst<Arc> & fst,uint64 mask,uint64 * known,bool use_stored)74 uint64 ComputeProperties(const Fst<Arc> &fst, uint64 mask, uint64 *known,
75                          bool use_stored) {
76   typedef typename Arc::Label Label;
77   typedef typename Arc::Weight Weight;
78   typedef typename Arc::StateId StateId;
79 
80   uint64 fst_props = fst.Properties(kFstProperties, false);  // Fst-stored
81 
82   // Check stored FST properties first if allowed.
83   if (use_stored) {
84     uint64 known_props = KnownProperties(fst_props);
85     // If FST contains required info, return it.
86     if ((known_props & mask) == mask) {
87       *known = known_props;
88       return fst_props;
89     }
90   }
91 
92   // Compute (trinary) properties explicitly.
93 
94   // Initialize with binary properties (already known).
95   uint64 comp_props = fst_props & kBinaryProperties;
96 
97   // Compute these trinary properties with a DFS. We compute only those
98   // that need a DFS here, since we otherwise would like to avoid a DFS
99   // since its stack could grow large.
100   uint64 dfs_props = kCyclic | kAcyclic | kInitialCyclic | kInitialAcyclic |
101                      kAccessible | kNotAccessible |
102                      kCoAccessible | kNotCoAccessible;
103   if (mask & dfs_props) {
104     SccVisitor<Arc> scc_visitor(&comp_props);
105     DfsVisit(fst, &scc_visitor);
106   }
107 
108   // Compute any remaining trinary properties via a state and arcs iterations
109   if (mask & ~(kBinaryProperties | dfs_props)) {
110     comp_props |= kAcceptor | kNoEpsilons | kNoIEpsilons | kNoOEpsilons |
111         kILabelSorted | kOLabelSorted | kUnweighted | kTopSorted | kString;
112     if (mask & (kIDeterministic | kNonIDeterministic))
113       comp_props |= kIDeterministic;
114     if (mask & (kODeterministic | kNonODeterministic))
115       comp_props |= kODeterministic;
116 
117     hash_set<Label> *ilabels = 0;
118     hash_set<Label> *olabels = 0;
119 
120     StateId nfinal = 0;
121     for (StateIterator< Fst<Arc> > siter(fst);
122          !siter.Done();
123          siter.Next()) {
124       StateId s = siter.Value();
125 
126       Arc prev_arc(kNoLabel, kNoLabel, Weight::One(), 0);
127       // Create these only if we need to
128       if (mask & (kIDeterministic | kNonIDeterministic))
129         ilabels = new hash_set<Label>;
130       if (mask & (kODeterministic | kNonODeterministic))
131         olabels = new hash_set<Label>;
132 
133       for (ArcIterator< Fst<Arc> > aiter(fst, s);
134            !aiter.Done();
135            aiter.Next()) {
136         const Arc &arc =aiter.Value();
137 
138         if (ilabels && ilabels->find(arc.ilabel) != ilabels->end()) {
139           comp_props |= kNonIDeterministic;
140           comp_props &= ~kIDeterministic;
141         }
142         if (olabels && olabels->find(arc.olabel) != olabels->end()) {
143           comp_props |= kNonODeterministic;
144           comp_props &= ~kODeterministic;
145         }
146         if (arc.ilabel != arc.olabel) {
147           comp_props |= kNotAcceptor;
148           comp_props &= ~kAcceptor;
149         }
150         if (arc.ilabel == 0 && arc.olabel == 0) {
151           comp_props |= kEpsilons;
152           comp_props &= ~kNoEpsilons;
153         }
154         if (arc.ilabel == 0) {
155           comp_props |= kIEpsilons;
156           comp_props &= ~kNoIEpsilons;
157         }
158         if (arc.olabel == 0) {
159           comp_props |= kOEpsilons;
160           comp_props &= ~kNoOEpsilons;
161         }
162         if (prev_arc.ilabel != kNoLabel && arc.ilabel < prev_arc.ilabel) {
163           comp_props |= kNotILabelSorted;
164           comp_props &= ~kILabelSorted;
165         }
166         if (prev_arc.olabel != kNoLabel && arc.olabel < prev_arc.olabel) {
167           comp_props |= kNotOLabelSorted;
168           comp_props &= ~kOLabelSorted;
169         }
170         if (arc.weight != Weight::One() && arc.weight != Weight::Zero()) {
171           comp_props |= kWeighted;
172           comp_props &= ~kUnweighted;
173         }
174         if (arc.nextstate <= s) {
175           comp_props |= kNotTopSorted;
176           comp_props &= ~kTopSorted;
177         }
178         if (arc.nextstate != s + 1) {
179           comp_props |= kNotString;
180           comp_props &= ~kString;
181         }
182         prev_arc = arc;
183         if (ilabels)
184           ilabels->insert(arc.ilabel);
185         if (olabels)
186           olabels->insert(arc.olabel);
187       }
188 
189       if (nfinal > 0) {             // final state not last
190         comp_props |= kNotString;
191         comp_props &= ~kString;
192       }
193 
194       Weight final = fst.Final(s);
195 
196       if (final != Weight::Zero()) {  // final state
197         if (final != Weight::One()) {
198           comp_props |= kWeighted;
199           comp_props &= ~kUnweighted;
200         }
201         ++nfinal;
202       } else {                        // non-final state
203         if (fst.NumArcs(s) != 1) {
204           comp_props |= kNotString;
205           comp_props &= ~kString;
206         }
207       }
208 
209       delete ilabels;
210       delete olabels;
211     }
212 
213     if (fst.Start() != kNoStateId && fst.Start() != 0) {
214       comp_props |= kNotString;
215       comp_props &= ~kString;
216     }
217   }
218 
219   *known = KnownProperties(comp_props);
220   return comp_props;
221 }
222 
223 // This is a wrapper around ComputeProperties that will cause a fatal
224 // error if the stored properties and the computed properties are
225 // incompatible when 'FLAGS_fst_verify_properties' is true.  This
226 // routine is seldom called directly; instead it is used to implement
227 // fst.Properties(mask, true).
228 template<class Arc>
TestProperties(const Fst<Arc> & fst,uint64 mask,uint64 * known)229 uint64 TestProperties(const Fst<Arc> &fst, uint64 mask, uint64 *known) {
230   if (FLAGS_fst_verify_properties) {
231     uint64 stored_props = fst.Properties(kFstProperties, false);
232     uint64 computed_props = ComputeProperties(fst, mask, known, false);
233     if (!CompatProperties(stored_props, computed_props))
234       LOG(FATAL) << "TestProperties: stored Fst properties incorrect"
235                  << " (stored: props1, computed: props2)";
236     return computed_props;
237   } else {
238     return ComputeProperties(fst, mask, known, true);
239   }
240 }
241 
242 }  // namespace fst
243 
244 #endif  // FST_LIB_TEST_PROPERTIES_H__
245