1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2006-2009 the V8 project authors. All rights reserved.
34
35 // A lightweight X64 Assembler.
36
37 #ifndef V8_X64_ASSEMBLER_X64_H_
38 #define V8_X64_ASSEMBLER_X64_H_
39
40 #include "serialize.h"
41
42 namespace v8 {
43 namespace internal {
44
45 // Utility functions
46
47 // Test whether a 64-bit value is in a specific range.
is_uint32(int64_t x)48 static inline bool is_uint32(int64_t x) {
49 static const int64_t kUInt32Mask = V8_INT64_C(0xffffffff);
50 return x == (x & kUInt32Mask);
51 }
52
is_int32(int64_t x)53 static inline bool is_int32(int64_t x) {
54 static const int64_t kMinIntValue = V8_INT64_C(-0x80000000);
55 return is_uint32(x - kMinIntValue);
56 }
57
uint_is_int32(uint64_t x)58 static inline bool uint_is_int32(uint64_t x) {
59 static const uint64_t kMaxIntValue = V8_UINT64_C(0x80000000);
60 return x < kMaxIntValue;
61 }
62
is_uint32(uint64_t x)63 static inline bool is_uint32(uint64_t x) {
64 static const uint64_t kMaxUIntValue = V8_UINT64_C(0x100000000);
65 return x < kMaxUIntValue;
66 }
67
68 // CPU Registers.
69 //
70 // 1) We would prefer to use an enum, but enum values are assignment-
71 // compatible with int, which has caused code-generation bugs.
72 //
73 // 2) We would prefer to use a class instead of a struct but we don't like
74 // the register initialization to depend on the particular initialization
75 // order (which appears to be different on OS X, Linux, and Windows for the
76 // installed versions of C++ we tried). Using a struct permits C-style
77 // "initialization". Also, the Register objects cannot be const as this
78 // forces initialization stubs in MSVC, making us dependent on initialization
79 // order.
80 //
81 // 3) By not using an enum, we are possibly preventing the compiler from
82 // doing certain constant folds, which may significantly reduce the
83 // code generated for some assembly instructions (because they boil down
84 // to a few constants). If this is a problem, we could change the code
85 // such that we use an enum in optimized mode, and the struct in debug
86 // mode. This way we get the compile-time error checking in debug mode
87 // and best performance in optimized code.
88 //
89
90 struct Register {
toRegisterRegister91 static Register toRegister(int code) {
92 Register r = { code };
93 return r;
94 }
is_validRegister95 bool is_valid() const { return 0 <= code_ && code_ < 16; }
isRegister96 bool is(Register reg) const { return code_ == reg.code_; }
codeRegister97 int code() const {
98 ASSERT(is_valid());
99 return code_;
100 }
bitRegister101 int bit() const {
102 return 1 << code_;
103 }
104
105 // Return the high bit of the register code as a 0 or 1. Used often
106 // when constructing the REX prefix byte.
high_bitRegister107 int high_bit() const {
108 return code_ >> 3;
109 }
110 // Return the 3 low bits of the register code. Used when encoding registers
111 // in modR/M, SIB, and opcode bytes.
low_bitsRegister112 int low_bits() const {
113 return code_ & 0x7;
114 }
115
116 // Unfortunately we can't make this private in a struct when initializing
117 // by assignment.
118 int code_;
119 };
120
121 const Register rax = { 0 };
122 const Register rcx = { 1 };
123 const Register rdx = { 2 };
124 const Register rbx = { 3 };
125 const Register rsp = { 4 };
126 const Register rbp = { 5 };
127 const Register rsi = { 6 };
128 const Register rdi = { 7 };
129 const Register r8 = { 8 };
130 const Register r9 = { 9 };
131 const Register r10 = { 10 };
132 const Register r11 = { 11 };
133 const Register r12 = { 12 };
134 const Register r13 = { 13 };
135 const Register r14 = { 14 };
136 const Register r15 = { 15 };
137 const Register no_reg = { -1 };
138
139
140 struct XMMRegister {
is_validXMMRegister141 bool is_valid() const { return 0 <= code_ && code_ < 16; }
codeXMMRegister142 int code() const {
143 ASSERT(is_valid());
144 return code_;
145 }
146
147 // Return the high bit of the register code as a 0 or 1. Used often
148 // when constructing the REX prefix byte.
high_bitXMMRegister149 int high_bit() const {
150 return code_ >> 3;
151 }
152 // Return the 3 low bits of the register code. Used when encoding registers
153 // in modR/M, SIB, and opcode bytes.
low_bitsXMMRegister154 int low_bits() const {
155 return code_ & 0x7;
156 }
157
158 int code_;
159 };
160
161 const XMMRegister xmm0 = { 0 };
162 const XMMRegister xmm1 = { 1 };
163 const XMMRegister xmm2 = { 2 };
164 const XMMRegister xmm3 = { 3 };
165 const XMMRegister xmm4 = { 4 };
166 const XMMRegister xmm5 = { 5 };
167 const XMMRegister xmm6 = { 6 };
168 const XMMRegister xmm7 = { 7 };
169 const XMMRegister xmm8 = { 8 };
170 const XMMRegister xmm9 = { 9 };
171 const XMMRegister xmm10 = { 10 };
172 const XMMRegister xmm11 = { 11 };
173 const XMMRegister xmm12 = { 12 };
174 const XMMRegister xmm13 = { 13 };
175 const XMMRegister xmm14 = { 14 };
176 const XMMRegister xmm15 = { 15 };
177
178 enum Condition {
179 // any value < 0 is considered no_condition
180 no_condition = -1,
181
182 overflow = 0,
183 no_overflow = 1,
184 below = 2,
185 above_equal = 3,
186 equal = 4,
187 not_equal = 5,
188 below_equal = 6,
189 above = 7,
190 negative = 8,
191 positive = 9,
192 parity_even = 10,
193 parity_odd = 11,
194 less = 12,
195 greater_equal = 13,
196 less_equal = 14,
197 greater = 15,
198
199 // Fake conditions that are handled by the
200 // opcodes using them.
201 always = 16,
202 never = 17,
203 // aliases
204 carry = below,
205 not_carry = above_equal,
206 zero = equal,
207 not_zero = not_equal,
208 sign = negative,
209 not_sign = positive,
210 last_condition = greater
211 };
212
213
214 // Returns the equivalent of !cc.
215 // Negation of the default no_condition (-1) results in a non-default
216 // no_condition value (-2). As long as tests for no_condition check
217 // for condition < 0, this will work as expected.
218 inline Condition NegateCondition(Condition cc);
219
220 // Corresponds to transposing the operands of a comparison.
ReverseCondition(Condition cc)221 inline Condition ReverseCondition(Condition cc) {
222 switch (cc) {
223 case below:
224 return above;
225 case above:
226 return below;
227 case above_equal:
228 return below_equal;
229 case below_equal:
230 return above_equal;
231 case less:
232 return greater;
233 case greater:
234 return less;
235 case greater_equal:
236 return less_equal;
237 case less_equal:
238 return greater_equal;
239 default:
240 return cc;
241 };
242 }
243
244 enum Hint {
245 no_hint = 0,
246 not_taken = 0x2e,
247 taken = 0x3e
248 };
249
250 // The result of negating a hint is as if the corresponding condition
251 // were negated by NegateCondition. That is, no_hint is mapped to
252 // itself and not_taken and taken are mapped to each other.
NegateHint(Hint hint)253 inline Hint NegateHint(Hint hint) {
254 return (hint == no_hint)
255 ? no_hint
256 : ((hint == not_taken) ? taken : not_taken);
257 }
258
259
260 // -----------------------------------------------------------------------------
261 // Machine instruction Immediates
262
263 class Immediate BASE_EMBEDDED {
264 public:
Immediate(int32_t value)265 explicit Immediate(int32_t value) : value_(value) {}
266
267 private:
268 int32_t value_;
269
270 friend class Assembler;
271 };
272
273
274 // -----------------------------------------------------------------------------
275 // Machine instruction Operands
276
277 enum ScaleFactor {
278 times_1 = 0,
279 times_2 = 1,
280 times_4 = 2,
281 times_8 = 3,
282 times_int_size = times_4,
283 times_pointer_size = times_8
284 };
285
286
287 class Operand BASE_EMBEDDED {
288 public:
289 // [base + disp/r]
290 Operand(Register base, int32_t disp);
291
292 // [base + index*scale + disp/r]
293 Operand(Register base,
294 Register index,
295 ScaleFactor scale,
296 int32_t disp);
297
298 // [index*scale + disp/r]
299 Operand(Register index,
300 ScaleFactor scale,
301 int32_t disp);
302
303 private:
304 byte rex_;
305 byte buf_[10];
306 // The number of bytes in buf_.
307 unsigned int len_;
308 RelocInfo::Mode rmode_;
309
310 // Set the ModR/M byte without an encoded 'reg' register. The
311 // register is encoded later as part of the emit_operand operation.
312 // set_modrm can be called before or after set_sib and set_disp*.
313 inline void set_modrm(int mod, Register rm);
314
315 // Set the SIB byte if one is needed. Sets the length to 2 rather than 1.
316 inline void set_sib(ScaleFactor scale, Register index, Register base);
317
318 // Adds operand displacement fields (offsets added to the memory address).
319 // Needs to be called after set_sib, not before it.
320 inline void set_disp8(int disp);
321 inline void set_disp32(int disp);
322
323 friend class Assembler;
324 };
325
326
327 // CpuFeatures keeps track of which features are supported by the target CPU.
328 // Supported features must be enabled by a Scope before use.
329 // Example:
330 // if (CpuFeatures::IsSupported(SSE3)) {
331 // CpuFeatures::Scope fscope(SSE3);
332 // // Generate SSE3 floating point code.
333 // } else {
334 // // Generate standard x87 or SSE2 floating point code.
335 // }
336 class CpuFeatures : public AllStatic {
337 public:
338 // Detect features of the target CPU. Set safe defaults if the serializer
339 // is enabled (snapshots must be portable).
340 static void Probe();
341 // Check whether a feature is supported by the target CPU.
IsSupported(CpuFeature f)342 static bool IsSupported(CpuFeature f) {
343 if (f == SSE2 && !FLAG_enable_sse2) return false;
344 if (f == SSE3 && !FLAG_enable_sse3) return false;
345 if (f == CMOV && !FLAG_enable_cmov) return false;
346 if (f == RDTSC && !FLAG_enable_rdtsc) return false;
347 if (f == SAHF && !FLAG_enable_sahf) return false;
348 return (supported_ & (V8_UINT64_C(1) << f)) != 0;
349 }
350 // Check whether a feature is currently enabled.
IsEnabled(CpuFeature f)351 static bool IsEnabled(CpuFeature f) {
352 return (enabled_ & (V8_UINT64_C(1) << f)) != 0;
353 }
354 // Enable a specified feature within a scope.
355 class Scope BASE_EMBEDDED {
356 #ifdef DEBUG
357 public:
Scope(CpuFeature f)358 explicit Scope(CpuFeature f) {
359 uint64_t mask = (V8_UINT64_C(1) << f);
360 ASSERT(CpuFeatures::IsSupported(f));
361 ASSERT(!Serializer::enabled() || (found_by_runtime_probing_ & mask) == 0);
362 old_enabled_ = CpuFeatures::enabled_;
363 CpuFeatures::enabled_ |= mask;
364 }
~Scope()365 ~Scope() { CpuFeatures::enabled_ = old_enabled_; }
366 private:
367 uint64_t old_enabled_;
368 #else
369 public:
370 explicit Scope(CpuFeature f) {}
371 #endif
372 };
373 private:
374 // Safe defaults include SSE2 and CMOV for X64. It is always available, if
375 // anyone checks, but they shouldn't need to check.
376 static const uint64_t kDefaultCpuFeatures = (1 << SSE2 | 1 << CMOV);
377 static uint64_t supported_;
378 static uint64_t enabled_;
379 static uint64_t found_by_runtime_probing_;
380 };
381
382
383 class Assembler : public Malloced {
384 private:
385 // We check before assembling an instruction that there is sufficient
386 // space to write an instruction and its relocation information.
387 // The relocation writer's position must be kGap bytes above the end of
388 // the generated instructions. This leaves enough space for the
389 // longest possible x64 instruction, 15 bytes, and the longest possible
390 // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
391 // (There is a 15 byte limit on x64 instruction length that rules out some
392 // otherwise valid instructions.)
393 // This allows for a single, fast space check per instruction.
394 static const int kGap = 32;
395
396 public:
397 // Create an assembler. Instructions and relocation information are emitted
398 // into a buffer, with the instructions starting from the beginning and the
399 // relocation information starting from the end of the buffer. See CodeDesc
400 // for a detailed comment on the layout (globals.h).
401 //
402 // If the provided buffer is NULL, the assembler allocates and grows its own
403 // buffer, and buffer_size determines the initial buffer size. The buffer is
404 // owned by the assembler and deallocated upon destruction of the assembler.
405 //
406 // If the provided buffer is not NULL, the assembler uses the provided buffer
407 // for code generation and assumes its size to be buffer_size. If the buffer
408 // is too small, a fatal error occurs. No deallocation of the buffer is done
409 // upon destruction of the assembler.
410 Assembler(void* buffer, int buffer_size);
411 ~Assembler();
412
413 // GetCode emits any pending (non-emitted) code and fills the descriptor
414 // desc. GetCode() is idempotent; it returns the same result if no other
415 // Assembler functions are invoked in between GetCode() calls.
416 void GetCode(CodeDesc* desc);
417
418 // Read/Modify the code target in the relative branch/call instruction at pc.
419 // On the x64 architecture, we use relative jumps with a 32-bit displacement
420 // to jump to other Code objects in the Code space in the heap.
421 // Jumps to C functions are done indirectly through a 64-bit register holding
422 // the absolute address of the target.
423 // These functions convert between absolute Addresses of Code objects and
424 // the relative displacements stored in the code.
425 static inline Address target_address_at(Address pc);
426 static inline void set_target_address_at(Address pc, Address target);
427
428 // This sets the branch destination (which is in the instruction on x64).
429 // This is for calls and branches within generated code.
set_target_at(Address instruction_payload,Address target)430 inline static void set_target_at(Address instruction_payload,
431 Address target) {
432 set_target_address_at(instruction_payload, target);
433 }
434
435 // This sets the branch destination (which is a load instruction on x64).
436 // This is for calls and branches to runtime code.
set_external_target_at(Address instruction_payload,Address target)437 inline static void set_external_target_at(Address instruction_payload,
438 Address target) {
439 *reinterpret_cast<Address*>(instruction_payload) = target;
440 }
441
442 inline Handle<Object> code_target_object_handle_at(Address pc);
443 // Number of bytes taken up by the branch target in the code.
444 static const int kCallTargetSize = 4; // Use 32-bit displacement.
445 static const int kExternalTargetSize = 8; // Use 64-bit absolute.
446 // Distance between the address of the code target in the call instruction
447 // and the return address pushed on the stack.
448 static const int kCallTargetAddressOffset = 4; // Use 32-bit displacement.
449 // Distance between the start of the JS return sequence and where the
450 // 32-bit displacement of a near call would be, relative to the pushed
451 // return address. TODO: Use return sequence length instead.
452 // Should equal Debug::kX64JSReturnSequenceLength - kCallTargetAddressOffset;
453 static const int kPatchReturnSequenceAddressOffset = 13 - 4;
454 // TODO(X64): Rename this, removing the "Real", after changing the above.
455 static const int kRealPatchReturnSequenceAddressOffset = 2;
456
457 // The x64 JS return sequence is padded with int3 to make it large
458 // enough to hold a call instruction when the debugger patches it.
459 static const int kCallInstructionLength = 13;
460 static const int kJSReturnSequenceLength = 13;
461
462 // ---------------------------------------------------------------------------
463 // Code generation
464 //
465 // Function names correspond one-to-one to x64 instruction mnemonics.
466 // Unless specified otherwise, instructions operate on 64-bit operands.
467 //
468 // If we need versions of an assembly instruction that operate on different
469 // width arguments, we add a single-letter suffix specifying the width.
470 // This is done for the following instructions: mov, cmp, inc, dec,
471 // add, sub, and test.
472 // There are no versions of these instructions without the suffix.
473 // - Instructions on 8-bit (byte) operands/registers have a trailing 'b'.
474 // - Instructions on 16-bit (word) operands/registers have a trailing 'w'.
475 // - Instructions on 32-bit (doubleword) operands/registers use 'l'.
476 // - Instructions on 64-bit (quadword) operands/registers use 'q'.
477 //
478 // Some mnemonics, such as "and", are the same as C++ keywords.
479 // Naming conflicts with C++ keywords are resolved by adding a trailing '_'.
480
481 // Insert the smallest number of nop instructions
482 // possible to align the pc offset to a multiple
483 // of m. m must be a power of 2.
484 void Align(int m);
485
486 // Stack
487 void pushfq();
488 void popfq();
489
490 void push(Immediate value);
491 void push(Register src);
492 void push(const Operand& src);
493 void push(Label* label, RelocInfo::Mode relocation_mode);
494
495 void pop(Register dst);
496 void pop(const Operand& dst);
497
498 void enter(Immediate size);
499 void leave();
500
501 // Moves
502 void movb(Register dst, const Operand& src);
503 void movb(Register dst, Immediate imm);
504 void movb(const Operand& dst, Register src);
505
506 // Move the low 16 bits of a 64-bit register value to a 16-bit
507 // memory location.
508 void movw(const Operand& dst, Register src);
509
510 void movl(Register dst, Register src);
511 void movl(Register dst, const Operand& src);
512 void movl(const Operand& dst, Register src);
513 void movl(const Operand& dst, Immediate imm);
514 // Load a 32-bit immediate value, zero-extended to 64 bits.
515 void movl(Register dst, Immediate imm32);
516
517 // Move 64 bit register value to 64-bit memory location.
518 void movq(const Operand& dst, Register src);
519 // Move 64 bit memory location to 64-bit register value.
520 void movq(Register dst, const Operand& src);
521 void movq(Register dst, Register src);
522 // Sign extends immediate 32-bit value to 64 bits.
523 void movq(Register dst, Immediate x);
524 // Move the offset of the label location relative to the current
525 // position (after the move) to the destination.
526 void movl(const Operand& dst, Label* src);
527
528 // Move sign extended immediate to memory location.
529 void movq(const Operand& dst, Immediate value);
530 // New x64 instructions to load a 64-bit immediate into a register.
531 // All 64-bit immediates must have a relocation mode.
532 void movq(Register dst, void* ptr, RelocInfo::Mode rmode);
533 void movq(Register dst, int64_t value, RelocInfo::Mode rmode);
534 void movq(Register dst, const char* s, RelocInfo::Mode rmode);
535 // Moves the address of the external reference into the register.
536 void movq(Register dst, ExternalReference ext);
537 void movq(Register dst, Handle<Object> handle, RelocInfo::Mode rmode);
538
539 void movsxbq(Register dst, const Operand& src);
540 void movsxwq(Register dst, const Operand& src);
541 void movsxlq(Register dst, Register src);
542 void movsxlq(Register dst, const Operand& src);
543 void movzxbq(Register dst, const Operand& src);
544 void movzxbl(Register dst, const Operand& src);
545 void movzxwq(Register dst, const Operand& src);
546 void movzxwl(Register dst, const Operand& src);
547
548 // Repeated moves.
549
550 void repmovsb();
551 void repmovsw();
552 void repmovsl();
553 void repmovsq();
554
555 // New x64 instruction to load from an immediate 64-bit pointer into RAX.
556 void load_rax(void* ptr, RelocInfo::Mode rmode);
557 void load_rax(ExternalReference ext);
558
559 // Conditional moves.
560 void cmovq(Condition cc, Register dst, Register src);
561 void cmovq(Condition cc, Register dst, const Operand& src);
562 void cmovl(Condition cc, Register dst, Register src);
563 void cmovl(Condition cc, Register dst, const Operand& src);
564
565 // Exchange two registers
566 void xchg(Register dst, Register src);
567
568 // Arithmetics
addl(Register dst,Register src)569 void addl(Register dst, Register src) {
570 if (dst.low_bits() == 4) { // Forces SIB byte.
571 arithmetic_op_32(0x01, src, dst);
572 } else {
573 arithmetic_op_32(0x03, dst, src);
574 }
575 }
576
addl(Register dst,Immediate src)577 void addl(Register dst, Immediate src) {
578 immediate_arithmetic_op_32(0x0, dst, src);
579 }
580
addl(Register dst,const Operand & src)581 void addl(Register dst, const Operand& src) {
582 arithmetic_op_32(0x03, dst, src);
583 }
584
addl(const Operand & dst,Immediate src)585 void addl(const Operand& dst, Immediate src) {
586 immediate_arithmetic_op_32(0x0, dst, src);
587 }
588
addq(Register dst,Register src)589 void addq(Register dst, Register src) {
590 arithmetic_op(0x03, dst, src);
591 }
592
addq(Register dst,const Operand & src)593 void addq(Register dst, const Operand& src) {
594 arithmetic_op(0x03, dst, src);
595 }
596
addq(const Operand & dst,Register src)597 void addq(const Operand& dst, Register src) {
598 arithmetic_op(0x01, src, dst);
599 }
600
addq(Register dst,Immediate src)601 void addq(Register dst, Immediate src) {
602 immediate_arithmetic_op(0x0, dst, src);
603 }
604
addq(const Operand & dst,Immediate src)605 void addq(const Operand& dst, Immediate src) {
606 immediate_arithmetic_op(0x0, dst, src);
607 }
608
cmpb(Register dst,Immediate src)609 void cmpb(Register dst, Immediate src) {
610 immediate_arithmetic_op_8(0x7, dst, src);
611 }
612
613 void cmpb_al(Immediate src);
614
cmpb(Register dst,Register src)615 void cmpb(Register dst, Register src) {
616 arithmetic_op(0x3A, dst, src);
617 }
618
cmpb(Register dst,const Operand & src)619 void cmpb(Register dst, const Operand& src) {
620 arithmetic_op(0x3A, dst, src);
621 }
622
cmpb(const Operand & dst,Register src)623 void cmpb(const Operand& dst, Register src) {
624 arithmetic_op(0x38, src, dst);
625 }
626
cmpb(const Operand & dst,Immediate src)627 void cmpb(const Operand& dst, Immediate src) {
628 immediate_arithmetic_op_8(0x7, dst, src);
629 }
630
cmpw(const Operand & dst,Immediate src)631 void cmpw(const Operand& dst, Immediate src) {
632 immediate_arithmetic_op_16(0x7, dst, src);
633 }
634
cmpw(Register dst,Immediate src)635 void cmpw(Register dst, Immediate src) {
636 immediate_arithmetic_op_16(0x7, dst, src);
637 }
638
cmpw(Register dst,const Operand & src)639 void cmpw(Register dst, const Operand& src) {
640 arithmetic_op_16(0x3B, dst, src);
641 }
642
cmpw(Register dst,Register src)643 void cmpw(Register dst, Register src) {
644 arithmetic_op_16(0x3B, dst, src);
645 }
646
cmpw(const Operand & dst,Register src)647 void cmpw(const Operand& dst, Register src) {
648 arithmetic_op_16(0x39, src, dst);
649 }
650
cmpl(Register dst,Register src)651 void cmpl(Register dst, Register src) {
652 arithmetic_op_32(0x3B, dst, src);
653 }
654
cmpl(Register dst,const Operand & src)655 void cmpl(Register dst, const Operand& src) {
656 arithmetic_op_32(0x3B, dst, src);
657 }
658
cmpl(const Operand & dst,Register src)659 void cmpl(const Operand& dst, Register src) {
660 arithmetic_op_32(0x39, src, dst);
661 }
662
cmpl(Register dst,Immediate src)663 void cmpl(Register dst, Immediate src) {
664 immediate_arithmetic_op_32(0x7, dst, src);
665 }
666
cmpl(const Operand & dst,Immediate src)667 void cmpl(const Operand& dst, Immediate src) {
668 immediate_arithmetic_op_32(0x7, dst, src);
669 }
670
cmpq(Register dst,Register src)671 void cmpq(Register dst, Register src) {
672 arithmetic_op(0x3B, dst, src);
673 }
674
cmpq(Register dst,const Operand & src)675 void cmpq(Register dst, const Operand& src) {
676 arithmetic_op(0x3B, dst, src);
677 }
678
cmpq(const Operand & dst,Register src)679 void cmpq(const Operand& dst, Register src) {
680 arithmetic_op(0x39, src, dst);
681 }
682
cmpq(Register dst,Immediate src)683 void cmpq(Register dst, Immediate src) {
684 immediate_arithmetic_op(0x7, dst, src);
685 }
686
cmpq(const Operand & dst,Immediate src)687 void cmpq(const Operand& dst, Immediate src) {
688 immediate_arithmetic_op(0x7, dst, src);
689 }
690
and_(Register dst,Register src)691 void and_(Register dst, Register src) {
692 arithmetic_op(0x23, dst, src);
693 }
694
and_(Register dst,const Operand & src)695 void and_(Register dst, const Operand& src) {
696 arithmetic_op(0x23, dst, src);
697 }
698
and_(const Operand & dst,Register src)699 void and_(const Operand& dst, Register src) {
700 arithmetic_op(0x21, src, dst);
701 }
702
and_(Register dst,Immediate src)703 void and_(Register dst, Immediate src) {
704 immediate_arithmetic_op(0x4, dst, src);
705 }
706
and_(const Operand & dst,Immediate src)707 void and_(const Operand& dst, Immediate src) {
708 immediate_arithmetic_op(0x4, dst, src);
709 }
710
andl(Register dst,Immediate src)711 void andl(Register dst, Immediate src) {
712 immediate_arithmetic_op_32(0x4, dst, src);
713 }
714
andl(Register dst,Register src)715 void andl(Register dst, Register src) {
716 arithmetic_op_32(0x23, dst, src);
717 }
718
andb(Register dst,Immediate src)719 void andb(Register dst, Immediate src) {
720 immediate_arithmetic_op_8(0x4, dst, src);
721 }
722
723 void decq(Register dst);
724 void decq(const Operand& dst);
725 void decl(Register dst);
726 void decl(const Operand& dst);
727 void decb(Register dst);
728 void decb(const Operand& dst);
729
730 // Sign-extends rax into rdx:rax.
731 void cqo();
732 // Sign-extends eax into edx:eax.
733 void cdq();
734
735 // Divide rdx:rax by src. Quotient in rax, remainder in rdx.
736 void idivq(Register src);
737 // Divide edx:eax by lower 32 bits of src. Quotient in eax, rem. in edx.
738 void idivl(Register src);
739
740 // Signed multiply instructions.
741 void imul(Register src); // rdx:rax = rax * src.
742 void imul(Register dst, Register src); // dst = dst * src.
743 void imul(Register dst, const Operand& src); // dst = dst * src.
744 void imul(Register dst, Register src, Immediate imm); // dst = src * imm.
745 // Multiply 32 bit registers
746 void imull(Register dst, Register src); // dst = dst * src.
747
748 void incq(Register dst);
749 void incq(const Operand& dst);
750 void incl(const Operand& dst);
751
752 void lea(Register dst, const Operand& src);
753
754 // Multiply rax by src, put the result in rdx:rax.
755 void mul(Register src);
756
757 void neg(Register dst);
758 void neg(const Operand& dst);
759 void negl(Register dst);
760
761 void not_(Register dst);
762 void not_(const Operand& dst);
763
or_(Register dst,Register src)764 void or_(Register dst, Register src) {
765 arithmetic_op(0x0B, dst, src);
766 }
767
orl(Register dst,Register src)768 void orl(Register dst, Register src) {
769 arithmetic_op_32(0x0B, dst, src);
770 }
771
or_(Register dst,const Operand & src)772 void or_(Register dst, const Operand& src) {
773 arithmetic_op(0x0B, dst, src);
774 }
775
or_(const Operand & dst,Register src)776 void or_(const Operand& dst, Register src) {
777 arithmetic_op(0x09, src, dst);
778 }
779
or_(Register dst,Immediate src)780 void or_(Register dst, Immediate src) {
781 immediate_arithmetic_op(0x1, dst, src);
782 }
783
orl(Register dst,Immediate src)784 void orl(Register dst, Immediate src) {
785 immediate_arithmetic_op_32(0x1, dst, src);
786 }
787
or_(const Operand & dst,Immediate src)788 void or_(const Operand& dst, Immediate src) {
789 immediate_arithmetic_op(0x1, dst, src);
790 }
791
orl(const Operand & dst,Immediate src)792 void orl(const Operand& dst, Immediate src) {
793 immediate_arithmetic_op_32(0x1, dst, src);
794 }
795
796
rcl(Register dst,Immediate imm8)797 void rcl(Register dst, Immediate imm8) {
798 shift(dst, imm8, 0x2);
799 }
800
rol(Register dst,Immediate imm8)801 void rol(Register dst, Immediate imm8) {
802 shift(dst, imm8, 0x0);
803 }
804
rcr(Register dst,Immediate imm8)805 void rcr(Register dst, Immediate imm8) {
806 shift(dst, imm8, 0x3);
807 }
808
ror(Register dst,Immediate imm8)809 void ror(Register dst, Immediate imm8) {
810 shift(dst, imm8, 0x1);
811 }
812
813 // Shifts dst:src left by cl bits, affecting only dst.
814 void shld(Register dst, Register src);
815
816 // Shifts src:dst right by cl bits, affecting only dst.
817 void shrd(Register dst, Register src);
818
819 // Shifts dst right, duplicating sign bit, by shift_amount bits.
820 // Shifting by 1 is handled efficiently.
sar(Register dst,Immediate shift_amount)821 void sar(Register dst, Immediate shift_amount) {
822 shift(dst, shift_amount, 0x7);
823 }
824
825 // Shifts dst right, duplicating sign bit, by shift_amount bits.
826 // Shifting by 1 is handled efficiently.
sarl(Register dst,Immediate shift_amount)827 void sarl(Register dst, Immediate shift_amount) {
828 shift_32(dst, shift_amount, 0x7);
829 }
830
831 // Shifts dst right, duplicating sign bit, by cl % 64 bits.
sar_cl(Register dst)832 void sar_cl(Register dst) {
833 shift(dst, 0x7);
834 }
835
836 // Shifts dst right, duplicating sign bit, by cl % 64 bits.
sarl_cl(Register dst)837 void sarl_cl(Register dst) {
838 shift_32(dst, 0x7);
839 }
840
shl(Register dst,Immediate shift_amount)841 void shl(Register dst, Immediate shift_amount) {
842 shift(dst, shift_amount, 0x4);
843 }
844
shl_cl(Register dst)845 void shl_cl(Register dst) {
846 shift(dst, 0x4);
847 }
848
shll_cl(Register dst)849 void shll_cl(Register dst) {
850 shift_32(dst, 0x4);
851 }
852
shll(Register dst,Immediate shift_amount)853 void shll(Register dst, Immediate shift_amount) {
854 shift_32(dst, shift_amount, 0x4);
855 }
856
shr(Register dst,Immediate shift_amount)857 void shr(Register dst, Immediate shift_amount) {
858 shift(dst, shift_amount, 0x5);
859 }
860
shr_cl(Register dst)861 void shr_cl(Register dst) {
862 shift(dst, 0x5);
863 }
864
shrl_cl(Register dst)865 void shrl_cl(Register dst) {
866 shift_32(dst, 0x5);
867 }
868
shrl(Register dst,Immediate shift_amount)869 void shrl(Register dst, Immediate shift_amount) {
870 shift_32(dst, shift_amount, 0x5);
871 }
872
873 void store_rax(void* dst, RelocInfo::Mode mode);
874 void store_rax(ExternalReference ref);
875
subq(Register dst,Register src)876 void subq(Register dst, Register src) {
877 arithmetic_op(0x2B, dst, src);
878 }
879
subq(Register dst,const Operand & src)880 void subq(Register dst, const Operand& src) {
881 arithmetic_op(0x2B, dst, src);
882 }
883
subq(const Operand & dst,Register src)884 void subq(const Operand& dst, Register src) {
885 arithmetic_op(0x29, src, dst);
886 }
887
subq(Register dst,Immediate src)888 void subq(Register dst, Immediate src) {
889 immediate_arithmetic_op(0x5, dst, src);
890 }
891
subq(const Operand & dst,Immediate src)892 void subq(const Operand& dst, Immediate src) {
893 immediate_arithmetic_op(0x5, dst, src);
894 }
895
subl(Register dst,Register src)896 void subl(Register dst, Register src) {
897 arithmetic_op_32(0x2B, dst, src);
898 }
899
subl(Register dst,const Operand & src)900 void subl(Register dst, const Operand& src) {
901 arithmetic_op_32(0x2B, dst, src);
902 }
903
subl(const Operand & dst,Immediate src)904 void subl(const Operand& dst, Immediate src) {
905 immediate_arithmetic_op_32(0x5, dst, src);
906 }
907
subl(Register dst,Immediate src)908 void subl(Register dst, Immediate src) {
909 immediate_arithmetic_op_32(0x5, dst, src);
910 }
911
subb(Register dst,Immediate src)912 void subb(Register dst, Immediate src) {
913 immediate_arithmetic_op_8(0x5, dst, src);
914 }
915
916 void testb(Register dst, Register src);
917 void testb(Register reg, Immediate mask);
918 void testb(const Operand& op, Immediate mask);
919 void testb(const Operand& op, Register reg);
920 void testl(Register dst, Register src);
921 void testl(Register reg, Immediate mask);
922 void testl(const Operand& op, Immediate mask);
923 void testq(const Operand& op, Register reg);
924 void testq(Register dst, Register src);
925 void testq(Register dst, Immediate mask);
926
xor_(Register dst,Register src)927 void xor_(Register dst, Register src) {
928 if (dst.code() == src.code()) {
929 arithmetic_op_32(0x33, dst, src);
930 } else {
931 arithmetic_op(0x33, dst, src);
932 }
933 }
934
xorl(Register dst,Register src)935 void xorl(Register dst, Register src) {
936 arithmetic_op_32(0x33, dst, src);
937 }
938
xor_(Register dst,const Operand & src)939 void xor_(Register dst, const Operand& src) {
940 arithmetic_op(0x33, dst, src);
941 }
942
xor_(const Operand & dst,Register src)943 void xor_(const Operand& dst, Register src) {
944 arithmetic_op(0x31, src, dst);
945 }
946
xor_(Register dst,Immediate src)947 void xor_(Register dst, Immediate src) {
948 immediate_arithmetic_op(0x6, dst, src);
949 }
950
xor_(const Operand & dst,Immediate src)951 void xor_(const Operand& dst, Immediate src) {
952 immediate_arithmetic_op(0x6, dst, src);
953 }
954
955 // Bit operations.
956 void bt(const Operand& dst, Register src);
957 void bts(const Operand& dst, Register src);
958
959 // Miscellaneous
960 void clc();
961 void cpuid();
962 void hlt();
963 void int3();
964 void nop();
965 void nop(int n);
966 void rdtsc();
967 void ret(int imm16);
968 void setcc(Condition cc, Register reg);
969
970 // Label operations & relative jumps (PPUM Appendix D)
971 //
972 // Takes a branch opcode (cc) and a label (L) and generates
973 // either a backward branch or a forward branch and links it
974 // to the label fixup chain. Usage:
975 //
976 // Label L; // unbound label
977 // j(cc, &L); // forward branch to unbound label
978 // bind(&L); // bind label to the current pc
979 // j(cc, &L); // backward branch to bound label
980 // bind(&L); // illegal: a label may be bound only once
981 //
982 // Note: The same Label can be used for forward and backward branches
983 // but it may be bound only once.
984
985 void bind(Label* L); // binds an unbound label L to the current code position
986
987 // Calls
988 // Call near relative 32-bit displacement, relative to next instruction.
989 void call(Label* L);
990 void call(Handle<Code> target, RelocInfo::Mode rmode);
991
992 // Call near absolute indirect, address in register
993 void call(Register adr);
994
995 // Call near indirect
996 void call(const Operand& operand);
997
998 // Jumps
999 // Jump short or near relative.
1000 // Use a 32-bit signed displacement.
1001 void jmp(Label* L); // unconditional jump to L
1002 void jmp(Handle<Code> target, RelocInfo::Mode rmode);
1003
1004 // Jump near absolute indirect (r64)
1005 void jmp(Register adr);
1006
1007 // Jump near absolute indirect (m64)
1008 void jmp(const Operand& src);
1009
1010 // Conditional jumps
1011 void j(Condition cc, Label* L);
1012 void j(Condition cc, Handle<Code> target, RelocInfo::Mode rmode);
1013
1014 // Floating-point operations
1015 void fld(int i);
1016
1017 void fld1();
1018 void fldz();
1019
1020 void fld_s(const Operand& adr);
1021 void fld_d(const Operand& adr);
1022
1023 void fstp_s(const Operand& adr);
1024 void fstp_d(const Operand& adr);
1025 void fstp(int index);
1026
1027 void fild_s(const Operand& adr);
1028 void fild_d(const Operand& adr);
1029
1030 void fist_s(const Operand& adr);
1031
1032 void fistp_s(const Operand& adr);
1033 void fistp_d(const Operand& adr);
1034
1035 void fisttp_s(const Operand& adr);
1036 void fisttp_d(const Operand& adr);
1037
1038 void fabs();
1039 void fchs();
1040
1041 void fadd(int i);
1042 void fsub(int i);
1043 void fmul(int i);
1044 void fdiv(int i);
1045
1046 void fisub_s(const Operand& adr);
1047
1048 void faddp(int i = 1);
1049 void fsubp(int i = 1);
1050 void fsubrp(int i = 1);
1051 void fmulp(int i = 1);
1052 void fdivp(int i = 1);
1053 void fprem();
1054 void fprem1();
1055
1056 void fxch(int i = 1);
1057 void fincstp();
1058 void ffree(int i = 0);
1059
1060 void ftst();
1061 void fucomp(int i);
1062 void fucompp();
1063 void fucomi(int i);
1064 void fucomip();
1065
1066 void fcompp();
1067 void fnstsw_ax();
1068 void fwait();
1069 void fnclex();
1070
1071 void fsin();
1072 void fcos();
1073
1074 void frndint();
1075
1076 void sahf();
1077
1078 // SSE2 instructions
1079 void movsd(const Operand& dst, XMMRegister src);
1080 void movsd(XMMRegister src, XMMRegister dst);
1081 void movsd(XMMRegister src, const Operand& dst);
1082
1083 void cvttss2si(Register dst, const Operand& src);
1084 void cvttsd2si(Register dst, const Operand& src);
1085
1086 void cvtlsi2sd(XMMRegister dst, const Operand& src);
1087 void cvtlsi2sd(XMMRegister dst, Register src);
1088 void cvtqsi2sd(XMMRegister dst, const Operand& src);
1089 void cvtqsi2sd(XMMRegister dst, Register src);
1090
1091 void addsd(XMMRegister dst, XMMRegister src);
1092 void subsd(XMMRegister dst, XMMRegister src);
1093 void mulsd(XMMRegister dst, XMMRegister src);
1094 void divsd(XMMRegister dst, XMMRegister src);
1095
1096 void xorpd(XMMRegister dst, XMMRegister src);
1097
1098 void comisd(XMMRegister dst, XMMRegister src);
1099 void ucomisd(XMMRegister dst, XMMRegister src);
1100
1101 void emit_sse_operand(XMMRegister dst, XMMRegister src);
1102 void emit_sse_operand(XMMRegister reg, const Operand& adr);
1103 void emit_sse_operand(XMMRegister dst, Register src);
1104
1105 // Use either movsd or movlpd.
1106 // void movdbl(XMMRegister dst, const Operand& src);
1107 // void movdbl(const Operand& dst, XMMRegister src);
1108
1109 // Debugging
1110 void Print();
1111
1112 // Check the code size generated from label to here.
SizeOfCodeGeneratedSince(Label * l)1113 int SizeOfCodeGeneratedSince(Label* l) { return pc_offset() - l->pos(); }
1114
1115 // Mark address of the ExitJSFrame code.
1116 void RecordJSReturn();
1117
1118 // Record a comment relocation entry that can be used by a disassembler.
1119 // Use --debug_code to enable.
1120 void RecordComment(const char* msg);
1121
1122 void RecordPosition(int pos);
1123 void RecordStatementPosition(int pos);
1124 void WriteRecordedPositions();
1125
pc_offset()1126 int pc_offset() const { return static_cast<int>(pc_ - buffer_); }
current_statement_position()1127 int current_statement_position() const { return current_statement_position_; }
current_position()1128 int current_position() const { return current_position_; }
1129
1130 // Check if there is less than kGap bytes available in the buffer.
1131 // If this is the case, we need to grow the buffer before emitting
1132 // an instruction or relocation information.
buffer_overflow()1133 inline bool buffer_overflow() const {
1134 return pc_ >= reloc_info_writer.pos() - kGap;
1135 }
1136
1137 // Get the number of bytes available in the buffer.
available_space()1138 inline int available_space() const {
1139 return static_cast<int>(reloc_info_writer.pos() - pc_);
1140 }
1141
1142 // Avoid overflows for displacements etc.
1143 static const int kMaximalBufferSize = 512*MB;
1144 static const int kMinimalBufferSize = 4*KB;
1145
1146 private:
addr_at(int pos)1147 byte* addr_at(int pos) { return buffer_ + pos; }
byte_at(int pos)1148 byte byte_at(int pos) { return buffer_[pos]; }
long_at(int pos)1149 uint32_t long_at(int pos) {
1150 return *reinterpret_cast<uint32_t*>(addr_at(pos));
1151 }
long_at_put(int pos,uint32_t x)1152 void long_at_put(int pos, uint32_t x) {
1153 *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
1154 }
1155
1156 // code emission
1157 void GrowBuffer();
1158
emit(byte x)1159 void emit(byte x) { *pc_++ = x; }
1160 inline void emitl(uint32_t x);
1161 inline void emitq(uint64_t x, RelocInfo::Mode rmode);
1162 inline void emitw(uint16_t x);
1163 inline void emit_code_target(Handle<Code> target, RelocInfo::Mode rmode);
emit(Immediate x)1164 void emit(Immediate x) { emitl(x.value_); }
1165
1166 // Emits a REX prefix that encodes a 64-bit operand size and
1167 // the top bit of both register codes.
1168 // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1169 // REX.W is set.
1170 inline void emit_rex_64(Register reg, Register rm_reg);
1171 inline void emit_rex_64(XMMRegister reg, Register rm_reg);
1172
1173 // Emits a REX prefix that encodes a 64-bit operand size and
1174 // the top bit of the destination, index, and base register codes.
1175 // The high bit of reg is used for REX.R, the high bit of op's base
1176 // register is used for REX.B, and the high bit of op's index register
1177 // is used for REX.X. REX.W is set.
1178 inline void emit_rex_64(Register reg, const Operand& op);
1179 inline void emit_rex_64(XMMRegister reg, const Operand& op);
1180
1181 // Emits a REX prefix that encodes a 64-bit operand size and
1182 // the top bit of the register code.
1183 // The high bit of register is used for REX.B.
1184 // REX.W is set and REX.R and REX.X are clear.
1185 inline void emit_rex_64(Register rm_reg);
1186
1187 // Emits a REX prefix that encodes a 64-bit operand size and
1188 // the top bit of the index and base register codes.
1189 // The high bit of op's base register is used for REX.B, and the high
1190 // bit of op's index register is used for REX.X.
1191 // REX.W is set and REX.R clear.
1192 inline void emit_rex_64(const Operand& op);
1193
1194 // Emit a REX prefix that only sets REX.W to choose a 64-bit operand size.
emit_rex_64()1195 void emit_rex_64() { emit(0x48); }
1196
1197 // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1198 // REX.W is clear.
1199 inline void emit_rex_32(Register reg, Register rm_reg);
1200
1201 // The high bit of reg is used for REX.R, the high bit of op's base
1202 // register is used for REX.B, and the high bit of op's index register
1203 // is used for REX.X. REX.W is cleared.
1204 inline void emit_rex_32(Register reg, const Operand& op);
1205
1206 // High bit of rm_reg goes to REX.B.
1207 // REX.W, REX.R and REX.X are clear.
1208 inline void emit_rex_32(Register rm_reg);
1209
1210 // High bit of base goes to REX.B and high bit of index to REX.X.
1211 // REX.W and REX.R are clear.
1212 inline void emit_rex_32(const Operand& op);
1213
1214 // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1215 // REX.W is cleared. If no REX bits are set, no byte is emitted.
1216 inline void emit_optional_rex_32(Register reg, Register rm_reg);
1217
1218 // The high bit of reg is used for REX.R, the high bit of op's base
1219 // register is used for REX.B, and the high bit of op's index register
1220 // is used for REX.X. REX.W is cleared. If no REX bits are set, nothing
1221 // is emitted.
1222 inline void emit_optional_rex_32(Register reg, const Operand& op);
1223
1224 // As for emit_optional_rex_32(Register, Register), except that
1225 // the registers are XMM registers.
1226 inline void emit_optional_rex_32(XMMRegister reg, XMMRegister base);
1227
1228 // As for emit_optional_rex_32(Register, Register), except that
1229 // the registers are XMM registers.
1230 inline void emit_optional_rex_32(XMMRegister reg, Register base);
1231
1232 // As for emit_optional_rex_32(Register, const Operand&), except that
1233 // the register is an XMM register.
1234 inline void emit_optional_rex_32(XMMRegister reg, const Operand& op);
1235
1236 // Optionally do as emit_rex_32(Register) if the register number has
1237 // the high bit set.
1238 inline void emit_optional_rex_32(Register rm_reg);
1239
1240 // Optionally do as emit_rex_32(const Operand&) if the operand register
1241 // numbers have a high bit set.
1242 inline void emit_optional_rex_32(const Operand& op);
1243
1244
1245 // Emit the ModR/M byte, and optionally the SIB byte and
1246 // 1- or 4-byte offset for a memory operand. Also encodes
1247 // the second operand of the operation, a register or operation
1248 // subcode, into the reg field of the ModR/M byte.
emit_operand(Register reg,const Operand & adr)1249 void emit_operand(Register reg, const Operand& adr) {
1250 emit_operand(reg.low_bits(), adr);
1251 }
1252
1253 // Emit the ModR/M byte, and optionally the SIB byte and
1254 // 1- or 4-byte offset for a memory operand. Also used to encode
1255 // a three-bit opcode extension into the ModR/M byte.
1256 void emit_operand(int rm, const Operand& adr);
1257
1258 // Emit a ModR/M byte with registers coded in the reg and rm_reg fields.
emit_modrm(Register reg,Register rm_reg)1259 void emit_modrm(Register reg, Register rm_reg) {
1260 emit(0xC0 | reg.low_bits() << 3 | rm_reg.low_bits());
1261 }
1262
1263 // Emit a ModR/M byte with an operation subcode in the reg field and
1264 // a register in the rm_reg field.
emit_modrm(int code,Register rm_reg)1265 void emit_modrm(int code, Register rm_reg) {
1266 ASSERT(is_uint3(code));
1267 emit(0xC0 | code << 3 | rm_reg.low_bits());
1268 }
1269
1270 // Emit the code-object-relative offset of the label's position
1271 inline void emit_code_relative_offset(Label* label);
1272
1273 // Emit machine code for one of the operations ADD, ADC, SUB, SBC,
1274 // AND, OR, XOR, or CMP. The encodings of these operations are all
1275 // similar, differing just in the opcode or in the reg field of the
1276 // ModR/M byte.
1277 void arithmetic_op_16(byte opcode, Register reg, Register rm_reg);
1278 void arithmetic_op_16(byte opcode, Register reg, const Operand& rm_reg);
1279 void arithmetic_op_32(byte opcode, Register reg, Register rm_reg);
1280 void arithmetic_op_32(byte opcode, Register reg, const Operand& rm_reg);
1281 void arithmetic_op(byte opcode, Register reg, Register rm_reg);
1282 void arithmetic_op(byte opcode, Register reg, const Operand& rm_reg);
1283 void immediate_arithmetic_op(byte subcode, Register dst, Immediate src);
1284 void immediate_arithmetic_op(byte subcode, const Operand& dst, Immediate src);
1285 // Operate on a byte in memory or register.
1286 void immediate_arithmetic_op_8(byte subcode,
1287 Register dst,
1288 Immediate src);
1289 void immediate_arithmetic_op_8(byte subcode,
1290 const Operand& dst,
1291 Immediate src);
1292 // Operate on a word in memory or register.
1293 void immediate_arithmetic_op_16(byte subcode,
1294 Register dst,
1295 Immediate src);
1296 void immediate_arithmetic_op_16(byte subcode,
1297 const Operand& dst,
1298 Immediate src);
1299 // Operate on a 32-bit word in memory or register.
1300 void immediate_arithmetic_op_32(byte subcode,
1301 Register dst,
1302 Immediate src);
1303 void immediate_arithmetic_op_32(byte subcode,
1304 const Operand& dst,
1305 Immediate src);
1306
1307 // Emit machine code for a shift operation.
1308 void shift(Register dst, Immediate shift_amount, int subcode);
1309 void shift_32(Register dst, Immediate shift_amount, int subcode);
1310 // Shift dst by cl % 64 bits.
1311 void shift(Register dst, int subcode);
1312 void shift_32(Register dst, int subcode);
1313
1314 void emit_farith(int b1, int b2, int i);
1315
1316 // labels
1317 // void print(Label* L);
1318 void bind_to(Label* L, int pos);
1319 void link_to(Label* L, Label* appendix);
1320
1321 // record reloc info for current pc_
1322 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1323
1324 friend class CodePatcher;
1325 friend class EnsureSpace;
1326 friend class RegExpMacroAssemblerX64;
1327
1328 // Code buffer:
1329 // The buffer into which code and relocation info are generated.
1330 byte* buffer_;
1331 int buffer_size_;
1332 // True if the assembler owns the buffer, false if buffer is external.
1333 bool own_buffer_;
1334 // A previously allocated buffer of kMinimalBufferSize bytes, or NULL.
1335 static byte* spare_buffer_;
1336
1337 // code generation
1338 byte* pc_; // the program counter; moves forward
1339 RelocInfoWriter reloc_info_writer;
1340
1341 List< Handle<Code> > code_targets_;
1342 // push-pop elimination
1343 byte* last_pc_;
1344
1345 // source position information
1346 int current_statement_position_;
1347 int current_position_;
1348 int written_statement_position_;
1349 int written_position_;
1350 };
1351
1352
1353 // Helper class that ensures that there is enough space for generating
1354 // instructions and relocation information. The constructor makes
1355 // sure that there is enough space and (in debug mode) the destructor
1356 // checks that we did not generate too much.
1357 class EnsureSpace BASE_EMBEDDED {
1358 public:
EnsureSpace(Assembler * assembler)1359 explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
1360 if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
1361 #ifdef DEBUG
1362 space_before_ = assembler_->available_space();
1363 #endif
1364 }
1365
1366 #ifdef DEBUG
~EnsureSpace()1367 ~EnsureSpace() {
1368 int bytes_generated = space_before_ - assembler_->available_space();
1369 ASSERT(bytes_generated < assembler_->kGap);
1370 }
1371 #endif
1372
1373 private:
1374 Assembler* assembler_;
1375 #ifdef DEBUG
1376 int space_before_;
1377 #endif
1378 };
1379
1380 } } // namespace v8::internal
1381
1382 #endif // V8_X64_ASSEMBLER_X64_H_
1383