• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // STL utility functions.  Usually, these replace built-in, but slow(!),
6 // STL functions with more efficient versions.
7 
8 #ifndef BASE_STL_UTIL_INL_H_
9 #define BASE_STL_UTIL_INL_H_
10 
11 #include <string.h>  // for memcpy
12 #include <functional>
13 #include <set>
14 #include <string>
15 #include <vector>
16 #include <cassert>
17 
18 // Clear internal memory of an STL object.
19 // STL clear()/reserve(0) does not always free internal memory allocated
20 // This function uses swap/destructor to ensure the internal memory is freed.
STLClearObject(T * obj)21 template<class T> void STLClearObject(T* obj) {
22   T tmp;
23   tmp.swap(*obj);
24   obj->reserve(0);  // this is because sometimes "T tmp" allocates objects with
25                     // memory (arena implementation?).  use reserve()
26                     // to clear() even if it doesn't always work
27 }
28 
29 // Reduce memory usage on behalf of object if it is using more than
30 // "bytes" bytes of space.  By default, we clear objects over 1MB.
31 template <class T> inline void STLClearIfBig(T* obj, size_t limit = 1<<20) {
32   if (obj->capacity() >= limit) {
33     STLClearObject(obj);
34   } else {
35     obj->clear();
36   }
37 }
38 
39 // Reserve space for STL object.
40 // STL's reserve() will always copy.
41 // This function avoid the copy if we already have capacity
STLReserveIfNeeded(T * obj,int new_size)42 template<class T> void STLReserveIfNeeded(T* obj, int new_size) {
43   if (obj->capacity() < new_size)   // increase capacity
44     obj->reserve(new_size);
45   else if (obj->size() > new_size)  // reduce size
46     obj->resize(new_size);
47 }
48 
49 // STLDeleteContainerPointers()
50 //  For a range within a container of pointers, calls delete
51 //  (non-array version) on these pointers.
52 // NOTE: for these three functions, we could just implement a DeleteObject
53 // functor and then call for_each() on the range and functor, but this
54 // requires us to pull in all of algorithm.h, which seems expensive.
55 // For hash_[multi]set, it is important that this deletes behind the iterator
56 // because the hash_set may call the hash function on the iterator when it is
57 // advanced, which could result in the hash function trying to deference a
58 // stale pointer.
59 template <class ForwardIterator>
STLDeleteContainerPointers(ForwardIterator begin,ForwardIterator end)60 void STLDeleteContainerPointers(ForwardIterator begin,
61                                 ForwardIterator end) {
62   while (begin != end) {
63     ForwardIterator temp = begin;
64     ++begin;
65     delete *temp;
66   }
67 }
68 
69 // STLDeleteContainerPairPointers()
70 //  For a range within a container of pairs, calls delete
71 //  (non-array version) on BOTH items in the pairs.
72 // NOTE: Like STLDeleteContainerPointers, it is important that this deletes
73 // behind the iterator because if both the key and value are deleted, the
74 // container may call the hash function on the iterator when it is advanced,
75 // which could result in the hash function trying to dereference a stale
76 // pointer.
77 template <class ForwardIterator>
STLDeleteContainerPairPointers(ForwardIterator begin,ForwardIterator end)78 void STLDeleteContainerPairPointers(ForwardIterator begin,
79                                     ForwardIterator end) {
80   while (begin != end) {
81     ForwardIterator temp = begin;
82     ++begin;
83     delete temp->first;
84     delete temp->second;
85   }
86 }
87 
88 // STLDeleteContainerPairFirstPointers()
89 //  For a range within a container of pairs, calls delete (non-array version)
90 //  on the FIRST item in the pairs.
91 // NOTE: Like STLDeleteContainerPointers, deleting behind the iterator.
92 template <class ForwardIterator>
STLDeleteContainerPairFirstPointers(ForwardIterator begin,ForwardIterator end)93 void STLDeleteContainerPairFirstPointers(ForwardIterator begin,
94                                          ForwardIterator end) {
95   while (begin != end) {
96     ForwardIterator temp = begin;
97     ++begin;
98     delete temp->first;
99   }
100 }
101 
102 // STLDeleteContainerPairSecondPointers()
103 //  For a range within a container of pairs, calls delete
104 //  (non-array version) on the SECOND item in the pairs.
105 template <class ForwardIterator>
STLDeleteContainerPairSecondPointers(ForwardIterator begin,ForwardIterator end)106 void STLDeleteContainerPairSecondPointers(ForwardIterator begin,
107                                           ForwardIterator end) {
108   while (begin != end) {
109     delete begin->second;
110     ++begin;
111   }
112 }
113 
114 template<typename T>
STLAssignToVector(std::vector<T> * vec,const T * ptr,size_t n)115 inline void STLAssignToVector(std::vector<T>* vec,
116                               const T* ptr,
117                               size_t n) {
118   vec->resize(n);
119   memcpy(&vec->front(), ptr, n*sizeof(T));
120 }
121 
122 /***** Hack to allow faster assignment to a vector *****/
123 
124 // This routine speeds up an assignment of 32 bytes to a vector from
125 // about 250 cycles per assignment to about 140 cycles.
126 //
127 // Usage:
128 //      STLAssignToVectorChar(&vec, ptr, size);
129 //      STLAssignToString(&str, ptr, size);
130 
STLAssignToVectorChar(std::vector<char> * vec,const char * ptr,size_t n)131 inline void STLAssignToVectorChar(std::vector<char>* vec,
132                                   const char* ptr,
133                                   size_t n) {
134   STLAssignToVector(vec, ptr, n);
135 }
136 
STLAssignToString(std::string * str,const char * ptr,size_t n)137 inline void STLAssignToString(std::string* str, const char* ptr, size_t n) {
138   str->resize(n);
139   memcpy(&*str->begin(), ptr, n);
140 }
141 
142 // To treat a possibly-empty vector as an array, use these functions.
143 // If you know the array will never be empty, you can use &*v.begin()
144 // directly, but that is allowed to dump core if v is empty.  This
145 // function is the most efficient code that will work, taking into
146 // account how our STL is actually implemented.  THIS IS NON-PORTABLE
147 // CODE, so call us instead of repeating the nonportable code
148 // everywhere.  If our STL implementation changes, we will need to
149 // change this as well.
150 
151 template<typename T>
vector_as_array(std::vector<T> * v)152 inline T* vector_as_array(std::vector<T>* v) {
153 # ifdef NDEBUG
154   return &*v->begin();
155 # else
156   return v->empty() ? NULL : &*v->begin();
157 # endif
158 }
159 
160 template<typename T>
vector_as_array(const std::vector<T> * v)161 inline const T* vector_as_array(const std::vector<T>* v) {
162 # ifdef NDEBUG
163   return &*v->begin();
164 # else
165   return v->empty() ? NULL : &*v->begin();
166 # endif
167 }
168 
169 // Return a mutable char* pointing to a string's internal buffer,
170 // which may not be null-terminated. Writing through this pointer will
171 // modify the string.
172 //
173 // string_as_array(&str)[i] is valid for 0 <= i < str.size() until the
174 // next call to a string method that invalidates iterators.
175 //
176 // As of 2006-04, there is no standard-blessed way of getting a
177 // mutable reference to a string's internal buffer. However, issue 530
178 // (http://www.open-std.org/JTC1/SC22/WG21/docs/lwg-active.html#530)
179 // proposes this as the method. According to Matt Austern, this should
180 // already work on all current implementations.
string_as_array(std::string * str)181 inline char* string_as_array(std::string* str) {
182   // DO NOT USE const_cast<char*>(str->data())! See the unittest for why.
183   return str->empty() ? NULL : &*str->begin();
184 }
185 
186 // These are methods that test two hash maps/sets for equality.  These exist
187 // because the == operator in the STL can return false when the maps/sets
188 // contain identical elements.  This is because it compares the internal hash
189 // tables which may be different if the order of insertions and deletions
190 // differed.
191 
192 template <class HashSet>
193 inline bool
HashSetEquality(const HashSet & set_a,const HashSet & set_b)194 HashSetEquality(const HashSet& set_a,
195                 const HashSet& set_b) {
196   if (set_a.size() != set_b.size()) return false;
197   for (typename HashSet::const_iterator i = set_a.begin();
198        i != set_a.end();
199        ++i) {
200     if (set_b.find(*i) == set_b.end())
201       return false;
202   }
203   return true;
204 }
205 
206 template <class HashMap>
207 inline bool
HashMapEquality(const HashMap & map_a,const HashMap & map_b)208 HashMapEquality(const HashMap& map_a,
209                 const HashMap& map_b) {
210   if (map_a.size() != map_b.size()) return false;
211   for (typename HashMap::const_iterator i = map_a.begin();
212        i != map_a.end(); ++i) {
213     typename HashMap::const_iterator j = map_b.find(i->first);
214     if (j == map_b.end()) return false;
215     if (i->second != j->second) return false;
216   }
217   return true;
218 }
219 
220 // The following functions are useful for cleaning up STL containers
221 // whose elements point to allocated memory.
222 
223 // STLDeleteElements() deletes all the elements in an STL container and clears
224 // the container.  This function is suitable for use with a vector, set,
225 // hash_set, or any other STL container which defines sensible begin(), end(),
226 // and clear() methods.
227 //
228 // If container is NULL, this function is a no-op.
229 //
230 // As an alternative to calling STLDeleteElements() directly, consider
231 // STLElementDeleter (defined below), which ensures that your container's
232 // elements are deleted when the STLElementDeleter goes out of scope.
233 template <class T>
STLDeleteElements(T * container)234 void STLDeleteElements(T *container) {
235   if (!container) return;
236   STLDeleteContainerPointers(container->begin(), container->end());
237   container->clear();
238 }
239 
240 // Given an STL container consisting of (key, value) pairs, STLDeleteValues
241 // deletes all the "value" components and clears the container.  Does nothing
242 // in the case it's given a NULL pointer.
243 
244 template <class T>
STLDeleteValues(T * v)245 void STLDeleteValues(T *v) {
246   if (!v) return;
247   for (typename T::iterator i = v->begin(); i != v->end(); ++i) {
248     delete i->second;
249   }
250   v->clear();
251 }
252 
253 
254 // The following classes provide a convenient way to delete all elements or
255 // values from STL containers when they goes out of scope.  This greatly
256 // simplifies code that creates temporary objects and has multiple return
257 // statements.  Example:
258 //
259 // vector<MyProto *> tmp_proto;
260 // STLElementDeleter<vector<MyProto *> > d(&tmp_proto);
261 // if (...) return false;
262 // ...
263 // return success;
264 
265 // Given a pointer to an STL container this class will delete all the element
266 // pointers when it goes out of scope.
267 
268 template<class STLContainer> class STLElementDeleter {
269  public:
container_ptr_(ptr)270   STLElementDeleter<STLContainer>(STLContainer *ptr) : container_ptr_(ptr) {}
271   ~STLElementDeleter<STLContainer>() { STLDeleteElements(container_ptr_); }
272  private:
273   STLContainer *container_ptr_;
274 };
275 
276 // Given a pointer to an STL container this class will delete all the value
277 // pointers when it goes out of scope.
278 
279 template<class STLContainer> class STLValueDeleter {
280  public:
container_ptr_(ptr)281   STLValueDeleter<STLContainer>(STLContainer *ptr) : container_ptr_(ptr) {}
282   ~STLValueDeleter<STLContainer>() { STLDeleteValues(container_ptr_); }
283  private:
284   STLContainer *container_ptr_;
285 };
286 
287 
288 // Forward declare some callback classes in callback.h for STLBinaryFunction
289 template <class R, class T1, class T2>
290 class ResultCallback2;
291 
292 // STLBinaryFunction is a wrapper for the ResultCallback2 class in callback.h
293 // It provides an operator () method instead of a Run method, so it may be
294 // passed to STL functions in <algorithm>.
295 //
296 // The client should create callback with NewPermanentCallback, and should
297 // delete callback after it is done using the STLBinaryFunction.
298 
299 template <class Result, class Arg1, class Arg2>
300 class STLBinaryFunction : public std::binary_function<Arg1, Arg2, Result> {
301  public:
302   typedef ResultCallback2<Result, Arg1, Arg2> Callback;
303 
STLBinaryFunction(Callback * callback)304   STLBinaryFunction(Callback* callback)
305     : callback_(callback) {
306     assert(callback_);
307   }
308 
operator()309   Result operator() (Arg1 arg1, Arg2 arg2) {
310     return callback_->Run(arg1, arg2);
311   }
312 
313  private:
314   Callback* callback_;
315 };
316 
317 // STLBinaryPredicate is a specialized version of STLBinaryFunction, where the
318 // return type is bool and both arguments have type Arg.  It can be used
319 // wherever STL requires a StrictWeakOrdering, such as in sort() or
320 // lower_bound().
321 //
322 // templated typedefs are not supported, so instead we use inheritance.
323 
324 template <class Arg>
325 class STLBinaryPredicate : public STLBinaryFunction<bool, Arg, Arg> {
326  public:
327   typedef typename STLBinaryPredicate<Arg>::Callback Callback;
STLBinaryPredicate(Callback * callback)328   STLBinaryPredicate(Callback* callback)
329     : STLBinaryFunction<bool, Arg, Arg>(callback) {
330   }
331 };
332 
333 // Functors that compose arbitrary unary and binary functions with a
334 // function that "projects" one of the members of a pair.
335 // Specifically, if p1 and p2, respectively, are the functions that
336 // map a pair to its first and second, respectively, members, the
337 // table below summarizes the functions that can be constructed:
338 //
339 // * UnaryOperate1st<pair>(f) returns the function x -> f(p1(x))
340 // * UnaryOperate2nd<pair>(f) returns the function x -> f(p2(x))
341 // * BinaryOperate1st<pair>(f) returns the function (x,y) -> f(p1(x),p1(y))
342 // * BinaryOperate2nd<pair>(f) returns the function (x,y) -> f(p2(x),p2(y))
343 //
344 // A typical usage for these functions would be when iterating over
345 // the contents of an STL map. For other sample usage, see the unittest.
346 
347 template<typename Pair, typename UnaryOp>
348 class UnaryOperateOnFirst
349     : public std::unary_function<Pair, typename UnaryOp::result_type> {
350  public:
UnaryOperateOnFirst()351   UnaryOperateOnFirst() {
352   }
353 
UnaryOperateOnFirst(const UnaryOp & f)354   UnaryOperateOnFirst(const UnaryOp& f) : f_(f) {
355   }
356 
operator()357   typename UnaryOp::result_type operator()(const Pair& p) const {
358     return f_(p.first);
359   }
360 
361  private:
362   UnaryOp f_;
363 };
364 
365 template<typename Pair, typename UnaryOp>
UnaryOperate1st(const UnaryOp & f)366 UnaryOperateOnFirst<Pair, UnaryOp> UnaryOperate1st(const UnaryOp& f) {
367   return UnaryOperateOnFirst<Pair, UnaryOp>(f);
368 }
369 
370 template<typename Pair, typename UnaryOp>
371 class UnaryOperateOnSecond
372     : public std::unary_function<Pair, typename UnaryOp::result_type> {
373  public:
UnaryOperateOnSecond()374   UnaryOperateOnSecond() {
375   }
376 
UnaryOperateOnSecond(const UnaryOp & f)377   UnaryOperateOnSecond(const UnaryOp& f) : f_(f) {
378   }
379 
operator()380   typename UnaryOp::result_type operator()(const Pair& p) const {
381     return f_(p.second);
382   }
383 
384  private:
385   UnaryOp f_;
386 };
387 
388 template<typename Pair, typename UnaryOp>
UnaryOperate2nd(const UnaryOp & f)389 UnaryOperateOnSecond<Pair, UnaryOp> UnaryOperate2nd(const UnaryOp& f) {
390   return UnaryOperateOnSecond<Pair, UnaryOp>(f);
391 }
392 
393 template<typename Pair, typename BinaryOp>
394 class BinaryOperateOnFirst
395     : public std::binary_function<Pair, Pair, typename BinaryOp::result_type> {
396  public:
BinaryOperateOnFirst()397   BinaryOperateOnFirst() {
398   }
399 
BinaryOperateOnFirst(const BinaryOp & f)400   BinaryOperateOnFirst(const BinaryOp& f) : f_(f) {
401   }
402 
operator()403   typename BinaryOp::result_type operator()(const Pair& p1,
404                                             const Pair& p2) const {
405     return f_(p1.first, p2.first);
406   }
407 
408  private:
409   BinaryOp f_;
410 };
411 
412 template<typename Pair, typename BinaryOp>
BinaryOperate1st(const BinaryOp & f)413 BinaryOperateOnFirst<Pair, BinaryOp> BinaryOperate1st(const BinaryOp& f) {
414   return BinaryOperateOnFirst<Pair, BinaryOp>(f);
415 }
416 
417 template<typename Pair, typename BinaryOp>
418 class BinaryOperateOnSecond
419     : public std::binary_function<Pair, Pair, typename BinaryOp::result_type> {
420  public:
BinaryOperateOnSecond()421   BinaryOperateOnSecond() {
422   }
423 
BinaryOperateOnSecond(const BinaryOp & f)424   BinaryOperateOnSecond(const BinaryOp& f) : f_(f) {
425   }
426 
operator()427   typename BinaryOp::result_type operator()(const Pair& p1,
428                                             const Pair& p2) const {
429     return f_(p1.second, p2.second);
430   }
431 
432  private:
433   BinaryOp f_;
434 };
435 
436 template<typename Pair, typename BinaryOp>
BinaryOperate2nd(const BinaryOp & f)437 BinaryOperateOnSecond<Pair, BinaryOp> BinaryOperate2nd(const BinaryOp& f) {
438   return BinaryOperateOnSecond<Pair, BinaryOp>(f);
439 }
440 
441 // Translates a set into a vector.
442 template<typename T>
SetToVector(const std::set<T> & values)443 std::vector<T> SetToVector(const std::set<T>& values) {
444   std::vector<T> result;
445   result.reserve(values.size());
446   result.insert(result.begin(), values.begin(), values.end());
447   return result;
448 }
449 
450 // Test to see if a set, map, hash_set or hash_map contains a particular key.
451 // Returns true if the key is in the collection.
452 template <typename Collection, typename Key>
ContainsKey(const Collection & collection,const Key & key)453 bool ContainsKey(const Collection& collection, const Key& key) {
454   return collection.find(key) != collection.end();
455 }
456 
457 #endif  // BASE_STL_UTIL_INL_H_
458