• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef __ASM_SYSTEM_H
2 #define __ASM_SYSTEM_H
3 
4 #include <linux/kernel.h>
5 #include <asm/segment.h>
6 #include <asm/cpufeature.h>
7 #include <asm/cmpxchg.h>
8 
9 #ifdef __KERNEL__
10 #define AT_VECTOR_SIZE_ARCH 2 /* entries in ARCH_DLINFO */
11 
12 struct task_struct;	/* one of the stranger aspects of C forward declarations.. */
13 extern struct task_struct * FASTCALL(__switch_to(struct task_struct *prev, struct task_struct *next));
14 
15 /*
16  * Saving eflags is important. It switches not only IOPL between tasks,
17  * it also protects other tasks from NT leaking through sysenter etc.
18  */
19 #define switch_to(prev,next,last) do {					\
20 	unsigned long esi,edi;						\
21 	asm volatile("pushfl\n\t"		/* Save flags */	\
22 		     "pushl %%ebp\n\t"					\
23 		     "movl %%esp,%0\n\t"	/* save ESP */		\
24 		     "movl %5,%%esp\n\t"	/* restore ESP */	\
25 		     "movl $1f,%1\n\t"		/* save EIP */		\
26 		     "pushl %6\n\t"		/* restore EIP */	\
27 		     "jmp __switch_to\n"				\
28 		     "1:\t"						\
29 		     "popl %%ebp\n\t"					\
30 		     "popfl"						\
31 		     :"=m" (prev->thread.esp),"=m" (prev->thread.eip),	\
32 		      "=a" (last),"=S" (esi),"=D" (edi)			\
33 		     :"m" (next->thread.esp),"m" (next->thread.eip),	\
34 		      "2" (prev), "d" (next));				\
35 } while (0)
36 
37 #define _set_base(addr,base) do { unsigned long __pr; \
38 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
39 	"rorl $16,%%edx\n\t" \
40 	"movb %%dl,%2\n\t" \
41 	"movb %%dh,%3" \
42 	:"=&d" (__pr) \
43 	:"m" (*((addr)+2)), \
44 	 "m" (*((addr)+4)), \
45 	 "m" (*((addr)+7)), \
46          "0" (base) \
47         ); } while(0)
48 
49 #define _set_limit(addr,limit) do { unsigned long __lr; \
50 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
51 	"rorl $16,%%edx\n\t" \
52 	"movb %2,%%dh\n\t" \
53 	"andb $0xf0,%%dh\n\t" \
54 	"orb %%dh,%%dl\n\t" \
55 	"movb %%dl,%2" \
56 	:"=&d" (__lr) \
57 	:"m" (*(addr)), \
58 	 "m" (*((addr)+6)), \
59 	 "0" (limit) \
60         ); } while(0)
61 
62 #define set_base(ldt,base) _set_base( ((char *)&(ldt)) , (base) )
63 #define set_limit(ldt,limit) _set_limit( ((char *)&(ldt)) , ((limit)-1) )
64 
65 /*
66  * Load a segment. Fall back on loading the zero
67  * segment if something goes wrong..
68  */
69 #define loadsegment(seg,value)			\
70 	asm volatile("\n"			\
71 		"1:\t"				\
72 		"mov %0,%%" #seg "\n"		\
73 		"2:\n"				\
74 		".section .fixup,\"ax\"\n"	\
75 		"3:\t"				\
76 		"pushl $0\n\t"			\
77 		"popl %%" #seg "\n\t"		\
78 		"jmp 2b\n"			\
79 		".previous\n"			\
80 		".section __ex_table,\"a\"\n\t"	\
81 		".align 4\n\t"			\
82 		".long 1b,3b\n"			\
83 		".previous"			\
84 		: :"rm" (value))
85 
86 /*
87  * Save a segment register away
88  */
89 #define savesegment(seg, value) \
90 	asm volatile("mov %%" #seg ",%0":"=rm" (value))
91 
92 
native_clts(void)93 static inline void native_clts(void)
94 {
95 	asm volatile ("clts");
96 }
97 
native_read_cr0(void)98 static inline unsigned long native_read_cr0(void)
99 {
100 	unsigned long val;
101 	asm volatile("movl %%cr0,%0\n\t" :"=r" (val));
102 	return val;
103 }
104 
native_write_cr0(unsigned long val)105 static inline void native_write_cr0(unsigned long val)
106 {
107 	asm volatile("movl %0,%%cr0": :"r" (val));
108 }
109 
native_read_cr2(void)110 static inline unsigned long native_read_cr2(void)
111 {
112 	unsigned long val;
113 	asm volatile("movl %%cr2,%0\n\t" :"=r" (val));
114 	return val;
115 }
116 
native_write_cr2(unsigned long val)117 static inline void native_write_cr2(unsigned long val)
118 {
119 	asm volatile("movl %0,%%cr2": :"r" (val));
120 }
121 
native_read_cr3(void)122 static inline unsigned long native_read_cr3(void)
123 {
124 	unsigned long val;
125 	asm volatile("movl %%cr3,%0\n\t" :"=r" (val));
126 	return val;
127 }
128 
native_write_cr3(unsigned long val)129 static inline void native_write_cr3(unsigned long val)
130 {
131 	asm volatile("movl %0,%%cr3": :"r" (val));
132 }
133 
native_read_cr4(void)134 static inline unsigned long native_read_cr4(void)
135 {
136 	unsigned long val;
137 	asm volatile("movl %%cr4,%0\n\t" :"=r" (val));
138 	return val;
139 }
140 
native_read_cr4_safe(void)141 static inline unsigned long native_read_cr4_safe(void)
142 {
143 	unsigned long val;
144 	/* This could fault if %cr4 does not exist */
145 	asm volatile("1: movl %%cr4, %0		\n"
146 		"2:				\n"
147 		".section __ex_table,\"a\"	\n"
148 		".long 1b,2b			\n"
149 		".previous			\n"
150 		: "=r" (val): "0" (0));
151 	return val;
152 }
153 
native_write_cr4(unsigned long val)154 static inline void native_write_cr4(unsigned long val)
155 {
156 	asm volatile("movl %0,%%cr4": :"r" (val));
157 }
158 
native_wbinvd(void)159 static inline void native_wbinvd(void)
160 {
161 	asm volatile("wbinvd": : :"memory");
162 }
163 
clflush(volatile void * __p)164 static inline void clflush(volatile void *__p)
165 {
166 	asm volatile("clflush %0" : "+m" (*(char __force *)__p));
167 }
168 
169 #ifdef CONFIG_PARAVIRT
170 #include <asm/paravirt.h>
171 #else
172 #define read_cr0()	(native_read_cr0())
173 #define write_cr0(x)	(native_write_cr0(x))
174 #define read_cr2()	(native_read_cr2())
175 #define write_cr2(x)	(native_write_cr2(x))
176 #define read_cr3()	(native_read_cr3())
177 #define write_cr3(x)	(native_write_cr3(x))
178 #define read_cr4()	(native_read_cr4())
179 #define read_cr4_safe()	(native_read_cr4_safe())
180 #define write_cr4(x)	(native_write_cr4(x))
181 #define wbinvd()	(native_wbinvd())
182 
183 /* Clear the 'TS' bit */
184 #define clts()		(native_clts())
185 
186 #endif/* CONFIG_PARAVIRT */
187 
188 /* Set the 'TS' bit */
189 #define stts() write_cr0(8 | read_cr0())
190 
191 #endif	/* __KERNEL__ */
192 
get_limit(unsigned long segment)193 static inline unsigned long get_limit(unsigned long segment)
194 {
195 	unsigned long __limit;
196 	__asm__("lsll %1,%0"
197 		:"=r" (__limit):"r" (segment));
198 	return __limit+1;
199 }
200 
201 #define nop() __asm__ __volatile__ ("nop")
202 
203 /*
204  * Force strict CPU ordering.
205  * And yes, this is required on UP too when we're talking
206  * to devices.
207  *
208  * For now, "wmb()" doesn't actually do anything, as all
209  * Intel CPU's follow what Intel calls a *Processor Order*,
210  * in which all writes are seen in the program order even
211  * outside the CPU.
212  *
213  * I expect future Intel CPU's to have a weaker ordering,
214  * but I'd also expect them to finally get their act together
215  * and add some real memory barriers if so.
216  *
217  * Some non intel clones support out of order store. wmb() ceases to be a
218  * nop for these.
219  */
220 
221 
222 #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
223 #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
224 #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
225 
226 /**
227  * read_barrier_depends - Flush all pending reads that subsequents reads
228  * depend on.
229  *
230  * No data-dependent reads from memory-like regions are ever reordered
231  * over this barrier.  All reads preceding this primitive are guaranteed
232  * to access memory (but not necessarily other CPUs' caches) before any
233  * reads following this primitive that depend on the data return by
234  * any of the preceding reads.  This primitive is much lighter weight than
235  * rmb() on most CPUs, and is never heavier weight than is
236  * rmb().
237  *
238  * These ordering constraints are respected by both the local CPU
239  * and the compiler.
240  *
241  * Ordering is not guaranteed by anything other than these primitives,
242  * not even by data dependencies.  See the documentation for
243  * memory_barrier() for examples and URLs to more information.
244  *
245  * For example, the following code would force ordering (the initial
246  * value of "a" is zero, "b" is one, and "p" is "&a"):
247  *
248  * <programlisting>
249  *	CPU 0				CPU 1
250  *
251  *	b = 2;
252  *	memory_barrier();
253  *	p = &b;				q = p;
254  *					read_barrier_depends();
255  *					d = *q;
256  * </programlisting>
257  *
258  * because the read of "*q" depends on the read of "p" and these
259  * two reads are separated by a read_barrier_depends().  However,
260  * the following code, with the same initial values for "a" and "b":
261  *
262  * <programlisting>
263  *	CPU 0				CPU 1
264  *
265  *	a = 2;
266  *	memory_barrier();
267  *	b = 3;				y = b;
268  *					read_barrier_depends();
269  *					x = a;
270  * </programlisting>
271  *
272  * does not enforce ordering, since there is no data dependency between
273  * the read of "a" and the read of "b".  Therefore, on some CPUs, such
274  * as Alpha, "y" could be set to 3 and "x" to 0.  Use rmb()
275  * in cases like this where there are no data dependencies.
276  **/
277 
278 #define read_barrier_depends()	do { } while(0)
279 
280 #ifdef CONFIG_SMP
281 #define smp_mb()	mb()
282 #ifdef CONFIG_X86_PPRO_FENCE
283 # define smp_rmb()	rmb()
284 #else
285 # define smp_rmb()	barrier()
286 #endif
287 #ifdef CONFIG_X86_OOSTORE
288 # define smp_wmb() 	wmb()
289 #else
290 # define smp_wmb()	barrier()
291 #endif
292 #define smp_read_barrier_depends()	read_barrier_depends()
293 #define set_mb(var, value) do { (void) xchg(&var, value); } while (0)
294 #else
295 #define smp_mb()	barrier()
296 #define smp_rmb()	barrier()
297 #define smp_wmb()	barrier()
298 #define smp_read_barrier_depends()	do { } while(0)
299 #define set_mb(var, value) do { var = value; barrier(); } while (0)
300 #endif
301 
302 #include <linux/irqflags.h>
303 
304 /*
305  * disable hlt during certain critical i/o operations
306  */
307 #define HAVE_DISABLE_HLT
308 void disable_hlt(void);
309 void enable_hlt(void);
310 
311 extern int es7000_plat;
312 void cpu_idle_wait(void);
313 
314 extern unsigned long arch_align_stack(unsigned long sp);
315 extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
316 
317 void default_idle(void);
318 void __show_registers(struct pt_regs *, int all);
319 
320 #endif
321