• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
6  *		Florian La Roche, <rzsfl@rz.uni-sb.de>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21 
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/poll.h>
28 #include <linux/net.h>
29 #include <linux/textsearch.h>
30 #include <net/checksum.h>
31 #include <linux/dmaengine.h>
32 
33 #define HAVE_ALLOC_SKB		/* For the drivers to know */
34 #define HAVE_ALIGNABLE_SKB	/* Ditto 8)		   */
35 
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_HW 1
38 #define CHECKSUM_UNNECESSARY 2
39 
40 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
41 				 ~(SMP_CACHE_BYTES - 1))
42 #define SKB_MAX_ORDER(X, ORDER)	(((PAGE_SIZE << (ORDER)) - (X) - \
43 				  sizeof(struct skb_shared_info)) & \
44 				  ~(SMP_CACHE_BYTES - 1))
45 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
47 
48 /* A. Checksumming of received packets by device.
49  *
50  *	NONE: device failed to checksum this packet.
51  *		skb->csum is undefined.
52  *
53  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
54  *		skb->csum is undefined.
55  *	      It is bad option, but, unfortunately, many of vendors do this.
56  *	      Apparently with secret goal to sell you new device, when you
57  *	      will add new protocol to your host. F.e. IPv6. 8)
58  *
59  *	HW: the most generic way. Device supplied checksum of _all_
60  *	    the packet as seen by netif_rx in skb->csum.
61  *	    NOTE: Even if device supports only some protocols, but
62  *	    is able to produce some skb->csum, it MUST use HW,
63  *	    not UNNECESSARY.
64  *
65  * B. Checksumming on output.
66  *
67  *	NONE: skb is checksummed by protocol or csum is not required.
68  *
69  *	HW: device is required to csum packet as seen by hard_start_xmit
70  *	from skb->h.raw to the end and to record the checksum
71  *	at skb->h.raw+skb->csum.
72  *
73  *	Device must show its capabilities in dev->features, set
74  *	at device setup time.
75  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
76  *			  everything.
77  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
78  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
79  *			  TCP/UDP over IPv4. Sigh. Vendors like this
80  *			  way by an unknown reason. Though, see comment above
81  *			  about CHECKSUM_UNNECESSARY. 8)
82  *
83  *	Any questions? No questions, good. 		--ANK
84  */
85 
86 struct net_device;
87 
88 #ifdef CONFIG_NETFILTER
89 struct nf_conntrack {
90 	atomic_t use;
91 	void (*destroy)(struct nf_conntrack *);
92 };
93 
94 #ifdef CONFIG_BRIDGE_NETFILTER
95 struct nf_bridge_info {
96 	atomic_t use;
97 	struct net_device *physindev;
98 	struct net_device *physoutdev;
99 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
100 	struct net_device *netoutdev;
101 #endif
102 	unsigned int mask;
103 	unsigned long data[32 / sizeof(unsigned long)];
104 };
105 #endif
106 
107 #endif
108 
109 struct sk_buff_head {
110 	/* These two members must be first. */
111 	struct sk_buff	*next;
112 	struct sk_buff	*prev;
113 
114 	__u32		qlen;
115 	spinlock_t	lock;
116 };
117 
118 struct sk_buff;
119 
120 /* To allow 64K frame to be packed as single skb without frag_list */
121 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
122 
123 typedef struct skb_frag_struct skb_frag_t;
124 
125 struct skb_frag_struct {
126 	struct page *page;
127 	__u16 page_offset;
128 	__u16 size;
129 };
130 
131 /* This data is invariant across clones and lives at
132  * the end of the header data, ie. at skb->end.
133  */
134 struct skb_shared_info {
135 	atomic_t	dataref;
136 	unsigned short	nr_frags;
137 	unsigned short	gso_size;
138 	/* Warning: this field is not always filled in (UFO)! */
139 	unsigned short	gso_segs;
140 	unsigned short  gso_type;
141 	unsigned int    ip6_frag_id;
142 	struct sk_buff	*frag_list;
143 	skb_frag_t	frags[MAX_SKB_FRAGS];
144 };
145 
146 /* We divide dataref into two halves.  The higher 16 bits hold references
147  * to the payload part of skb->data.  The lower 16 bits hold references to
148  * the entire skb->data.  It is up to the users of the skb to agree on
149  * where the payload starts.
150  *
151  * All users must obey the rule that the skb->data reference count must be
152  * greater than or equal to the payload reference count.
153  *
154  * Holding a reference to the payload part means that the user does not
155  * care about modifications to the header part of skb->data.
156  */
157 #define SKB_DATAREF_SHIFT 16
158 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
159 
160 struct skb_timeval {
161 	u32	off_sec;
162 	u32	off_usec;
163 };
164 
165 
166 enum {
167 	SKB_FCLONE_UNAVAILABLE,
168 	SKB_FCLONE_ORIG,
169 	SKB_FCLONE_CLONE,
170 };
171 
172 enum {
173 	SKB_GSO_TCPV4 = 1 << 0,
174 	SKB_GSO_UDP = 1 << 1,
175 
176 	/* This indicates the skb is from an untrusted source. */
177 	SKB_GSO_DODGY = 1 << 2,
178 
179 	/* This indicates the tcp segment has CWR set. */
180 	SKB_GSO_TCP_ECN = 1 << 3,
181 
182 	SKB_GSO_TCPV6 = 1 << 4,
183 };
184 
185 /**
186  *	struct sk_buff - socket buffer
187  *	@next: Next buffer in list
188  *	@prev: Previous buffer in list
189  *	@sk: Socket we are owned by
190  *	@tstamp: Time we arrived
191  *	@dev: Device we arrived on/are leaving by
192  *	@input_dev: Device we arrived on
193  *	@h: Transport layer header
194  *	@nh: Network layer header
195  *	@mac: Link layer header
196  *	@dst: destination entry
197  *	@sp: the security path, used for xfrm
198  *	@cb: Control buffer. Free for use by every layer. Put private vars here
199  *	@len: Length of actual data
200  *	@data_len: Data length
201  *	@mac_len: Length of link layer header
202  *	@csum: Checksum
203  *	@local_df: allow local fragmentation
204  *	@cloned: Head may be cloned (check refcnt to be sure)
205  *	@nohdr: Payload reference only, must not modify header
206  *	@pkt_type: Packet class
207  *	@fclone: skbuff clone status
208  *	@ip_summed: Driver fed us an IP checksum
209  *	@priority: Packet queueing priority
210  *	@users: User count - see {datagram,tcp}.c
211  *	@protocol: Packet protocol from driver
212  *	@truesize: Buffer size
213  *	@head: Head of buffer
214  *	@data: Data head pointer
215  *	@tail: Tail pointer
216  *	@end: End pointer
217  *	@destructor: Destruct function
218  *	@nfmark: Can be used for communication between hooks
219  *	@nfct: Associated connection, if any
220  *	@ipvs_property: skbuff is owned by ipvs
221  *	@nfctinfo: Relationship of this skb to the connection
222  *	@nfct_reasm: netfilter conntrack re-assembly pointer
223  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
224  *	@tc_index: Traffic control index
225  *	@tc_verd: traffic control verdict
226  *	@dma_cookie: a cookie to one of several possible DMA operations
227  *		done by skb DMA functions
228  *	@secmark: security marking
229  */
230 
231 struct sk_buff {
232 	/* These two members must be first. */
233 	struct sk_buff		*next;
234 	struct sk_buff		*prev;
235 
236 	struct sock		*sk;
237 	struct skb_timeval	tstamp;
238 	struct net_device	*dev;
239 	struct net_device	*input_dev;
240 
241 	union {
242 		struct tcphdr	*th;
243 		struct udphdr	*uh;
244 		struct icmphdr	*icmph;
245 		struct igmphdr	*igmph;
246 		struct iphdr	*ipiph;
247 		struct ipv6hdr	*ipv6h;
248 		unsigned char	*raw;
249 	} h;
250 
251 	union {
252 		struct iphdr	*iph;
253 		struct ipv6hdr	*ipv6h;
254 		struct arphdr	*arph;
255 		unsigned char	*raw;
256 	} nh;
257 
258 	union {
259 	  	unsigned char 	*raw;
260 	} mac;
261 
262 	struct  dst_entry	*dst;
263 	struct	sec_path	*sp;
264 
265 	/*
266 	 * This is the control buffer. It is free to use for every
267 	 * layer. Please put your private variables there. If you
268 	 * want to keep them across layers you have to do a skb_clone()
269 	 * first. This is owned by whoever has the skb queued ATM.
270 	 */
271 	char			cb[48];
272 
273 	unsigned int		len,
274 				data_len,
275 				mac_len,
276 				csum;
277 	__u32			priority;
278 	__u8			local_df:1,
279 				cloned:1,
280 				ip_summed:2,
281 				nohdr:1,
282 				nfctinfo:3;
283 	__u8			pkt_type:3,
284 				fclone:2,
285 				ipvs_property:1;
286 	__be16			protocol;
287 
288 	void			(*destructor)(struct sk_buff *skb);
289 #ifdef CONFIG_NETFILTER
290 	struct nf_conntrack	*nfct;
291 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
292 	struct sk_buff		*nfct_reasm;
293 #endif
294 #ifdef CONFIG_BRIDGE_NETFILTER
295 	struct nf_bridge_info	*nf_bridge;
296 #endif
297 	__u32			nfmark;
298 #endif /* CONFIG_NETFILTER */
299 #ifdef CONFIG_NET_SCHED
300 	__u16			tc_index;	/* traffic control index */
301 #ifdef CONFIG_NET_CLS_ACT
302 	__u16			tc_verd;	/* traffic control verdict */
303 #endif
304 #endif
305 #ifdef CONFIG_NET_DMA
306 	dma_cookie_t		dma_cookie;
307 #endif
308 #ifdef CONFIG_NETWORK_SECMARK
309 	__u32			secmark;
310 #endif
311 
312 
313 	/* These elements must be at the end, see alloc_skb() for details.  */
314 	unsigned int		truesize;
315 	atomic_t		users;
316 	unsigned char		*head,
317 				*data,
318 				*tail,
319 				*end;
320 };
321 
322 #ifdef __KERNEL__
323 /*
324  *	Handling routines are only of interest to the kernel
325  */
326 #include <linux/slab.h>
327 
328 #include <asm/system.h>
329 
330 extern void kfree_skb(struct sk_buff *skb);
331 extern void	       __kfree_skb(struct sk_buff *skb);
332 extern struct sk_buff *__alloc_skb(unsigned int size,
333 				   gfp_t priority, int fclone);
alloc_skb(unsigned int size,gfp_t priority)334 static inline struct sk_buff *alloc_skb(unsigned int size,
335 					gfp_t priority)
336 {
337 	return __alloc_skb(size, priority, 0);
338 }
339 
alloc_skb_fclone(unsigned int size,gfp_t priority)340 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
341 					       gfp_t priority)
342 {
343 	return __alloc_skb(size, priority, 1);
344 }
345 
346 extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
347 					    unsigned int size,
348 					    gfp_t priority);
349 extern void	       kfree_skbmem(struct sk_buff *skb);
350 extern struct sk_buff *skb_clone(struct sk_buff *skb,
351 				 gfp_t priority);
352 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
353 				gfp_t priority);
354 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
355 				 gfp_t gfp_mask);
356 extern int	       pskb_expand_head(struct sk_buff *skb,
357 					int nhead, int ntail,
358 					gfp_t gfp_mask);
359 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
360 					    unsigned int headroom);
361 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
362 				       int newheadroom, int newtailroom,
363 				       gfp_t priority);
364 extern int	       skb_pad(struct sk_buff *skb, int pad);
365 #define dev_kfree_skb(a)	kfree_skb(a)
366 extern void	      skb_over_panic(struct sk_buff *skb, int len,
367 				     void *here);
368 extern void	      skb_under_panic(struct sk_buff *skb, int len,
369 				      void *here);
370 extern void	      skb_truesize_bug(struct sk_buff *skb);
371 
skb_truesize_check(struct sk_buff * skb)372 static inline void skb_truesize_check(struct sk_buff *skb)
373 {
374 	if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len))
375 		skb_truesize_bug(skb);
376 }
377 
378 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
379 			int getfrag(void *from, char *to, int offset,
380 			int len,int odd, struct sk_buff *skb),
381 			void *from, int length);
382 
383 struct skb_seq_state
384 {
385 	__u32		lower_offset;
386 	__u32		upper_offset;
387 	__u32		frag_idx;
388 	__u32		stepped_offset;
389 	struct sk_buff	*root_skb;
390 	struct sk_buff	*cur_skb;
391 	__u8		*frag_data;
392 };
393 
394 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
395 					   unsigned int from, unsigned int to,
396 					   struct skb_seq_state *st);
397 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
398 				   struct skb_seq_state *st);
399 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
400 
401 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
402 				    unsigned int to, struct ts_config *config,
403 				    struct ts_state *state);
404 
405 /* Internal */
406 #define skb_shinfo(SKB)		((struct skb_shared_info *)((SKB)->end))
407 
408 /**
409  *	skb_queue_empty - check if a queue is empty
410  *	@list: queue head
411  *
412  *	Returns true if the queue is empty, false otherwise.
413  */
skb_queue_empty(const struct sk_buff_head * list)414 static inline int skb_queue_empty(const struct sk_buff_head *list)
415 {
416 	return list->next == (struct sk_buff *)list;
417 }
418 
419 /**
420  *	skb_get - reference buffer
421  *	@skb: buffer to reference
422  *
423  *	Makes another reference to a socket buffer and returns a pointer
424  *	to the buffer.
425  */
skb_get(struct sk_buff * skb)426 static inline struct sk_buff *skb_get(struct sk_buff *skb)
427 {
428 	atomic_inc(&skb->users);
429 	return skb;
430 }
431 
432 /*
433  * If users == 1, we are the only owner and are can avoid redundant
434  * atomic change.
435  */
436 
437 /**
438  *	skb_cloned - is the buffer a clone
439  *	@skb: buffer to check
440  *
441  *	Returns true if the buffer was generated with skb_clone() and is
442  *	one of multiple shared copies of the buffer. Cloned buffers are
443  *	shared data so must not be written to under normal circumstances.
444  */
skb_cloned(const struct sk_buff * skb)445 static inline int skb_cloned(const struct sk_buff *skb)
446 {
447 	return skb->cloned &&
448 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
449 }
450 
451 /**
452  *	skb_header_cloned - is the header a clone
453  *	@skb: buffer to check
454  *
455  *	Returns true if modifying the header part of the buffer requires
456  *	the data to be copied.
457  */
skb_header_cloned(const struct sk_buff * skb)458 static inline int skb_header_cloned(const struct sk_buff *skb)
459 {
460 	int dataref;
461 
462 	if (!skb->cloned)
463 		return 0;
464 
465 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
466 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
467 	return dataref != 1;
468 }
469 
470 /**
471  *	skb_header_release - release reference to header
472  *	@skb: buffer to operate on
473  *
474  *	Drop a reference to the header part of the buffer.  This is done
475  *	by acquiring a payload reference.  You must not read from the header
476  *	part of skb->data after this.
477  */
skb_header_release(struct sk_buff * skb)478 static inline void skb_header_release(struct sk_buff *skb)
479 {
480 	BUG_ON(skb->nohdr);
481 	skb->nohdr = 1;
482 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
483 }
484 
485 /**
486  *	skb_shared - is the buffer shared
487  *	@skb: buffer to check
488  *
489  *	Returns true if more than one person has a reference to this
490  *	buffer.
491  */
skb_shared(const struct sk_buff * skb)492 static inline int skb_shared(const struct sk_buff *skb)
493 {
494 	return atomic_read(&skb->users) != 1;
495 }
496 
497 /**
498  *	skb_share_check - check if buffer is shared and if so clone it
499  *	@skb: buffer to check
500  *	@pri: priority for memory allocation
501  *
502  *	If the buffer is shared the buffer is cloned and the old copy
503  *	drops a reference. A new clone with a single reference is returned.
504  *	If the buffer is not shared the original buffer is returned. When
505  *	being called from interrupt status or with spinlocks held pri must
506  *	be GFP_ATOMIC.
507  *
508  *	NULL is returned on a memory allocation failure.
509  */
skb_share_check(struct sk_buff * skb,gfp_t pri)510 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
511 					      gfp_t pri)
512 {
513 	might_sleep_if(pri & __GFP_WAIT);
514 	if (skb_shared(skb)) {
515 		struct sk_buff *nskb = skb_clone(skb, pri);
516 		kfree_skb(skb);
517 		skb = nskb;
518 	}
519 	return skb;
520 }
521 
522 /*
523  *	Copy shared buffers into a new sk_buff. We effectively do COW on
524  *	packets to handle cases where we have a local reader and forward
525  *	and a couple of other messy ones. The normal one is tcpdumping
526  *	a packet thats being forwarded.
527  */
528 
529 /**
530  *	skb_unshare - make a copy of a shared buffer
531  *	@skb: buffer to check
532  *	@pri: priority for memory allocation
533  *
534  *	If the socket buffer is a clone then this function creates a new
535  *	copy of the data, drops a reference count on the old copy and returns
536  *	the new copy with the reference count at 1. If the buffer is not a clone
537  *	the original buffer is returned. When called with a spinlock held or
538  *	from interrupt state @pri must be %GFP_ATOMIC
539  *
540  *	%NULL is returned on a memory allocation failure.
541  */
skb_unshare(struct sk_buff * skb,gfp_t pri)542 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
543 					  gfp_t pri)
544 {
545 	might_sleep_if(pri & __GFP_WAIT);
546 	if (skb_cloned(skb)) {
547 		struct sk_buff *nskb = skb_copy(skb, pri);
548 		kfree_skb(skb);	/* Free our shared copy */
549 		skb = nskb;
550 	}
551 	return skb;
552 }
553 
554 /**
555  *	skb_peek
556  *	@list_: list to peek at
557  *
558  *	Peek an &sk_buff. Unlike most other operations you _MUST_
559  *	be careful with this one. A peek leaves the buffer on the
560  *	list and someone else may run off with it. You must hold
561  *	the appropriate locks or have a private queue to do this.
562  *
563  *	Returns %NULL for an empty list or a pointer to the head element.
564  *	The reference count is not incremented and the reference is therefore
565  *	volatile. Use with caution.
566  */
skb_peek(struct sk_buff_head * list_)567 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
568 {
569 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
570 	if (list == (struct sk_buff *)list_)
571 		list = NULL;
572 	return list;
573 }
574 
575 /**
576  *	skb_peek_tail
577  *	@list_: list to peek at
578  *
579  *	Peek an &sk_buff. Unlike most other operations you _MUST_
580  *	be careful with this one. A peek leaves the buffer on the
581  *	list and someone else may run off with it. You must hold
582  *	the appropriate locks or have a private queue to do this.
583  *
584  *	Returns %NULL for an empty list or a pointer to the tail element.
585  *	The reference count is not incremented and the reference is therefore
586  *	volatile. Use with caution.
587  */
skb_peek_tail(struct sk_buff_head * list_)588 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
589 {
590 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
591 	if (list == (struct sk_buff *)list_)
592 		list = NULL;
593 	return list;
594 }
595 
596 /**
597  *	skb_queue_len	- get queue length
598  *	@list_: list to measure
599  *
600  *	Return the length of an &sk_buff queue.
601  */
skb_queue_len(const struct sk_buff_head * list_)602 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
603 {
604 	return list_->qlen;
605 }
606 
607 /*
608  * This function creates a split out lock class for each invocation;
609  * this is needed for now since a whole lot of users of the skb-queue
610  * infrastructure in drivers have different locking usage (in hardirq)
611  * than the networking core (in softirq only). In the long run either the
612  * network layer or drivers should need annotation to consolidate the
613  * main types of usage into 3 classes.
614  */
skb_queue_head_init(struct sk_buff_head * list)615 static inline void skb_queue_head_init(struct sk_buff_head *list)
616 {
617 	spin_lock_init(&list->lock);
618 	list->prev = list->next = (struct sk_buff *)list;
619 	list->qlen = 0;
620 }
621 
622 /*
623  *	Insert an sk_buff at the start of a list.
624  *
625  *	The "__skb_xxxx()" functions are the non-atomic ones that
626  *	can only be called with interrupts disabled.
627  */
628 
629 /**
630  *	__skb_queue_after - queue a buffer at the list head
631  *	@list: list to use
632  *	@prev: place after this buffer
633  *	@newsk: buffer to queue
634  *
635  *	Queue a buffer int the middle of a list. This function takes no locks
636  *	and you must therefore hold required locks before calling it.
637  *
638  *	A buffer cannot be placed on two lists at the same time.
639  */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)640 static inline void __skb_queue_after(struct sk_buff_head *list,
641 				     struct sk_buff *prev,
642 				     struct sk_buff *newsk)
643 {
644 	struct sk_buff *next;
645 	list->qlen++;
646 
647 	next = prev->next;
648 	newsk->next = next;
649 	newsk->prev = prev;
650 	next->prev  = prev->next = newsk;
651 }
652 
653 /**
654  *	__skb_queue_head - queue a buffer at the list head
655  *	@list: list to use
656  *	@newsk: buffer to queue
657  *
658  *	Queue a buffer at the start of a list. This function takes no locks
659  *	and you must therefore hold required locks before calling it.
660  *
661  *	A buffer cannot be placed on two lists at the same time.
662  */
663 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)664 static inline void __skb_queue_head(struct sk_buff_head *list,
665 				    struct sk_buff *newsk)
666 {
667 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
668 }
669 
670 /**
671  *	__skb_queue_tail - queue a buffer at the list tail
672  *	@list: list to use
673  *	@newsk: buffer to queue
674  *
675  *	Queue a buffer at the end of a list. This function takes no locks
676  *	and you must therefore hold required locks before calling it.
677  *
678  *	A buffer cannot be placed on two lists at the same time.
679  */
680 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)681 static inline void __skb_queue_tail(struct sk_buff_head *list,
682 				   struct sk_buff *newsk)
683 {
684 	struct sk_buff *prev, *next;
685 
686 	list->qlen++;
687 	next = (struct sk_buff *)list;
688 	prev = next->prev;
689 	newsk->next = next;
690 	newsk->prev = prev;
691 	next->prev  = prev->next = newsk;
692 }
693 
694 
695 /**
696  *	__skb_dequeue - remove from the head of the queue
697  *	@list: list to dequeue from
698  *
699  *	Remove the head of the list. This function does not take any locks
700  *	so must be used with appropriate locks held only. The head item is
701  *	returned or %NULL if the list is empty.
702  */
703 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
__skb_dequeue(struct sk_buff_head * list)704 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
705 {
706 	struct sk_buff *next, *prev, *result;
707 
708 	prev = (struct sk_buff *) list;
709 	next = prev->next;
710 	result = NULL;
711 	if (next != prev) {
712 		result	     = next;
713 		next	     = next->next;
714 		list->qlen--;
715 		next->prev   = prev;
716 		prev->next   = next;
717 		result->next = result->prev = NULL;
718 	}
719 	return result;
720 }
721 
722 
723 /*
724  *	Insert a packet on a list.
725  */
726 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)727 static inline void __skb_insert(struct sk_buff *newsk,
728 				struct sk_buff *prev, struct sk_buff *next,
729 				struct sk_buff_head *list)
730 {
731 	newsk->next = next;
732 	newsk->prev = prev;
733 	next->prev  = prev->next = newsk;
734 	list->qlen++;
735 }
736 
737 /*
738  *	Place a packet after a given packet in a list.
739  */
740 extern void	   skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
__skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)741 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
742 {
743 	__skb_insert(newsk, old, old->next, list);
744 }
745 
746 /*
747  * remove sk_buff from list. _Must_ be called atomically, and with
748  * the list known..
749  */
750 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)751 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
752 {
753 	struct sk_buff *next, *prev;
754 
755 	list->qlen--;
756 	next	   = skb->next;
757 	prev	   = skb->prev;
758 	skb->next  = skb->prev = NULL;
759 	next->prev = prev;
760 	prev->next = next;
761 }
762 
763 
764 /* XXX: more streamlined implementation */
765 
766 /**
767  *	__skb_dequeue_tail - remove from the tail of the queue
768  *	@list: list to dequeue from
769  *
770  *	Remove the tail of the list. This function does not take any locks
771  *	so must be used with appropriate locks held only. The tail item is
772  *	returned or %NULL if the list is empty.
773  */
774 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
__skb_dequeue_tail(struct sk_buff_head * list)775 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
776 {
777 	struct sk_buff *skb = skb_peek_tail(list);
778 	if (skb)
779 		__skb_unlink(skb, list);
780 	return skb;
781 }
782 
783 
skb_is_nonlinear(const struct sk_buff * skb)784 static inline int skb_is_nonlinear(const struct sk_buff *skb)
785 {
786 	return skb->data_len;
787 }
788 
skb_headlen(const struct sk_buff * skb)789 static inline unsigned int skb_headlen(const struct sk_buff *skb)
790 {
791 	return skb->len - skb->data_len;
792 }
793 
skb_pagelen(const struct sk_buff * skb)794 static inline int skb_pagelen(const struct sk_buff *skb)
795 {
796 	int i, len = 0;
797 
798 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
799 		len += skb_shinfo(skb)->frags[i].size;
800 	return len + skb_headlen(skb);
801 }
802 
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)803 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
804 				      struct page *page, int off, int size)
805 {
806 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
807 
808 	frag->page		  = page;
809 	frag->page_offset	  = off;
810 	frag->size		  = size;
811 	skb_shinfo(skb)->nr_frags = i + 1;
812 }
813 
814 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
815 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->frag_list)
816 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
817 
818 /*
819  *	Add data to an sk_buff
820  */
__skb_put(struct sk_buff * skb,unsigned int len)821 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
822 {
823 	unsigned char *tmp = skb->tail;
824 	SKB_LINEAR_ASSERT(skb);
825 	skb->tail += len;
826 	skb->len  += len;
827 	return tmp;
828 }
829 
830 /**
831  *	skb_put - add data to a buffer
832  *	@skb: buffer to use
833  *	@len: amount of data to add
834  *
835  *	This function extends the used data area of the buffer. If this would
836  *	exceed the total buffer size the kernel will panic. A pointer to the
837  *	first byte of the extra data is returned.
838  */
skb_put(struct sk_buff * skb,unsigned int len)839 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
840 {
841 	unsigned char *tmp = skb->tail;
842 	SKB_LINEAR_ASSERT(skb);
843 	skb->tail += len;
844 	skb->len  += len;
845 	if (unlikely(skb->tail>skb->end))
846 		skb_over_panic(skb, len, current_text_addr());
847 	return tmp;
848 }
849 
__skb_push(struct sk_buff * skb,unsigned int len)850 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
851 {
852 	skb->data -= len;
853 	skb->len  += len;
854 	return skb->data;
855 }
856 
857 /**
858  *	skb_push - add data to the start of a buffer
859  *	@skb: buffer to use
860  *	@len: amount of data to add
861  *
862  *	This function extends the used data area of the buffer at the buffer
863  *	start. If this would exceed the total buffer headroom the kernel will
864  *	panic. A pointer to the first byte of the extra data is returned.
865  */
skb_push(struct sk_buff * skb,unsigned int len)866 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
867 {
868 	skb->data -= len;
869 	skb->len  += len;
870 	if (unlikely(skb->data<skb->head))
871 		skb_under_panic(skb, len, current_text_addr());
872 	return skb->data;
873 }
874 
__skb_pull(struct sk_buff * skb,unsigned int len)875 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
876 {
877 	skb->len -= len;
878 	BUG_ON(skb->len < skb->data_len);
879 	return skb->data += len;
880 }
881 
882 /**
883  *	skb_pull - remove data from the start of a buffer
884  *	@skb: buffer to use
885  *	@len: amount of data to remove
886  *
887  *	This function removes data from the start of a buffer, returning
888  *	the memory to the headroom. A pointer to the next data in the buffer
889  *	is returned. Once the data has been pulled future pushes will overwrite
890  *	the old data.
891  */
skb_pull(struct sk_buff * skb,unsigned int len)892 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
893 {
894 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
895 }
896 
897 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
898 
__pskb_pull(struct sk_buff * skb,unsigned int len)899 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
900 {
901 	if (len > skb_headlen(skb) &&
902 	    !__pskb_pull_tail(skb, len-skb_headlen(skb)))
903 		return NULL;
904 	skb->len -= len;
905 	return skb->data += len;
906 }
907 
pskb_pull(struct sk_buff * skb,unsigned int len)908 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
909 {
910 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
911 }
912 
pskb_may_pull(struct sk_buff * skb,unsigned int len)913 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
914 {
915 	if (likely(len <= skb_headlen(skb)))
916 		return 1;
917 	if (unlikely(len > skb->len))
918 		return 0;
919 	return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
920 }
921 
922 /**
923  *	skb_headroom - bytes at buffer head
924  *	@skb: buffer to check
925  *
926  *	Return the number of bytes of free space at the head of an &sk_buff.
927  */
skb_headroom(const struct sk_buff * skb)928 static inline int skb_headroom(const struct sk_buff *skb)
929 {
930 	return skb->data - skb->head;
931 }
932 
933 /**
934  *	skb_tailroom - bytes at buffer end
935  *	@skb: buffer to check
936  *
937  *	Return the number of bytes of free space at the tail of an sk_buff
938  */
skb_tailroom(const struct sk_buff * skb)939 static inline int skb_tailroom(const struct sk_buff *skb)
940 {
941 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
942 }
943 
944 /**
945  *	skb_reserve - adjust headroom
946  *	@skb: buffer to alter
947  *	@len: bytes to move
948  *
949  *	Increase the headroom of an empty &sk_buff by reducing the tail
950  *	room. This is only allowed for an empty buffer.
951  */
skb_reserve(struct sk_buff * skb,int len)952 static inline void skb_reserve(struct sk_buff *skb, int len)
953 {
954 	skb->data += len;
955 	skb->tail += len;
956 }
957 
958 /*
959  * CPUs often take a performance hit when accessing unaligned memory
960  * locations. The actual performance hit varies, it can be small if the
961  * hardware handles it or large if we have to take an exception and fix it
962  * in software.
963  *
964  * Since an ethernet header is 14 bytes network drivers often end up with
965  * the IP header at an unaligned offset. The IP header can be aligned by
966  * shifting the start of the packet by 2 bytes. Drivers should do this
967  * with:
968  *
969  * skb_reserve(NET_IP_ALIGN);
970  *
971  * The downside to this alignment of the IP header is that the DMA is now
972  * unaligned. On some architectures the cost of an unaligned DMA is high
973  * and this cost outweighs the gains made by aligning the IP header.
974  *
975  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
976  * to be overridden.
977  */
978 #ifndef NET_IP_ALIGN
979 #define NET_IP_ALIGN	2
980 #endif
981 
982 /*
983  * The networking layer reserves some headroom in skb data (via
984  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
985  * the header has to grow. In the default case, if the header has to grow
986  * 16 bytes or less we avoid the reallocation.
987  *
988  * Unfortunately this headroom changes the DMA alignment of the resulting
989  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
990  * on some architectures. An architecture can override this value,
991  * perhaps setting it to a cacheline in size (since that will maintain
992  * cacheline alignment of the DMA). It must be a power of 2.
993  *
994  * Various parts of the networking layer expect at least 16 bytes of
995  * headroom, you should not reduce this.
996  */
997 #ifndef NET_SKB_PAD
998 #define NET_SKB_PAD	16
999 #endif
1000 
1001 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1002 
__skb_trim(struct sk_buff * skb,unsigned int len)1003 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1004 {
1005 	if (unlikely(skb->data_len)) {
1006 		WARN_ON(1);
1007 		return;
1008 	}
1009 	skb->len  = len;
1010 	skb->tail = skb->data + len;
1011 }
1012 
1013 /**
1014  *	skb_trim - remove end from a buffer
1015  *	@skb: buffer to alter
1016  *	@len: new length
1017  *
1018  *	Cut the length of a buffer down by removing data from the tail. If
1019  *	the buffer is already under the length specified it is not modified.
1020  *	The skb must be linear.
1021  */
skb_trim(struct sk_buff * skb,unsigned int len)1022 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1023 {
1024 	if (skb->len > len)
1025 		__skb_trim(skb, len);
1026 }
1027 
1028 
__pskb_trim(struct sk_buff * skb,unsigned int len)1029 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1030 {
1031 	if (skb->data_len)
1032 		return ___pskb_trim(skb, len);
1033 	__skb_trim(skb, len);
1034 	return 0;
1035 }
1036 
pskb_trim(struct sk_buff * skb,unsigned int len)1037 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1038 {
1039 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1040 }
1041 
1042 /**
1043  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1044  *	@skb: buffer to alter
1045  *	@len: new length
1046  *
1047  *	This is identical to pskb_trim except that the caller knows that
1048  *	the skb is not cloned so we should never get an error due to out-
1049  *	of-memory.
1050  */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)1051 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1052 {
1053 	int err = pskb_trim(skb, len);
1054 	BUG_ON(err);
1055 }
1056 
1057 /**
1058  *	skb_orphan - orphan a buffer
1059  *	@skb: buffer to orphan
1060  *
1061  *	If a buffer currently has an owner then we call the owner's
1062  *	destructor function and make the @skb unowned. The buffer continues
1063  *	to exist but is no longer charged to its former owner.
1064  */
skb_orphan(struct sk_buff * skb)1065 static inline void skb_orphan(struct sk_buff *skb)
1066 {
1067 	if (skb->destructor)
1068 		skb->destructor(skb);
1069 	skb->destructor = NULL;
1070 	skb->sk		= NULL;
1071 }
1072 
1073 /**
1074  *	__skb_queue_purge - empty a list
1075  *	@list: list to empty
1076  *
1077  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1078  *	the list and one reference dropped. This function does not take the
1079  *	list lock and the caller must hold the relevant locks to use it.
1080  */
1081 extern void skb_queue_purge(struct sk_buff_head *list);
__skb_queue_purge(struct sk_buff_head * list)1082 static inline void __skb_queue_purge(struct sk_buff_head *list)
1083 {
1084 	struct sk_buff *skb;
1085 	while ((skb = __skb_dequeue(list)) != NULL)
1086 		kfree_skb(skb);
1087 }
1088 
1089 /**
1090  *	__dev_alloc_skb - allocate an skbuff for receiving
1091  *	@length: length to allocate
1092  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1093  *
1094  *	Allocate a new &sk_buff and assign it a usage count of one. The
1095  *	buffer has unspecified headroom built in. Users should allocate
1096  *	the headroom they think they need without accounting for the
1097  *	built in space. The built in space is used for optimisations.
1098  *
1099  *	%NULL is returned if there is no free memory.
1100  */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)1101 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1102 					      gfp_t gfp_mask)
1103 {
1104 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1105 	if (likely(skb))
1106 		skb_reserve(skb, NET_SKB_PAD);
1107 	return skb;
1108 }
1109 
1110 /**
1111  *	dev_alloc_skb - allocate an skbuff for receiving
1112  *	@length: length to allocate
1113  *
1114  *	Allocate a new &sk_buff and assign it a usage count of one. The
1115  *	buffer has unspecified headroom built in. Users should allocate
1116  *	the headroom they think they need without accounting for the
1117  *	built in space. The built in space is used for optimisations.
1118  *
1119  *	%NULL is returned if there is no free memory. Although this function
1120  *	allocates memory it can be called from an interrupt.
1121  */
dev_alloc_skb(unsigned int length)1122 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1123 {
1124 	return __dev_alloc_skb(length, GFP_ATOMIC);
1125 }
1126 
1127 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1128 		unsigned int length, gfp_t gfp_mask);
1129 
1130 /**
1131  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1132  *	@dev: network device to receive on
1133  *	@length: length to allocate
1134  *
1135  *	Allocate a new &sk_buff and assign it a usage count of one. The
1136  *	buffer has unspecified headroom built in. Users should allocate
1137  *	the headroom they think they need without accounting for the
1138  *	built in space. The built in space is used for optimisations.
1139  *
1140  *	%NULL is returned if there is no free memory. Although this function
1141  *	allocates memory it can be called from an interrupt.
1142  */
netdev_alloc_skb(struct net_device * dev,unsigned int length)1143 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1144 		unsigned int length)
1145 {
1146 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1147 }
1148 
1149 /**
1150  *	skb_cow - copy header of skb when it is required
1151  *	@skb: buffer to cow
1152  *	@headroom: needed headroom
1153  *
1154  *	If the skb passed lacks sufficient headroom or its data part
1155  *	is shared, data is reallocated. If reallocation fails, an error
1156  *	is returned and original skb is not changed.
1157  *
1158  *	The result is skb with writable area skb->head...skb->tail
1159  *	and at least @headroom of space at head.
1160  */
skb_cow(struct sk_buff * skb,unsigned int headroom)1161 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1162 {
1163 	int delta = (headroom > NET_SKB_PAD ? headroom : NET_SKB_PAD) -
1164 			skb_headroom(skb);
1165 
1166 	if (delta < 0)
1167 		delta = 0;
1168 
1169 	if (delta || skb_cloned(skb))
1170 		return pskb_expand_head(skb, (delta + (NET_SKB_PAD-1)) &
1171 				~(NET_SKB_PAD-1), 0, GFP_ATOMIC);
1172 	return 0;
1173 }
1174 
1175 /**
1176  *	skb_padto	- pad an skbuff up to a minimal size
1177  *	@skb: buffer to pad
1178  *	@len: minimal length
1179  *
1180  *	Pads up a buffer to ensure the trailing bytes exist and are
1181  *	blanked. If the buffer already contains sufficient data it
1182  *	is untouched. Otherwise it is extended. Returns zero on
1183  *	success. The skb is freed on error.
1184  */
1185 
skb_padto(struct sk_buff * skb,unsigned int len)1186 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1187 {
1188 	unsigned int size = skb->len;
1189 	if (likely(size >= len))
1190 		return 0;
1191 	return skb_pad(skb, len-size);
1192 }
1193 
skb_add_data(struct sk_buff * skb,char __user * from,int copy)1194 static inline int skb_add_data(struct sk_buff *skb,
1195 			       char __user *from, int copy)
1196 {
1197 	const int off = skb->len;
1198 
1199 	if (skb->ip_summed == CHECKSUM_NONE) {
1200 		int err = 0;
1201 		unsigned int csum = csum_and_copy_from_user(from,
1202 							    skb_put(skb, copy),
1203 							    copy, 0, &err);
1204 		if (!err) {
1205 			skb->csum = csum_block_add(skb->csum, csum, off);
1206 			return 0;
1207 		}
1208 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1209 		return 0;
1210 
1211 	__skb_trim(skb, off);
1212 	return -EFAULT;
1213 }
1214 
skb_can_coalesce(struct sk_buff * skb,int i,struct page * page,int off)1215 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1216 				   struct page *page, int off)
1217 {
1218 	if (i) {
1219 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1220 
1221 		return page == frag->page &&
1222 		       off == frag->page_offset + frag->size;
1223 	}
1224 	return 0;
1225 }
1226 
__skb_linearize(struct sk_buff * skb)1227 static inline int __skb_linearize(struct sk_buff *skb)
1228 {
1229 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1230 }
1231 
1232 /**
1233  *	skb_linearize - convert paged skb to linear one
1234  *	@skb: buffer to linarize
1235  *
1236  *	If there is no free memory -ENOMEM is returned, otherwise zero
1237  *	is returned and the old skb data released.
1238  */
skb_linearize(struct sk_buff * skb)1239 static inline int skb_linearize(struct sk_buff *skb)
1240 {
1241 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1242 }
1243 
1244 /**
1245  *	skb_linearize_cow - make sure skb is linear and writable
1246  *	@skb: buffer to process
1247  *
1248  *	If there is no free memory -ENOMEM is returned, otherwise zero
1249  *	is returned and the old skb data released.
1250  */
skb_linearize_cow(struct sk_buff * skb)1251 static inline int skb_linearize_cow(struct sk_buff *skb)
1252 {
1253 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1254 	       __skb_linearize(skb) : 0;
1255 }
1256 
1257 /**
1258  *	skb_postpull_rcsum - update checksum for received skb after pull
1259  *	@skb: buffer to update
1260  *	@start: start of data before pull
1261  *	@len: length of data pulled
1262  *
1263  *	After doing a pull on a received packet, you need to call this to
1264  *	update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE
1265  *	so that it can be recomputed from scratch.
1266  */
1267 
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)1268 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1269 				      const void *start, unsigned int len)
1270 {
1271 	if (skb->ip_summed == CHECKSUM_HW)
1272 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1273 }
1274 
1275 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1276 
1277 /**
1278  *	pskb_trim_rcsum - trim received skb and update checksum
1279  *	@skb: buffer to trim
1280  *	@len: new length
1281  *
1282  *	This is exactly the same as pskb_trim except that it ensures the
1283  *	checksum of received packets are still valid after the operation.
1284  */
1285 
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)1286 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1287 {
1288 	if (likely(len >= skb->len))
1289 		return 0;
1290 	if (skb->ip_summed == CHECKSUM_HW)
1291 		skb->ip_summed = CHECKSUM_NONE;
1292 	return __pskb_trim(skb, len);
1293 }
1294 
kmap_skb_frag(const skb_frag_t * frag)1295 static inline void *kmap_skb_frag(const skb_frag_t *frag)
1296 {
1297 #ifdef CONFIG_HIGHMEM
1298 	BUG_ON(in_irq());
1299 
1300 	local_bh_disable();
1301 #endif
1302 	return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
1303 }
1304 
kunmap_skb_frag(void * vaddr)1305 static inline void kunmap_skb_frag(void *vaddr)
1306 {
1307 	kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1308 #ifdef CONFIG_HIGHMEM
1309 	local_bh_enable();
1310 #endif
1311 }
1312 
1313 #define skb_queue_walk(queue, skb) \
1314 		for (skb = (queue)->next;					\
1315 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1316 		     skb = skb->next)
1317 
1318 #define skb_queue_reverse_walk(queue, skb) \
1319 		for (skb = (queue)->prev;					\
1320 		     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));	\
1321 		     skb = skb->prev)
1322 
1323 
1324 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1325 					 int noblock, int *err);
1326 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1327 				     struct poll_table_struct *wait);
1328 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1329 					       int offset, struct iovec *to,
1330 					       int size);
1331 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1332 							int hlen,
1333 							struct iovec *iov);
1334 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1335 extern void	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1336 					 unsigned int flags);
1337 extern unsigned int    skb_checksum(const struct sk_buff *skb, int offset,
1338 				    int len, unsigned int csum);
1339 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1340 				     void *to, int len);
1341 extern int	       skb_store_bits(const struct sk_buff *skb, int offset,
1342 				      void *from, int len);
1343 extern unsigned int    skb_copy_and_csum_bits(const struct sk_buff *skb,
1344 					      int offset, u8 *to, int len,
1345 					      unsigned int csum);
1346 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1347 extern void	       skb_split(struct sk_buff *skb,
1348 				 struct sk_buff *skb1, const u32 len);
1349 
1350 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1351 
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)1352 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1353 				       int len, void *buffer)
1354 {
1355 	int hlen = skb_headlen(skb);
1356 
1357 	if (hlen - offset >= len)
1358 		return skb->data + offset;
1359 
1360 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1361 		return NULL;
1362 
1363 	return buffer;
1364 }
1365 
1366 extern void skb_init(void);
1367 extern void skb_add_mtu(int mtu);
1368 
1369 /**
1370  *	skb_get_timestamp - get timestamp from a skb
1371  *	@skb: skb to get stamp from
1372  *	@stamp: pointer to struct timeval to store stamp in
1373  *
1374  *	Timestamps are stored in the skb as offsets to a base timestamp.
1375  *	This function converts the offset back to a struct timeval and stores
1376  *	it in stamp.
1377  */
skb_get_timestamp(const struct sk_buff * skb,struct timeval * stamp)1378 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1379 {
1380 	stamp->tv_sec  = skb->tstamp.off_sec;
1381 	stamp->tv_usec = skb->tstamp.off_usec;
1382 }
1383 
1384 /**
1385  * 	skb_set_timestamp - set timestamp of a skb
1386  *	@skb: skb to set stamp of
1387  *	@stamp: pointer to struct timeval to get stamp from
1388  *
1389  *	Timestamps are stored in the skb as offsets to a base timestamp.
1390  *	This function converts a struct timeval to an offset and stores
1391  *	it in the skb.
1392  */
skb_set_timestamp(struct sk_buff * skb,const struct timeval * stamp)1393 static inline void skb_set_timestamp(struct sk_buff *skb, const struct timeval *stamp)
1394 {
1395 	skb->tstamp.off_sec  = stamp->tv_sec;
1396 	skb->tstamp.off_usec = stamp->tv_usec;
1397 }
1398 
1399 extern void __net_timestamp(struct sk_buff *skb);
1400 
1401 extern unsigned int __skb_checksum_complete(struct sk_buff *skb);
1402 
1403 /**
1404  *	skb_checksum_complete - Calculate checksum of an entire packet
1405  *	@skb: packet to process
1406  *
1407  *	This function calculates the checksum over the entire packet plus
1408  *	the value of skb->csum.  The latter can be used to supply the
1409  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
1410  *	checksum.
1411  *
1412  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
1413  *	this function can be used to verify that checksum on received
1414  *	packets.  In that case the function should return zero if the
1415  *	checksum is correct.  In particular, this function will return zero
1416  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1417  *	hardware has already verified the correctness of the checksum.
1418  */
skb_checksum_complete(struct sk_buff * skb)1419 static inline unsigned int skb_checksum_complete(struct sk_buff *skb)
1420 {
1421 	return skb->ip_summed != CHECKSUM_UNNECESSARY &&
1422 		__skb_checksum_complete(skb);
1423 }
1424 
1425 #ifdef CONFIG_NETFILTER
nf_conntrack_put(struct nf_conntrack * nfct)1426 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1427 {
1428 	if (nfct && atomic_dec_and_test(&nfct->use))
1429 		nfct->destroy(nfct);
1430 }
nf_conntrack_get(struct nf_conntrack * nfct)1431 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1432 {
1433 	if (nfct)
1434 		atomic_inc(&nfct->use);
1435 }
1436 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
nf_conntrack_get_reasm(struct sk_buff * skb)1437 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1438 {
1439 	if (skb)
1440 		atomic_inc(&skb->users);
1441 }
nf_conntrack_put_reasm(struct sk_buff * skb)1442 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1443 {
1444 	if (skb)
1445 		kfree_skb(skb);
1446 }
1447 #endif
1448 #ifdef CONFIG_BRIDGE_NETFILTER
nf_bridge_put(struct nf_bridge_info * nf_bridge)1449 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1450 {
1451 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1452 		kfree(nf_bridge);
1453 }
nf_bridge_get(struct nf_bridge_info * nf_bridge)1454 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1455 {
1456 	if (nf_bridge)
1457 		atomic_inc(&nf_bridge->use);
1458 }
1459 #endif /* CONFIG_BRIDGE_NETFILTER */
nf_reset(struct sk_buff * skb)1460 static inline void nf_reset(struct sk_buff *skb)
1461 {
1462 	nf_conntrack_put(skb->nfct);
1463 	skb->nfct = NULL;
1464 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1465 	nf_conntrack_put_reasm(skb->nfct_reasm);
1466 	skb->nfct_reasm = NULL;
1467 #endif
1468 #ifdef CONFIG_BRIDGE_NETFILTER
1469 	nf_bridge_put(skb->nf_bridge);
1470 	skb->nf_bridge = NULL;
1471 #endif
1472 }
1473 
1474 #else /* CONFIG_NETFILTER */
nf_reset(struct sk_buff * skb)1475 static inline void nf_reset(struct sk_buff *skb) {}
1476 #endif /* CONFIG_NETFILTER */
1477 
1478 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)1479 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1480 {
1481 	to->secmark = from->secmark;
1482 }
1483 
skb_init_secmark(struct sk_buff * skb)1484 static inline void skb_init_secmark(struct sk_buff *skb)
1485 {
1486 	skb->secmark = 0;
1487 }
1488 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)1489 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1490 { }
1491 
skb_init_secmark(struct sk_buff * skb)1492 static inline void skb_init_secmark(struct sk_buff *skb)
1493 { }
1494 #endif
1495 
skb_is_gso(const struct sk_buff * skb)1496 static inline int skb_is_gso(const struct sk_buff *skb)
1497 {
1498 	return skb_shinfo(skb)->gso_size;
1499 }
1500 
1501 #endif	/* __KERNEL__ */
1502 #endif	/* _LINUX_SKBUFF_H */
1503