• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*	mmx.h
2 
3 	MultiMedia eXtensions GCC interface library for IA32.
4 
5 	To use this library, simply include this header file
6 	and compile with GCC.  You MUST have inlining enabled
7 	in order for mmx_ok() to work; this can be done by
8 	simply using -O on the GCC command line.
9 
10 	Compiling with -DMMX_TRACE will cause detailed trace
11 	output to be sent to stderr for each mmx operation.
12 	This adds lots of code, and obviously slows execution to
13 	a crawl, but can be very useful for debugging.
14 
15 	THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY
16 	EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
17 	LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY
18 	AND FITNESS FOR ANY PARTICULAR PURPOSE.
19 
20 	1997-99 by H. Dietz and R. Fisher
21 
22  Notes:
23 	It appears that the latest gas has the pand problem fixed, therefore
24 	  I'll undefine BROKEN_PAND by default.
25 */
26 
27 #ifndef _MMX_H
28 #define _MMX_H
29 
30 
31 /*	Warning:  at this writing, the version of GAS packaged
32 	with most Linux distributions does not handle the
33 	parallel AND operation mnemonic correctly.  If the
34 	symbol BROKEN_PAND is defined, a slower alternative
35 	coding will be used.  If execution of mmxtest results
36 	in an illegal instruction fault, define this symbol.
37 */
38 #undef	BROKEN_PAND
39 
40 
41 /*	The type of an value that fits in an MMX register
42 	(note that long long constant values MUST be suffixed
43 	 by LL and unsigned long long values by ULL, lest
44 	 they be truncated by the compiler)
45 */
46 typedef	union {
47 	long long		q;	/* Quadword (64-bit) value */
48 	unsigned long long	uq;	/* Unsigned Quadword */
49 	int			d[2];	/* 2 Doubleword (32-bit) values */
50 	unsigned int		ud[2];	/* 2 Unsigned Doubleword */
51 	short			w[4];	/* 4 Word (16-bit) values */
52 	unsigned short		uw[4];	/* 4 Unsigned Word */
53 	char			b[8];	/* 8 Byte (8-bit) values */
54 	unsigned char		ub[8];	/* 8 Unsigned Byte */
55 	float			s[2];	/* Single-precision (32-bit) value */
56 } __attribute__ ((aligned (8))) mmx_t;	/* On an 8-byte (64-bit) boundary */
57 
58 
59 #if 0
60 /*	Function to test if multimedia instructions are supported...
61 */
62 inline extern int
63 mm_support(void)
64 {
65 	/* Returns 1 if MMX instructions are supported,
66 	   3 if Cyrix MMX and Extended MMX instructions are supported
67 	   5 if AMD MMX and 3DNow! instructions are supported
68 	   0 if hardware does not support any of these
69 	*/
70 	register int rval = 0;
71 
72 	__asm__ __volatile__ (
73 		/* See if CPUID instruction is supported ... */
74 		/* ... Get copies of EFLAGS into eax and ecx */
75 		"pushf\n\t"
76 		"popl %%eax\n\t"
77 		"movl %%eax, %%ecx\n\t"
78 
79 		/* ... Toggle the ID bit in one copy and store */
80 		/*     to the EFLAGS reg */
81 		"xorl $0x200000, %%eax\n\t"
82 		"push %%eax\n\t"
83 		"popf\n\t"
84 
85 		/* ... Get the (hopefully modified) EFLAGS */
86 		"pushf\n\t"
87 		"popl %%eax\n\t"
88 
89 		/* ... Compare and test result */
90 		"xorl %%eax, %%ecx\n\t"
91 		"testl $0x200000, %%ecx\n\t"
92 		"jz NotSupported1\n\t"		/* CPUID not supported */
93 
94 
95 		/* Get standard CPUID information, and
96 		       go to a specific vendor section */
97 		"movl $0, %%eax\n\t"
98 		"cpuid\n\t"
99 
100 		/* Check for Intel */
101 		"cmpl $0x756e6547, %%ebx\n\t"
102 		"jne TryAMD\n\t"
103 		"cmpl $0x49656e69, %%edx\n\t"
104 		"jne TryAMD\n\t"
105 		"cmpl $0x6c65746e, %%ecx\n"
106 		"jne TryAMD\n\t"
107 		"jmp Intel\n\t"
108 
109 		/* Check for AMD */
110 		"\nTryAMD:\n\t"
111 		"cmpl $0x68747541, %%ebx\n\t"
112 		"jne TryCyrix\n\t"
113 		"cmpl $0x69746e65, %%edx\n\t"
114 		"jne TryCyrix\n\t"
115 		"cmpl $0x444d4163, %%ecx\n"
116 		"jne TryCyrix\n\t"
117 		"jmp AMD\n\t"
118 
119 		/* Check for Cyrix */
120 		"\nTryCyrix:\n\t"
121 		"cmpl $0x69727943, %%ebx\n\t"
122 		"jne NotSupported2\n\t"
123 		"cmpl $0x736e4978, %%edx\n\t"
124 		"jne NotSupported3\n\t"
125 		"cmpl $0x64616574, %%ecx\n\t"
126 		"jne NotSupported4\n\t"
127 		/* Drop through to Cyrix... */
128 
129 
130 		/* Cyrix Section */
131 		/* See if extended CPUID level 80000001 is supported */
132 		/* The value of CPUID/80000001 for the 6x86MX is undefined
133 		   according to the Cyrix CPU Detection Guide (Preliminary
134 		   Rev. 1.01 table 1), so we'll check the value of eax for
135 		   CPUID/0 to see if standard CPUID level 2 is supported.
136 		   According to the table, the only CPU which supports level
137 		   2 is also the only one which supports extended CPUID levels.
138 		*/
139 		"cmpl $0x2, %%eax\n\t"
140 		"jne MMXtest\n\t"	/* Use standard CPUID instead */
141 
142 		/* Extended CPUID supported (in theory), so get extended
143 		   features */
144 		"movl $0x80000001, %%eax\n\t"
145 		"cpuid\n\t"
146 		"testl $0x00800000, %%eax\n\t"	/* Test for MMX */
147 		"jz NotSupported5\n\t"		/* MMX not supported */
148 		"testl $0x01000000, %%eax\n\t"	/* Test for Ext'd MMX */
149 		"jnz EMMXSupported\n\t"
150 		"movl $1, %0:\n\n\t"		/* MMX Supported */
151 		"jmp Return\n\n"
152 		"EMMXSupported:\n\t"
153 		"movl $3, %0:\n\n\t"		/* EMMX and MMX Supported */
154 		"jmp Return\n\t"
155 
156 
157 		/* AMD Section */
158 		"AMD:\n\t"
159 
160 		/* See if extended CPUID is supported */
161 		"movl $0x80000000, %%eax\n\t"
162 		"cpuid\n\t"
163 		"cmpl $0x80000000, %%eax\n\t"
164 		"jl MMXtest\n\t"	/* Use standard CPUID instead */
165 
166 		/* Extended CPUID supported, so get extended features */
167 		"movl $0x80000001, %%eax\n\t"
168 		"cpuid\n\t"
169 		"testl $0x00800000, %%edx\n\t"	/* Test for MMX */
170 		"jz NotSupported6\n\t"		/* MMX not supported */
171 		"testl $0x80000000, %%edx\n\t"	/* Test for 3DNow! */
172 		"jnz ThreeDNowSupported\n\t"
173 		"movl $1, %0:\n\n\t"		/* MMX Supported */
174 		"jmp Return\n\n"
175 		"ThreeDNowSupported:\n\t"
176 		"movl $5, %0:\n\n\t"		/* 3DNow! and MMX Supported */
177 		"jmp Return\n\t"
178 
179 
180 		/* Intel Section */
181 		"Intel:\n\t"
182 
183 		/* Check for MMX */
184 		"MMXtest:\n\t"
185 		"movl $1, %%eax\n\t"
186 		"cpuid\n\t"
187 		"testl $0x00800000, %%edx\n\t"	/* Test for MMX */
188 		"jz NotSupported7\n\t"		/* MMX Not supported */
189 		"movl $1, %0:\n\n\t"		/* MMX Supported */
190 		"jmp Return\n\t"
191 
192 		/* Nothing supported */
193 		"\nNotSupported1:\n\t"
194 		"#movl $101, %0:\n\n\t"
195 		"\nNotSupported2:\n\t"
196 		"#movl $102, %0:\n\n\t"
197 		"\nNotSupported3:\n\t"
198 		"#movl $103, %0:\n\n\t"
199 		"\nNotSupported4:\n\t"
200 		"#movl $104, %0:\n\n\t"
201 		"\nNotSupported5:\n\t"
202 		"#movl $105, %0:\n\n\t"
203 		"\nNotSupported6:\n\t"
204 		"#movl $106, %0:\n\n\t"
205 		"\nNotSupported7:\n\t"
206 		"#movl $107, %0:\n\n\t"
207 		"movl $0, %0:\n\n\t"
208 
209 		"Return:\n\t"
210 		: "=a" (rval)
211 		: /* no input */
212 		: "eax", "ebx", "ecx", "edx"
213 	);
214 
215 	/* Return */
216 	return(rval);
217 }
218 
219 /*	Function to test if mmx instructions are supported...
220 */
221 inline extern int
222 mmx_ok(void)
223 {
224 	/* Returns 1 if MMX instructions are supported, 0 otherwise */
225 	return ( mm_support() & 0x1 );
226 }
227 #endif
228 
229 /*	Helper functions for the instruction macros that follow...
230 	(note that memory-to-register, m2r, instructions are nearly
231 	 as efficient as register-to-register, r2r, instructions;
232 	 however, memory-to-memory instructions are really simulated
233 	 as a convenience, and are only 1/3 as efficient)
234 */
235 #ifdef	MMX_TRACE
236 
237 /*	Include the stuff for printing a trace to stderr...
238 */
239 
240 #define	mmx_i2r(op, imm, reg) \
241 	{ \
242 		mmx_t mmx_trace; \
243 		mmx_trace.uq = (imm); \
244 		printf(#op "_i2r(" #imm "=0x%08x%08x, ", \
245 			mmx_trace.d[1], mmx_trace.d[0]); \
246 		__asm__ __volatile__ ("movq %%" #reg ", %0" \
247 				      : "=X" (mmx_trace) \
248 				      : /* nothing */ ); \
249 		printf(#reg "=0x%08x%08x) => ", \
250 			mmx_trace.d[1], mmx_trace.d[0]); \
251 		__asm__ __volatile__ (#op " %0, %%" #reg \
252 				      : /* nothing */ \
253 				      : "X" (imm)); \
254 		__asm__ __volatile__ ("movq %%" #reg ", %0" \
255 				      : "=X" (mmx_trace) \
256 				      : /* nothing */ ); \
257 		printf(#reg "=0x%08x%08x\n", \
258 			mmx_trace.d[1], mmx_trace.d[0]); \
259 	}
260 
261 #define	mmx_m2r(op, mem, reg) \
262 	{ \
263 		mmx_t mmx_trace; \
264 		mmx_trace = (mem); \
265 		printf(#op "_m2r(" #mem "=0x%08x%08x, ", \
266 			mmx_trace.d[1], mmx_trace.d[0]); \
267 		__asm__ __volatile__ ("movq %%" #reg ", %0" \
268 				      : "=X" (mmx_trace) \
269 				      : /* nothing */ ); \
270 		printf(#reg "=0x%08x%08x) => ", \
271 			mmx_trace.d[1], mmx_trace.d[0]); \
272 		__asm__ __volatile__ (#op " %0, %%" #reg \
273 				      : /* nothing */ \
274 				      : "X" (mem)); \
275 		__asm__ __volatile__ ("movq %%" #reg ", %0" \
276 				      : "=X" (mmx_trace) \
277 				      : /* nothing */ ); \
278 		printf(#reg "=0x%08x%08x\n", \
279 			mmx_trace.d[1], mmx_trace.d[0]); \
280 	}
281 
282 #define	mmx_r2m(op, reg, mem) \
283 	{ \
284 		mmx_t mmx_trace; \
285 		__asm__ __volatile__ ("movq %%" #reg ", %0" \
286 				      : "=X" (mmx_trace) \
287 				      : /* nothing */ ); \
288 		printf(#op "_r2m(" #reg "=0x%08x%08x, ", \
289 			mmx_trace.d[1], mmx_trace.d[0]); \
290 		mmx_trace = (mem); \
291 		printf(#mem "=0x%08x%08x) => ", \
292 			mmx_trace.d[1], mmx_trace.d[0]); \
293 		__asm__ __volatile__ (#op " %%" #reg ", %0" \
294 				      : "=X" (mem) \
295 				      : /* nothing */ ); \
296 		mmx_trace = (mem); \
297 		printf(#mem "=0x%08x%08x\n", \
298 			mmx_trace.d[1], mmx_trace.d[0]); \
299 	}
300 
301 #define	mmx_r2r(op, regs, regd) \
302 	{ \
303 		mmx_t mmx_trace; \
304 		__asm__ __volatile__ ("movq %%" #regs ", %0" \
305 				      : "=X" (mmx_trace) \
306 				      : /* nothing */ ); \
307 		printf(#op "_r2r(" #regs "=0x%08x%08x, ", \
308 			mmx_trace.d[1], mmx_trace.d[0]); \
309 		__asm__ __volatile__ ("movq %%" #regd ", %0" \
310 				      : "=X" (mmx_trace) \
311 				      : /* nothing */ ); \
312 		printf(#regd "=0x%08x%08x) => ", \
313 			mmx_trace.d[1], mmx_trace.d[0]); \
314 		__asm__ __volatile__ (#op " %" #regs ", %" #regd); \
315 		__asm__ __volatile__ ("movq %%" #regd ", %0" \
316 				      : "=X" (mmx_trace) \
317 				      : /* nothing */ ); \
318 		printf(#regd "=0x%08x%08x\n", \
319 			mmx_trace.d[1], mmx_trace.d[0]); \
320 	}
321 
322 #define	mmx_m2m(op, mems, memd) \
323 	{ \
324 		mmx_t mmx_trace; \
325 		mmx_trace = (mems); \
326 		printf(#op "_m2m(" #mems "=0x%08x%08x, ", \
327 			mmx_trace.d[1], mmx_trace.d[0]); \
328 		mmx_trace = (memd); \
329 		printf(#memd "=0x%08x%08x) => ", \
330 			mmx_trace.d[1], mmx_trace.d[0]); \
331 		__asm__ __volatile__ ("movq %0, %%mm0\n\t" \
332 				      #op " %1, %%mm0\n\t" \
333 				      "movq %%mm0, %0" \
334 				      : "=X" (memd) \
335 				      : "X" (mems)); \
336 		mmx_trace = (memd); \
337 		printf(#memd "=0x%08x%08x\n", \
338 			mmx_trace.d[1], mmx_trace.d[0]); \
339 	}
340 
341 #else
342 
343 /*	These macros are a lot simpler without the tracing...
344 */
345 
346 #define	mmx_i2r(op, imm, reg) \
347 	__asm__ __volatile__ (#op " %0, %%" #reg \
348 			      : /* nothing */ \
349 			      : "X" (imm) )
350 
351 #define	mmx_m2r(op, mem, reg) \
352 	__asm__ __volatile__ (#op " %0, %%" #reg \
353 			      : /* nothing */ \
354 			      : "m" (mem))
355 
356 #define	mmx_r2m(op, reg, mem) \
357 	__asm__ __volatile__ (#op " %%" #reg ", %0" \
358 			      : "=X" (mem) \
359 			      : /* nothing */ )
360 
361 #define	mmx_r2r(op, regs, regd) \
362 	__asm__ __volatile__ (#op " %" #regs ", %" #regd)
363 
364 #define	mmx_m2m(op, mems, memd) \
365 	__asm__ __volatile__ ("movq %0, %%mm0\n\t" \
366 			      #op " %1, %%mm0\n\t" \
367 			      "movq %%mm0, %0" \
368 			      : "=X" (memd) \
369 			      : "X" (mems))
370 
371 #endif
372 
373 
374 /*	1x64 MOVe Quadword
375 	(this is both a load and a store...
376 	 in fact, it is the only way to store)
377 */
378 #define	movq_m2r(var, reg)	mmx_m2r(movq, var, reg)
379 #define	movq_r2m(reg, var)	mmx_r2m(movq, reg, var)
380 #define	movq_r2r(regs, regd)	mmx_r2r(movq, regs, regd)
381 #define	movq(vars, vard) \
382 	__asm__ __volatile__ ("movq %1, %%mm0\n\t" \
383 			      "movq %%mm0, %0" \
384 			      : "=X" (vard) \
385 			      : "X" (vars))
386 
387 
388 /*	1x32 MOVe Doubleword
389 	(like movq, this is both load and store...
390 	 but is most useful for moving things between
391 	 mmx registers and ordinary registers)
392 */
393 #define	movd_m2r(var, reg)	mmx_m2r(movd, var, reg)
394 #define	movd_r2m(reg, var)	mmx_r2m(movd, reg, var)
395 #define	movd_r2r(regs, regd)	mmx_r2r(movd, regs, regd)
396 #define	movd(vars, vard) \
397 	__asm__ __volatile__ ("movd %1, %%mm0\n\t" \
398 			      "movd %%mm0, %0" \
399 			      : "=X" (vard) \
400 			      : "X" (vars))
401 
402 
403 /*	2x32, 4x16, and 8x8 Parallel ADDs
404 */
405 #define	paddd_m2r(var, reg)	mmx_m2r(paddd, var, reg)
406 #define	paddd_r2r(regs, regd)	mmx_r2r(paddd, regs, regd)
407 #define	paddd(vars, vard)	mmx_m2m(paddd, vars, vard)
408 
409 #define	paddw_m2r(var, reg)	mmx_m2r(paddw, var, reg)
410 #define	paddw_r2r(regs, regd)	mmx_r2r(paddw, regs, regd)
411 #define	paddw(vars, vard)	mmx_m2m(paddw, vars, vard)
412 
413 #define	paddb_m2r(var, reg)	mmx_m2r(paddb, var, reg)
414 #define	paddb_r2r(regs, regd)	mmx_r2r(paddb, regs, regd)
415 #define	paddb(vars, vard)	mmx_m2m(paddb, vars, vard)
416 
417 
418 /*	4x16 and 8x8 Parallel ADDs using Saturation arithmetic
419 */
420 #define	paddsw_m2r(var, reg)	mmx_m2r(paddsw, var, reg)
421 #define	paddsw_r2r(regs, regd)	mmx_r2r(paddsw, regs, regd)
422 #define	paddsw(vars, vard)	mmx_m2m(paddsw, vars, vard)
423 
424 #define	paddsb_m2r(var, reg)	mmx_m2r(paddsb, var, reg)
425 #define	paddsb_r2r(regs, regd)	mmx_r2r(paddsb, regs, regd)
426 #define	paddsb(vars, vard)	mmx_m2m(paddsb, vars, vard)
427 
428 
429 /*	4x16 and 8x8 Parallel ADDs using Unsigned Saturation arithmetic
430 */
431 #define	paddusw_m2r(var, reg)	mmx_m2r(paddusw, var, reg)
432 #define	paddusw_r2r(regs, regd)	mmx_r2r(paddusw, regs, regd)
433 #define	paddusw(vars, vard)	mmx_m2m(paddusw, vars, vard)
434 
435 #define	paddusb_m2r(var, reg)	mmx_m2r(paddusb, var, reg)
436 #define	paddusb_r2r(regs, regd)	mmx_r2r(paddusb, regs, regd)
437 #define	paddusb(vars, vard)	mmx_m2m(paddusb, vars, vard)
438 
439 
440 /*	2x32, 4x16, and 8x8 Parallel SUBs
441 */
442 #define	psubd_m2r(var, reg)	mmx_m2r(psubd, var, reg)
443 #define	psubd_r2r(regs, regd)	mmx_r2r(psubd, regs, regd)
444 #define	psubd(vars, vard)	mmx_m2m(psubd, vars, vard)
445 
446 #define	psubw_m2r(var, reg)	mmx_m2r(psubw, var, reg)
447 #define	psubw_r2r(regs, regd)	mmx_r2r(psubw, regs, regd)
448 #define	psubw(vars, vard)	mmx_m2m(psubw, vars, vard)
449 
450 #define	psubb_m2r(var, reg)	mmx_m2r(psubb, var, reg)
451 #define	psubb_r2r(regs, regd)	mmx_r2r(psubb, regs, regd)
452 #define	psubb(vars, vard)	mmx_m2m(psubb, vars, vard)
453 
454 
455 /*	4x16 and 8x8 Parallel SUBs using Saturation arithmetic
456 */
457 #define	psubsw_m2r(var, reg)	mmx_m2r(psubsw, var, reg)
458 #define	psubsw_r2r(regs, regd)	mmx_r2r(psubsw, regs, regd)
459 #define	psubsw(vars, vard)	mmx_m2m(psubsw, vars, vard)
460 
461 #define	psubsb_m2r(var, reg)	mmx_m2r(psubsb, var, reg)
462 #define	psubsb_r2r(regs, regd)	mmx_r2r(psubsb, regs, regd)
463 #define	psubsb(vars, vard)	mmx_m2m(psubsb, vars, vard)
464 
465 
466 /*	4x16 and 8x8 Parallel SUBs using Unsigned Saturation arithmetic
467 */
468 #define	psubusw_m2r(var, reg)	mmx_m2r(psubusw, var, reg)
469 #define	psubusw_r2r(regs, regd)	mmx_r2r(psubusw, regs, regd)
470 #define	psubusw(vars, vard)	mmx_m2m(psubusw, vars, vard)
471 
472 #define	psubusb_m2r(var, reg)	mmx_m2r(psubusb, var, reg)
473 #define	psubusb_r2r(regs, regd)	mmx_r2r(psubusb, regs, regd)
474 #define	psubusb(vars, vard)	mmx_m2m(psubusb, vars, vard)
475 
476 
477 /*	4x16 Parallel MULs giving Low 4x16 portions of results
478 */
479 #define	pmullw_m2r(var, reg)	mmx_m2r(pmullw, var, reg)
480 #define	pmullw_r2r(regs, regd)	mmx_r2r(pmullw, regs, regd)
481 #define	pmullw(vars, vard)	mmx_m2m(pmullw, vars, vard)
482 
483 
484 /*	4x16 Parallel MULs giving High 4x16 portions of results
485 */
486 #define	pmulhw_m2r(var, reg)	mmx_m2r(pmulhw, var, reg)
487 #define	pmulhw_r2r(regs, regd)	mmx_r2r(pmulhw, regs, regd)
488 #define	pmulhw(vars, vard)	mmx_m2m(pmulhw, vars, vard)
489 
490 
491 /*	4x16->2x32 Parallel Mul-ADD
492 	(muls like pmullw, then adds adjacent 16-bit fields
493 	 in the multiply result to make the final 2x32 result)
494 */
495 #define	pmaddwd_m2r(var, reg)	mmx_m2r(pmaddwd, var, reg)
496 #define	pmaddwd_r2r(regs, regd)	mmx_r2r(pmaddwd, regs, regd)
497 #define	pmaddwd(vars, vard)	mmx_m2m(pmaddwd, vars, vard)
498 
499 
500 /*	1x64 bitwise AND
501 */
502 #ifdef	BROKEN_PAND
503 #define	pand_m2r(var, reg) \
504 	{ \
505 		mmx_m2r(pandn, (mmx_t) -1LL, reg); \
506 		mmx_m2r(pandn, var, reg); \
507 	}
508 #define	pand_r2r(regs, regd) \
509 	{ \
510 		mmx_m2r(pandn, (mmx_t) -1LL, regd); \
511 		mmx_r2r(pandn, regs, regd) \
512 	}
513 #define	pand(vars, vard) \
514 	{ \
515 		movq_m2r(vard, mm0); \
516 		mmx_m2r(pandn, (mmx_t) -1LL, mm0); \
517 		mmx_m2r(pandn, vars, mm0); \
518 		movq_r2m(mm0, vard); \
519 	}
520 #else
521 #define	pand_m2r(var, reg)	mmx_m2r(pand, var, reg)
522 #define	pand_r2r(regs, regd)	mmx_r2r(pand, regs, regd)
523 #define	pand(vars, vard)	mmx_m2m(pand, vars, vard)
524 #endif
525 
526 
527 /*	1x64 bitwise AND with Not the destination
528 */
529 #define	pandn_m2r(var, reg)	mmx_m2r(pandn, var, reg)
530 #define	pandn_r2r(regs, regd)	mmx_r2r(pandn, regs, regd)
531 #define	pandn(vars, vard)	mmx_m2m(pandn, vars, vard)
532 
533 
534 /*	1x64 bitwise OR
535 */
536 #define	por_m2r(var, reg)	mmx_m2r(por, var, reg)
537 #define	por_r2r(regs, regd)	mmx_r2r(por, regs, regd)
538 #define	por(vars, vard)	mmx_m2m(por, vars, vard)
539 
540 
541 /*	1x64 bitwise eXclusive OR
542 */
543 #define	pxor_m2r(var, reg)	mmx_m2r(pxor, var, reg)
544 #define	pxor_r2r(regs, regd)	mmx_r2r(pxor, regs, regd)
545 #define	pxor(vars, vard)	mmx_m2m(pxor, vars, vard)
546 
547 
548 /*	2x32, 4x16, and 8x8 Parallel CoMPare for EQuality
549 	(resulting fields are either 0 or -1)
550 */
551 #define	pcmpeqd_m2r(var, reg)	mmx_m2r(pcmpeqd, var, reg)
552 #define	pcmpeqd_r2r(regs, regd)	mmx_r2r(pcmpeqd, regs, regd)
553 #define	pcmpeqd(vars, vard)	mmx_m2m(pcmpeqd, vars, vard)
554 
555 #define	pcmpeqw_m2r(var, reg)	mmx_m2r(pcmpeqw, var, reg)
556 #define	pcmpeqw_r2r(regs, regd)	mmx_r2r(pcmpeqw, regs, regd)
557 #define	pcmpeqw(vars, vard)	mmx_m2m(pcmpeqw, vars, vard)
558 
559 #define	pcmpeqb_m2r(var, reg)	mmx_m2r(pcmpeqb, var, reg)
560 #define	pcmpeqb_r2r(regs, regd)	mmx_r2r(pcmpeqb, regs, regd)
561 #define	pcmpeqb(vars, vard)	mmx_m2m(pcmpeqb, vars, vard)
562 
563 
564 /*	2x32, 4x16, and 8x8 Parallel CoMPare for Greater Than
565 	(resulting fields are either 0 or -1)
566 */
567 #define	pcmpgtd_m2r(var, reg)	mmx_m2r(pcmpgtd, var, reg)
568 #define	pcmpgtd_r2r(regs, regd)	mmx_r2r(pcmpgtd, regs, regd)
569 #define	pcmpgtd(vars, vard)	mmx_m2m(pcmpgtd, vars, vard)
570 
571 #define	pcmpgtw_m2r(var, reg)	mmx_m2r(pcmpgtw, var, reg)
572 #define	pcmpgtw_r2r(regs, regd)	mmx_r2r(pcmpgtw, regs, regd)
573 #define	pcmpgtw(vars, vard)	mmx_m2m(pcmpgtw, vars, vard)
574 
575 #define	pcmpgtb_m2r(var, reg)	mmx_m2r(pcmpgtb, var, reg)
576 #define	pcmpgtb_r2r(regs, regd)	mmx_r2r(pcmpgtb, regs, regd)
577 #define	pcmpgtb(vars, vard)	mmx_m2m(pcmpgtb, vars, vard)
578 
579 
580 /*	1x64, 2x32, and 4x16 Parallel Shift Left Logical
581 */
582 #define	psllq_i2r(imm, reg)	mmx_i2r(psllq, imm, reg)
583 #define	psllq_m2r(var, reg)	mmx_m2r(psllq, var, reg)
584 #define	psllq_r2r(regs, regd)	mmx_r2r(psllq, regs, regd)
585 #define	psllq(vars, vard)	mmx_m2m(psllq, vars, vard)
586 
587 #define	pslld_i2r(imm, reg)	mmx_i2r(pslld, imm, reg)
588 #define	pslld_m2r(var, reg)	mmx_m2r(pslld, var, reg)
589 #define	pslld_r2r(regs, regd)	mmx_r2r(pslld, regs, regd)
590 #define	pslld(vars, vard)	mmx_m2m(pslld, vars, vard)
591 
592 #define	psllw_i2r(imm, reg)	mmx_i2r(psllw, imm, reg)
593 #define	psllw_m2r(var, reg)	mmx_m2r(psllw, var, reg)
594 #define	psllw_r2r(regs, regd)	mmx_r2r(psllw, regs, regd)
595 #define	psllw(vars, vard)	mmx_m2m(psllw, vars, vard)
596 
597 
598 /*	1x64, 2x32, and 4x16 Parallel Shift Right Logical
599 */
600 #define	psrlq_i2r(imm, reg)	mmx_i2r(psrlq, imm, reg)
601 #define	psrlq_m2r(var, reg)	mmx_m2r(psrlq, var, reg)
602 #define	psrlq_r2r(regs, regd)	mmx_r2r(psrlq, regs, regd)
603 #define	psrlq(vars, vard)	mmx_m2m(psrlq, vars, vard)
604 
605 #define	psrld_i2r(imm, reg)	mmx_i2r(psrld, imm, reg)
606 #define	psrld_m2r(var, reg)	mmx_m2r(psrld, var, reg)
607 #define	psrld_r2r(regs, regd)	mmx_r2r(psrld, regs, regd)
608 #define	psrld(vars, vard)	mmx_m2m(psrld, vars, vard)
609 
610 #define	psrlw_i2r(imm, reg)	mmx_i2r(psrlw, imm, reg)
611 #define	psrlw_m2r(var, reg)	mmx_m2r(psrlw, var, reg)
612 #define	psrlw_r2r(regs, regd)	mmx_r2r(psrlw, regs, regd)
613 #define	psrlw(vars, vard)	mmx_m2m(psrlw, vars, vard)
614 
615 
616 /*	2x32 and 4x16 Parallel Shift Right Arithmetic
617 */
618 #define	psrad_i2r(imm, reg)	mmx_i2r(psrad, imm, reg)
619 #define	psrad_m2r(var, reg)	mmx_m2r(psrad, var, reg)
620 #define	psrad_r2r(regs, regd)	mmx_r2r(psrad, regs, regd)
621 #define	psrad(vars, vard)	mmx_m2m(psrad, vars, vard)
622 
623 #define	psraw_i2r(imm, reg)	mmx_i2r(psraw, imm, reg)
624 #define	psraw_m2r(var, reg)	mmx_m2r(psraw, var, reg)
625 #define	psraw_r2r(regs, regd)	mmx_r2r(psraw, regs, regd)
626 #define	psraw(vars, vard)	mmx_m2m(psraw, vars, vard)
627 
628 
629 /*	2x32->4x16 and 4x16->8x8 PACK and Signed Saturate
630 	(packs source and dest fields into dest in that order)
631 */
632 #define	packssdw_m2r(var, reg)	mmx_m2r(packssdw, var, reg)
633 #define	packssdw_r2r(regs, regd) mmx_r2r(packssdw, regs, regd)
634 #define	packssdw(vars, vard)	mmx_m2m(packssdw, vars, vard)
635 
636 #define	packsswb_m2r(var, reg)	mmx_m2r(packsswb, var, reg)
637 #define	packsswb_r2r(regs, regd) mmx_r2r(packsswb, regs, regd)
638 #define	packsswb(vars, vard)	mmx_m2m(packsswb, vars, vard)
639 
640 
641 /*	4x16->8x8 PACK and Unsigned Saturate
642 	(packs source and dest fields into dest in that order)
643 */
644 #define	packuswb_m2r(var, reg)	mmx_m2r(packuswb, var, reg)
645 #define	packuswb_r2r(regs, regd) mmx_r2r(packuswb, regs, regd)
646 #define	packuswb(vars, vard)	mmx_m2m(packuswb, vars, vard)
647 
648 
649 /*	2x32->1x64, 4x16->2x32, and 8x8->4x16 UNPaCK Low
650 	(interleaves low half of dest with low half of source
651 	 as padding in each result field)
652 */
653 #define	punpckldq_m2r(var, reg)	mmx_m2r(punpckldq, var, reg)
654 #define	punpckldq_r2r(regs, regd) mmx_r2r(punpckldq, regs, regd)
655 #define	punpckldq(vars, vard)	mmx_m2m(punpckldq, vars, vard)
656 
657 #define	punpcklwd_m2r(var, reg)	mmx_m2r(punpcklwd, var, reg)
658 #define	punpcklwd_r2r(regs, regd) mmx_r2r(punpcklwd, regs, regd)
659 #define	punpcklwd(vars, vard)	mmx_m2m(punpcklwd, vars, vard)
660 
661 #define	punpcklbw_m2r(var, reg)	mmx_m2r(punpcklbw, var, reg)
662 #define	punpcklbw_r2r(regs, regd) mmx_r2r(punpcklbw, regs, regd)
663 #define	punpcklbw(vars, vard)	mmx_m2m(punpcklbw, vars, vard)
664 
665 
666 /*	2x32->1x64, 4x16->2x32, and 8x8->4x16 UNPaCK High
667 	(interleaves high half of dest with high half of source
668 	 as padding in each result field)
669 */
670 #define	punpckhdq_m2r(var, reg)	mmx_m2r(punpckhdq, var, reg)
671 #define	punpckhdq_r2r(regs, regd) mmx_r2r(punpckhdq, regs, regd)
672 #define	punpckhdq(vars, vard)	mmx_m2m(punpckhdq, vars, vard)
673 
674 #define	punpckhwd_m2r(var, reg)	mmx_m2r(punpckhwd, var, reg)
675 #define	punpckhwd_r2r(regs, regd) mmx_r2r(punpckhwd, regs, regd)
676 #define	punpckhwd(vars, vard)	mmx_m2m(punpckhwd, vars, vard)
677 
678 #define	punpckhbw_m2r(var, reg)	mmx_m2r(punpckhbw, var, reg)
679 #define	punpckhbw_r2r(regs, regd) mmx_r2r(punpckhbw, regs, regd)
680 #define	punpckhbw(vars, vard)	mmx_m2m(punpckhbw, vars, vard)
681 
682 
683 /*	Empty MMx State
684 	(used to clean-up when going from mmx to float use
685 	 of the registers that are shared by both; note that
686 	 there is no float-to-mmx operation needed, because
687 	 only the float tag word info is corruptible)
688 */
689 #ifdef	MMX_TRACE
690 
691 #define	emms() \
692 	{ \
693 		printf("emms()\n"); \
694 		__asm__ __volatile__ ("emms"); \
695 	}
696 
697 #else
698 
699 #define	emms()			__asm__ __volatile__ ("emms")
700 
701 #endif
702 
703 #endif
704 
705