• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifdef __KERNEL__
5 #ifndef __ASSEMBLY__
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/cache.h>
11 #include <linux/threads.h>
12 #include <linux/numa.h>
13 #include <linux/init.h>
14 #include <linux/seqlock.h>
15 #include <linux/nodemask.h>
16 #include <asm/atomic.h>
17 #include <asm/page.h>
18 
19 /* Free memory management - zoned buddy allocator.  */
20 #ifndef CONFIG_FORCE_MAX_ZONEORDER
21 #define MAX_ORDER 11
22 #else
23 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
24 #endif
25 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
26 
27 struct free_area {
28 	struct list_head	free_list;
29 	unsigned long		nr_free;
30 };
31 
32 struct pglist_data;
33 
34 /*
35  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
36  * So add a wild amount of padding here to ensure that they fall into separate
37  * cachelines.  There are very few zone structures in the machine, so space
38  * consumption is not a concern here.
39  */
40 #if defined(CONFIG_SMP)
41 struct zone_padding {
42 	char x[0];
43 } ____cacheline_internodealigned_in_smp;
44 #define ZONE_PADDING(name)	struct zone_padding name;
45 #else
46 #define ZONE_PADDING(name)
47 #endif
48 
49 enum zone_stat_item {
50 	NR_ANON_PAGES,	/* Mapped anonymous pages */
51 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
52 			   only modified from process context */
53 	NR_FILE_PAGES,
54 	NR_SLAB,	/* Pages used by slab allocator */
55 	NR_PAGETABLE,	/* used for pagetables */
56 	NR_FILE_DIRTY,
57 	NR_WRITEBACK,
58 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
59 	NR_BOUNCE,
60 #ifdef CONFIG_NUMA
61 	NUMA_HIT,		/* allocated in intended node */
62 	NUMA_MISS,		/* allocated in non intended node */
63 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
64 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
65 	NUMA_LOCAL,		/* allocation from local node */
66 	NUMA_OTHER,		/* allocation from other node */
67 #endif
68 	NR_VM_ZONE_STAT_ITEMS };
69 
70 struct per_cpu_pages {
71 	int count;		/* number of pages in the list */
72 	int high;		/* high watermark, emptying needed */
73 	int batch;		/* chunk size for buddy add/remove */
74 	struct list_head list;	/* the list of pages */
75 };
76 
77 struct per_cpu_pageset {
78 	struct per_cpu_pages pcp[2];	/* 0: hot.  1: cold */
79 #ifdef CONFIG_SMP
80 	s8 stat_threshold;
81 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
82 #endif
83 } ____cacheline_aligned_in_smp;
84 
85 #ifdef CONFIG_NUMA
86 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
87 #else
88 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
89 #endif
90 
91 #define ZONE_DMA		0
92 #define ZONE_DMA32		1
93 #define ZONE_NORMAL		2
94 #define ZONE_HIGHMEM		3
95 
96 #define MAX_NR_ZONES		4	/* Sync this with ZONES_SHIFT */
97 #define ZONES_SHIFT		2	/* ceil(log2(MAX_NR_ZONES)) */
98 
99 
100 /*
101  * When a memory allocation must conform to specific limitations (such
102  * as being suitable for DMA) the caller will pass in hints to the
103  * allocator in the gfp_mask, in the zone modifier bits.  These bits
104  * are used to select a priority ordered list of memory zones which
105  * match the requested limits.  GFP_ZONEMASK defines which bits within
106  * the gfp_mask should be considered as zone modifiers.  Each valid
107  * combination of the zone modifier bits has a corresponding list
108  * of zones (in node_zonelists).  Thus for two zone modifiers there
109  * will be a maximum of 4 (2 ** 2) zonelists, for 3 modifiers there will
110  * be 8 (2 ** 3) zonelists.  GFP_ZONETYPES defines the number of possible
111  * combinations of zone modifiers in "zone modifier space".
112  *
113  * As an optimisation any zone modifier bits which are only valid when
114  * no other zone modifier bits are set (loners) should be placed in
115  * the highest order bits of this field.  This allows us to reduce the
116  * extent of the zonelists thus saving space.  For example in the case
117  * of three zone modifier bits, we could require up to eight zonelists.
118  * If the left most zone modifier is a "loner" then the highest valid
119  * zonelist would be four allowing us to allocate only five zonelists.
120  * Use the first form for GFP_ZONETYPES when the left most bit is not
121  * a "loner", otherwise use the second.
122  *
123  * NOTE! Make sure this matches the zones in <linux/gfp.h>
124  */
125 #define GFP_ZONEMASK	0x07
126 /* #define GFP_ZONETYPES       (GFP_ZONEMASK + 1) */           /* Non-loner */
127 #define GFP_ZONETYPES  ((GFP_ZONEMASK + 1) / 2 + 1)            /* Loner */
128 
129 /*
130  * On machines where it is needed (eg PCs) we divide physical memory
131  * into multiple physical zones. On a 32bit PC we have 4 zones:
132  *
133  * ZONE_DMA	  < 16 MB	ISA DMA capable memory
134  * ZONE_DMA32	     0 MB 	Empty
135  * ZONE_NORMAL	16-896 MB	direct mapped by the kernel
136  * ZONE_HIGHMEM	 > 896 MB	only page cache and user processes
137  */
138 
139 struct zone {
140 	/* Fields commonly accessed by the page allocator */
141 	unsigned long		free_pages;
142 	unsigned long		pages_min, pages_low, pages_high;
143 	/*
144 	 * We don't know if the memory that we're going to allocate will be freeable
145 	 * or/and it will be released eventually, so to avoid totally wasting several
146 	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
147 	 * to run OOM on the lower zones despite there's tons of freeable ram
148 	 * on the higher zones). This array is recalculated at runtime if the
149 	 * sysctl_lowmem_reserve_ratio sysctl changes.
150 	 */
151 	unsigned long		lowmem_reserve[MAX_NR_ZONES];
152 
153 #ifdef CONFIG_NUMA
154 	/*
155 	 * zone reclaim becomes active if more unmapped pages exist.
156 	 */
157 	unsigned long		min_unmapped_ratio;
158 	struct per_cpu_pageset	*pageset[NR_CPUS];
159 #else
160 	struct per_cpu_pageset	pageset[NR_CPUS];
161 #endif
162 	/*
163 	 * free areas of different sizes
164 	 */
165 	spinlock_t		lock;
166 #ifdef CONFIG_MEMORY_HOTPLUG
167 	/* see spanned/present_pages for more description */
168 	seqlock_t		span_seqlock;
169 #endif
170 	struct free_area	free_area[MAX_ORDER];
171 
172 
173 	ZONE_PADDING(_pad1_)
174 
175 	/* Fields commonly accessed by the page reclaim scanner */
176 	spinlock_t		lru_lock;
177 	struct list_head	active_list;
178 	struct list_head	inactive_list;
179 	unsigned long		nr_scan_active;
180 	unsigned long		nr_scan_inactive;
181 	unsigned long		nr_active;
182 	unsigned long		nr_inactive;
183 	unsigned long		pages_scanned;	   /* since last reclaim */
184 	int			all_unreclaimable; /* All pages pinned */
185 
186 	/* A count of how many reclaimers are scanning this zone */
187 	atomic_t		reclaim_in_progress;
188 
189 	/* Zone statistics */
190 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
191 
192 	/*
193 	 * prev_priority holds the scanning priority for this zone.  It is
194 	 * defined as the scanning priority at which we achieved our reclaim
195 	 * target at the previous try_to_free_pages() or balance_pgdat()
196 	 * invokation.
197 	 *
198 	 * We use prev_priority as a measure of how much stress page reclaim is
199 	 * under - it drives the swappiness decision: whether to unmap mapped
200 	 * pages.
201 	 *
202 	 * temp_priority is used to remember the scanning priority at which
203 	 * this zone was successfully refilled to free_pages == pages_high.
204 	 *
205 	 * Access to both these fields is quite racy even on uniprocessor.  But
206 	 * it is expected to average out OK.
207 	 */
208 	int temp_priority;
209 	int prev_priority;
210 
211 
212 	ZONE_PADDING(_pad2_)
213 	/* Rarely used or read-mostly fields */
214 
215 	/*
216 	 * wait_table		-- the array holding the hash table
217 	 * wait_table_hash_nr_entries	-- the size of the hash table array
218 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
219 	 *
220 	 * The purpose of all these is to keep track of the people
221 	 * waiting for a page to become available and make them
222 	 * runnable again when possible. The trouble is that this
223 	 * consumes a lot of space, especially when so few things
224 	 * wait on pages at a given time. So instead of using
225 	 * per-page waitqueues, we use a waitqueue hash table.
226 	 *
227 	 * The bucket discipline is to sleep on the same queue when
228 	 * colliding and wake all in that wait queue when removing.
229 	 * When something wakes, it must check to be sure its page is
230 	 * truly available, a la thundering herd. The cost of a
231 	 * collision is great, but given the expected load of the
232 	 * table, they should be so rare as to be outweighed by the
233 	 * benefits from the saved space.
234 	 *
235 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
236 	 * primary users of these fields, and in mm/page_alloc.c
237 	 * free_area_init_core() performs the initialization of them.
238 	 */
239 	wait_queue_head_t	* wait_table;
240 	unsigned long		wait_table_hash_nr_entries;
241 	unsigned long		wait_table_bits;
242 
243 	/*
244 	 * Discontig memory support fields.
245 	 */
246 	struct pglist_data	*zone_pgdat;
247 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
248 	unsigned long		zone_start_pfn;
249 
250 	/*
251 	 * zone_start_pfn, spanned_pages and present_pages are all
252 	 * protected by span_seqlock.  It is a seqlock because it has
253 	 * to be read outside of zone->lock, and it is done in the main
254 	 * allocator path.  But, it is written quite infrequently.
255 	 *
256 	 * The lock is declared along with zone->lock because it is
257 	 * frequently read in proximity to zone->lock.  It's good to
258 	 * give them a chance of being in the same cacheline.
259 	 */
260 	unsigned long		spanned_pages;	/* total size, including holes */
261 	unsigned long		present_pages;	/* amount of memory (excluding holes) */
262 
263 	/*
264 	 * rarely used fields:
265 	 */
266 	char			*name;
267 } ____cacheline_internodealigned_in_smp;
268 
269 
270 /*
271  * The "priority" of VM scanning is how much of the queues we will scan in one
272  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
273  * queues ("queue_length >> 12") during an aging round.
274  */
275 #define DEF_PRIORITY 12
276 
277 /*
278  * One allocation request operates on a zonelist. A zonelist
279  * is a list of zones, the first one is the 'goal' of the
280  * allocation, the other zones are fallback zones, in decreasing
281  * priority.
282  *
283  * Right now a zonelist takes up less than a cacheline. We never
284  * modify it apart from boot-up, and only a few indices are used,
285  * so despite the zonelist table being relatively big, the cache
286  * footprint of this construct is very small.
287  */
288 struct zonelist {
289 	struct zone *zones[MAX_NUMNODES * MAX_NR_ZONES + 1]; // NULL delimited
290 };
291 
292 
293 /*
294  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
295  * (mostly NUMA machines?) to denote a higher-level memory zone than the
296  * zone denotes.
297  *
298  * On NUMA machines, each NUMA node would have a pg_data_t to describe
299  * it's memory layout.
300  *
301  * Memory statistics and page replacement data structures are maintained on a
302  * per-zone basis.
303  */
304 struct bootmem_data;
305 typedef struct pglist_data {
306 	struct zone node_zones[MAX_NR_ZONES];
307 	struct zonelist node_zonelists[GFP_ZONETYPES];
308 	int nr_zones;
309 #ifdef CONFIG_FLAT_NODE_MEM_MAP
310 	struct page *node_mem_map;
311 #endif
312 	struct bootmem_data *bdata;
313 #ifdef CONFIG_MEMORY_HOTPLUG
314 	/*
315 	 * Must be held any time you expect node_start_pfn, node_present_pages
316 	 * or node_spanned_pages stay constant.  Holding this will also
317 	 * guarantee that any pfn_valid() stays that way.
318 	 *
319 	 * Nests above zone->lock and zone->size_seqlock.
320 	 */
321 	spinlock_t node_size_lock;
322 #endif
323 	unsigned long node_start_pfn;
324 	unsigned long node_present_pages; /* total number of physical pages */
325 	unsigned long node_spanned_pages; /* total size of physical page
326 					     range, including holes */
327 	int node_id;
328 	wait_queue_head_t kswapd_wait;
329 	struct task_struct *kswapd;
330 	int kswapd_max_order;
331 } pg_data_t;
332 
333 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
334 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
335 #ifdef CONFIG_FLAT_NODE_MEM_MAP
336 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
337 #else
338 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
339 #endif
340 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
341 
342 #include <linux/memory_hotplug.h>
343 
344 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
345 			unsigned long *free, struct pglist_data *pgdat);
346 void get_zone_counts(unsigned long *active, unsigned long *inactive,
347 			unsigned long *free);
348 void build_all_zonelists(void);
349 void wakeup_kswapd(struct zone *zone, int order);
350 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
351 		int classzone_idx, int alloc_flags);
352 
353 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
354 				     unsigned long size);
355 
356 #ifdef CONFIG_HAVE_MEMORY_PRESENT
357 void memory_present(int nid, unsigned long start, unsigned long end);
358 #else
memory_present(int nid,unsigned long start,unsigned long end)359 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
360 #endif
361 
362 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
363 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
364 #endif
365 
366 /*
367  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
368  */
369 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
370 
populated_zone(struct zone * zone)371 static inline int populated_zone(struct zone *zone)
372 {
373 	return (!!zone->present_pages);
374 }
375 
is_highmem_idx(int idx)376 static inline int is_highmem_idx(int idx)
377 {
378 	return (idx == ZONE_HIGHMEM);
379 }
380 
is_normal_idx(int idx)381 static inline int is_normal_idx(int idx)
382 {
383 	return (idx == ZONE_NORMAL);
384 }
385 
386 /**
387  * is_highmem - helper function to quickly check if a struct zone is a
388  *              highmem zone or not.  This is an attempt to keep references
389  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
390  * @zone - pointer to struct zone variable
391  */
is_highmem(struct zone * zone)392 static inline int is_highmem(struct zone *zone)
393 {
394 	return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM;
395 }
396 
is_normal(struct zone * zone)397 static inline int is_normal(struct zone *zone)
398 {
399 	return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
400 }
401 
is_dma32(struct zone * zone)402 static inline int is_dma32(struct zone *zone)
403 {
404 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
405 }
406 
is_dma(struct zone * zone)407 static inline int is_dma(struct zone *zone)
408 {
409 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
410 }
411 
412 /* These two functions are used to setup the per zone pages min values */
413 struct ctl_table;
414 struct file;
415 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
416 					void __user *, size_t *, loff_t *);
417 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
418 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
419 					void __user *, size_t *, loff_t *);
420 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
421 					void __user *, size_t *, loff_t *);
422 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
423 			struct file *, void __user *, size_t *, loff_t *);
424 
425 #include <linux/topology.h>
426 /* Returns the number of the current Node. */
427 #ifndef numa_node_id
428 #define numa_node_id()		(cpu_to_node(raw_smp_processor_id()))
429 #endif
430 
431 #ifndef CONFIG_NEED_MULTIPLE_NODES
432 
433 extern struct pglist_data contig_page_data;
434 #define NODE_DATA(nid)		(&contig_page_data)
435 #define NODE_MEM_MAP(nid)	mem_map
436 #define MAX_NODES_SHIFT		1
437 
438 #else /* CONFIG_NEED_MULTIPLE_NODES */
439 
440 #include <asm/mmzone.h>
441 
442 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
443 
444 extern struct pglist_data *first_online_pgdat(void);
445 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
446 extern struct zone *next_zone(struct zone *zone);
447 
448 /**
449  * for_each_pgdat - helper macro to iterate over all nodes
450  * @pgdat - pointer to a pg_data_t variable
451  */
452 #define for_each_online_pgdat(pgdat)			\
453 	for (pgdat = first_online_pgdat();		\
454 	     pgdat;					\
455 	     pgdat = next_online_pgdat(pgdat))
456 /**
457  * for_each_zone - helper macro to iterate over all memory zones
458  * @zone - pointer to struct zone variable
459  *
460  * The user only needs to declare the zone variable, for_each_zone
461  * fills it in.
462  */
463 #define for_each_zone(zone)			        \
464 	for (zone = (first_online_pgdat())->node_zones; \
465 	     zone;					\
466 	     zone = next_zone(zone))
467 
468 #ifdef CONFIG_SPARSEMEM
469 #include <asm/sparsemem.h>
470 #endif
471 
472 #if BITS_PER_LONG == 32
473 /*
474  * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
475  * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
476  */
477 #define FLAGS_RESERVED		9
478 
479 #elif BITS_PER_LONG == 64
480 /*
481  * with 64 bit flags field, there's plenty of room.
482  */
483 #define FLAGS_RESERVED		32
484 
485 #else
486 
487 #error BITS_PER_LONG not defined
488 
489 #endif
490 
491 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
492 #define early_pfn_to_nid(nid)  (0UL)
493 #endif
494 
495 #ifdef CONFIG_FLATMEM
496 #define pfn_to_nid(pfn)		(0)
497 #endif
498 
499 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
500 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
501 
502 #ifdef CONFIG_SPARSEMEM
503 
504 /*
505  * SECTION_SHIFT    		#bits space required to store a section #
506  *
507  * PA_SECTION_SHIFT		physical address to/from section number
508  * PFN_SECTION_SHIFT		pfn to/from section number
509  */
510 #define SECTIONS_SHIFT		(MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
511 
512 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
513 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
514 
515 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
516 
517 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
518 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
519 
520 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
521 #error Allocator MAX_ORDER exceeds SECTION_SIZE
522 #endif
523 
524 struct page;
525 struct mem_section {
526 	/*
527 	 * This is, logically, a pointer to an array of struct
528 	 * pages.  However, it is stored with some other magic.
529 	 * (see sparse.c::sparse_init_one_section())
530 	 *
531 	 * Additionally during early boot we encode node id of
532 	 * the location of the section here to guide allocation.
533 	 * (see sparse.c::memory_present())
534 	 *
535 	 * Making it a UL at least makes someone do a cast
536 	 * before using it wrong.
537 	 */
538 	unsigned long section_mem_map;
539 };
540 
541 #ifdef CONFIG_SPARSEMEM_EXTREME
542 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
543 #else
544 #define SECTIONS_PER_ROOT	1
545 #endif
546 
547 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
548 #define NR_SECTION_ROOTS	(NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
549 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
550 
551 #ifdef CONFIG_SPARSEMEM_EXTREME
552 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
553 #else
554 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
555 #endif
556 
__nr_to_section(unsigned long nr)557 static inline struct mem_section *__nr_to_section(unsigned long nr)
558 {
559 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
560 		return NULL;
561 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
562 }
563 extern int __section_nr(struct mem_section* ms);
564 
565 /*
566  * We use the lower bits of the mem_map pointer to store
567  * a little bit of information.  There should be at least
568  * 3 bits here due to 32-bit alignment.
569  */
570 #define	SECTION_MARKED_PRESENT	(1UL<<0)
571 #define SECTION_HAS_MEM_MAP	(1UL<<1)
572 #define SECTION_MAP_LAST_BIT	(1UL<<2)
573 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
574 #define SECTION_NID_SHIFT	2
575 
__section_mem_map_addr(struct mem_section * section)576 static inline struct page *__section_mem_map_addr(struct mem_section *section)
577 {
578 	unsigned long map = section->section_mem_map;
579 	map &= SECTION_MAP_MASK;
580 	return (struct page *)map;
581 }
582 
valid_section(struct mem_section * section)583 static inline int valid_section(struct mem_section *section)
584 {
585 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
586 }
587 
section_has_mem_map(struct mem_section * section)588 static inline int section_has_mem_map(struct mem_section *section)
589 {
590 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
591 }
592 
valid_section_nr(unsigned long nr)593 static inline int valid_section_nr(unsigned long nr)
594 {
595 	return valid_section(__nr_to_section(nr));
596 }
597 
__pfn_to_section(unsigned long pfn)598 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
599 {
600 	return __nr_to_section(pfn_to_section_nr(pfn));
601 }
602 
pfn_valid(unsigned long pfn)603 static inline int pfn_valid(unsigned long pfn)
604 {
605 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
606 		return 0;
607 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
608 }
609 
610 /*
611  * These are _only_ used during initialisation, therefore they
612  * can use __initdata ...  They could have names to indicate
613  * this restriction.
614  */
615 #ifdef CONFIG_NUMA
616 #define pfn_to_nid(pfn)							\
617 ({									\
618 	unsigned long __pfn_to_nid_pfn = (pfn);				\
619 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
620 })
621 #else
622 #define pfn_to_nid(pfn)		(0)
623 #endif
624 
625 #define early_pfn_valid(pfn)	pfn_valid(pfn)
626 void sparse_init(void);
627 #else
628 #define sparse_init()	do {} while (0)
629 #define sparse_index_init(_sec, _nid)  do {} while (0)
630 #endif /* CONFIG_SPARSEMEM */
631 
632 #ifndef early_pfn_valid
633 #define early_pfn_valid(pfn)	(1)
634 #endif
635 
636 void memory_present(int nid, unsigned long start, unsigned long end);
637 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
638 
639 #endif /* !__ASSEMBLY__ */
640 #endif /* __KERNEL__ */
641 #endif /* _LINUX_MMZONE_H */
642