• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3 
4 #include <linux/sched.h>
5 #include <linux/errno.h>
6 #include <linux/capability.h>
7 
8 #ifdef __KERNEL__
9 
10 #include <linux/gfp.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/prio_tree.h>
15 #include <linux/fs.h>
16 #include <linux/mutex.h>
17 #include <linux/debug_locks.h>
18 
19 struct mempolicy;
20 struct anon_vma;
21 
22 #ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */
23 extern unsigned long max_mapnr;
24 #endif
25 
26 extern unsigned long num_physpages;
27 extern void * high_memory;
28 extern unsigned long vmalloc_earlyreserve;
29 extern int page_cluster;
30 
31 #ifdef CONFIG_SYSCTL
32 extern int sysctl_legacy_va_layout;
33 #else
34 #define sysctl_legacy_va_layout 0
35 #endif
36 
37 #include <asm/page.h>
38 #include <asm/pgtable.h>
39 #include <asm/processor.h>
40 
41 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
42 
43 /*
44  * Linux kernel virtual memory manager primitives.
45  * The idea being to have a "virtual" mm in the same way
46  * we have a virtual fs - giving a cleaner interface to the
47  * mm details, and allowing different kinds of memory mappings
48  * (from shared memory to executable loading to arbitrary
49  * mmap() functions).
50  */
51 
52 /*
53  * This struct defines a memory VMM memory area. There is one of these
54  * per VM-area/task.  A VM area is any part of the process virtual memory
55  * space that has a special rule for the page-fault handlers (ie a shared
56  * library, the executable area etc).
57  */
58 struct vm_area_struct {
59 	struct mm_struct * vm_mm;	/* The address space we belong to. */
60 	unsigned long vm_start;		/* Our start address within vm_mm. */
61 	unsigned long vm_end;		/* The first byte after our end address
62 					   within vm_mm. */
63 
64 	/* linked list of VM areas per task, sorted by address */
65 	struct vm_area_struct *vm_next;
66 
67 	pgprot_t vm_page_prot;		/* Access permissions of this VMA. */
68 	unsigned long vm_flags;		/* Flags, listed below. */
69 
70 	struct rb_node vm_rb;
71 
72 	/*
73 	 * For areas with an address space and backing store,
74 	 * linkage into the address_space->i_mmap prio tree, or
75 	 * linkage to the list of like vmas hanging off its node, or
76 	 * linkage of vma in the address_space->i_mmap_nonlinear list.
77 	 */
78 	union {
79 		struct {
80 			struct list_head list;
81 			void *parent;	/* aligns with prio_tree_node parent */
82 			struct vm_area_struct *head;
83 		} vm_set;
84 
85 		struct raw_prio_tree_node prio_tree_node;
86 	} shared;
87 
88 	/*
89 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
90 	 * list, after a COW of one of the file pages.  A MAP_SHARED vma
91 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
92 	 * or brk vma (with NULL file) can only be in an anon_vma list.
93 	 */
94 	struct list_head anon_vma_node;	/* Serialized by anon_vma->lock */
95 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
96 
97 	/* Function pointers to deal with this struct. */
98 	struct vm_operations_struct * vm_ops;
99 
100 	/* Information about our backing store: */
101 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
102 					   units, *not* PAGE_CACHE_SIZE */
103 	struct file * vm_file;		/* File we map to (can be NULL). */
104 	void * vm_private_data;		/* was vm_pte (shared mem) */
105 	unsigned long vm_truncate_count;/* truncate_count or restart_addr */
106 
107 #ifndef CONFIG_MMU
108 	atomic_t vm_usage;		/* refcount (VMAs shared if !MMU) */
109 #endif
110 #ifdef CONFIG_NUMA
111 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
112 #endif
113 };
114 
115 /*
116  * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
117  * disabled, then there's a single shared list of VMAs maintained by the
118  * system, and mm's subscribe to these individually
119  */
120 struct vm_list_struct {
121 	struct vm_list_struct	*next;
122 	struct vm_area_struct	*vma;
123 };
124 
125 #ifndef CONFIG_MMU
126 extern struct rb_root nommu_vma_tree;
127 extern struct rw_semaphore nommu_vma_sem;
128 
129 extern unsigned int kobjsize(const void *objp);
130 #endif
131 
132 /*
133  * vm_flags..
134  */
135 #define VM_READ		0x00000001	/* currently active flags */
136 #define VM_WRITE	0x00000002
137 #define VM_EXEC		0x00000004
138 #define VM_SHARED	0x00000008
139 
140 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
141 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
142 #define VM_MAYWRITE	0x00000020
143 #define VM_MAYEXEC	0x00000040
144 #define VM_MAYSHARE	0x00000080
145 
146 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
147 #define VM_GROWSUP	0x00000200
148 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
149 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
150 
151 #define VM_EXECUTABLE	0x00001000
152 #define VM_LOCKED	0x00002000
153 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
154 
155 					/* Used by sys_madvise() */
156 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
157 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
158 
159 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
160 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
161 #define VM_RESERVED	0x00080000	/* Count as reserved_vm like IO */
162 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
163 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
164 #define VM_NONLINEAR	0x00800000	/* Is non-linear (remap_file_pages) */
165 #define VM_MAPPED_COPY	0x01000000	/* T if mapped copy of data (nommu mmap) */
166 #define VM_INSERTPAGE	0x02000000	/* The vma has had "vm_insert_page()" done on it */
167 
168 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
169 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
170 #endif
171 
172 #ifdef CONFIG_STACK_GROWSUP
173 #define VM_STACK_FLAGS	(VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
174 #else
175 #define VM_STACK_FLAGS	(VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
176 #endif
177 
178 #define VM_READHINTMASK			(VM_SEQ_READ | VM_RAND_READ)
179 #define VM_ClearReadHint(v)		(v)->vm_flags &= ~VM_READHINTMASK
180 #define VM_NormalReadHint(v)		(!((v)->vm_flags & VM_READHINTMASK))
181 #define VM_SequentialReadHint(v)	((v)->vm_flags & VM_SEQ_READ)
182 #define VM_RandomReadHint(v)		((v)->vm_flags & VM_RAND_READ)
183 
184 /*
185  * mapping from the currently active vm_flags protection bits (the
186  * low four bits) to a page protection mask..
187  */
188 extern pgprot_t protection_map[16];
189 
190 
191 /*
192  * These are the virtual MM functions - opening of an area, closing and
193  * unmapping it (needed to keep files on disk up-to-date etc), pointer
194  * to the functions called when a no-page or a wp-page exception occurs.
195  */
196 struct vm_operations_struct {
197 	void (*open)(struct vm_area_struct * area);
198 	void (*close)(struct vm_area_struct * area);
199 	struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type);
200 	int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock);
201 
202 	/* notification that a previously read-only page is about to become
203 	 * writable, if an error is returned it will cause a SIGBUS */
204 	int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
205 #ifdef CONFIG_NUMA
206 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
207 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
208 					unsigned long addr);
209 	int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
210 		const nodemask_t *to, unsigned long flags);
211 #endif
212 };
213 
214 struct mmu_gather;
215 struct inode;
216 
217 /*
218  * Each physical page in the system has a struct page associated with
219  * it to keep track of whatever it is we are using the page for at the
220  * moment. Note that we have no way to track which tasks are using
221  * a page.
222  */
223 struct page {
224 	unsigned long flags;		/* Atomic flags, some possibly
225 					 * updated asynchronously */
226 	atomic_t _count;		/* Usage count, see below. */
227 	atomic_t _mapcount;		/* Count of ptes mapped in mms,
228 					 * to show when page is mapped
229 					 * & limit reverse map searches.
230 					 */
231 	union {
232 	    struct {
233 		unsigned long private;		/* Mapping-private opaque data:
234 					 	 * usually used for buffer_heads
235 						 * if PagePrivate set; used for
236 						 * swp_entry_t if PageSwapCache;
237 						 * indicates order in the buddy
238 						 * system if PG_buddy is set.
239 						 */
240 		struct address_space *mapping;	/* If low bit clear, points to
241 						 * inode address_space, or NULL.
242 						 * If page mapped as anonymous
243 						 * memory, low bit is set, and
244 						 * it points to anon_vma object:
245 						 * see PAGE_MAPPING_ANON below.
246 						 */
247 	    };
248 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
249 	    spinlock_t ptl;
250 #endif
251 	};
252 	pgoff_t index;			/* Our offset within mapping. */
253 	struct list_head lru;		/* Pageout list, eg. active_list
254 					 * protected by zone->lru_lock !
255 					 */
256 	/*
257 	 * On machines where all RAM is mapped into kernel address space,
258 	 * we can simply calculate the virtual address. On machines with
259 	 * highmem some memory is mapped into kernel virtual memory
260 	 * dynamically, so we need a place to store that address.
261 	 * Note that this field could be 16 bits on x86 ... ;)
262 	 *
263 	 * Architectures with slow multiplication can define
264 	 * WANT_PAGE_VIRTUAL in asm/page.h
265 	 */
266 #if defined(WANT_PAGE_VIRTUAL)
267 	void *virtual;			/* Kernel virtual address (NULL if
268 					   not kmapped, ie. highmem) */
269 #endif /* WANT_PAGE_VIRTUAL */
270 };
271 
272 #define page_private(page)		((page)->private)
273 #define set_page_private(page, v)	((page)->private = (v))
274 
275 /*
276  * FIXME: take this include out, include page-flags.h in
277  * files which need it (119 of them)
278  */
279 #include <linux/page-flags.h>
280 
281 /*
282  * Methods to modify the page usage count.
283  *
284  * What counts for a page usage:
285  * - cache mapping   (page->mapping)
286  * - private data    (page->private)
287  * - page mapped in a task's page tables, each mapping
288  *   is counted separately
289  *
290  * Also, many kernel routines increase the page count before a critical
291  * routine so they can be sure the page doesn't go away from under them.
292  */
293 
294 /*
295  * Drop a ref, return true if the logical refcount fell to zero (the page has
296  * no users)
297  */
put_page_testzero(struct page * page)298 static inline int put_page_testzero(struct page *page)
299 {
300 	BUG_ON(atomic_read(&page->_count) == 0);
301 	return atomic_dec_and_test(&page->_count);
302 }
303 
304 /*
305  * Try to grab a ref unless the page has a refcount of zero, return false if
306  * that is the case.
307  */
get_page_unless_zero(struct page * page)308 static inline int get_page_unless_zero(struct page *page)
309 {
310 	return atomic_inc_not_zero(&page->_count);
311 }
312 
313 extern void FASTCALL(__page_cache_release(struct page *));
314 
page_count(struct page * page)315 static inline int page_count(struct page *page)
316 {
317 	if (unlikely(PageCompound(page)))
318 		page = (struct page *)page_private(page);
319 	return atomic_read(&page->_count);
320 }
321 
get_page(struct page * page)322 static inline void get_page(struct page *page)
323 {
324 	if (unlikely(PageCompound(page)))
325 		page = (struct page *)page_private(page);
326 	atomic_inc(&page->_count);
327 }
328 
329 /*
330  * Setup the page count before being freed into the page allocator for
331  * the first time (boot or memory hotplug)
332  */
init_page_count(struct page * page)333 static inline void init_page_count(struct page *page)
334 {
335 	atomic_set(&page->_count, 1);
336 }
337 
338 void put_page(struct page *page);
339 void put_pages_list(struct list_head *pages);
340 
341 void split_page(struct page *page, unsigned int order);
342 
343 /*
344  * Multiple processes may "see" the same page. E.g. for untouched
345  * mappings of /dev/null, all processes see the same page full of
346  * zeroes, and text pages of executables and shared libraries have
347  * only one copy in memory, at most, normally.
348  *
349  * For the non-reserved pages, page_count(page) denotes a reference count.
350  *   page_count() == 0 means the page is free. page->lru is then used for
351  *   freelist management in the buddy allocator.
352  *   page_count() == 1 means the page is used for exactly one purpose
353  *   (e.g. a private data page of one process).
354  *
355  * A page may be used for kmalloc() or anyone else who does a
356  * __get_free_page(). In this case the page_count() is at least 1, and
357  * all other fields are unused but should be 0 or NULL. The
358  * management of this page is the responsibility of the one who uses
359  * it.
360  *
361  * The other pages (we may call them "process pages") are completely
362  * managed by the Linux memory manager: I/O, buffers, swapping etc.
363  * The following discussion applies only to them.
364  *
365  * A page may belong to an inode's memory mapping. In this case,
366  * page->mapping is the pointer to the inode, and page->index is the
367  * file offset of the page, in units of PAGE_CACHE_SIZE.
368  *
369  * A page contains an opaque `private' member, which belongs to the
370  * page's address_space.  Usually, this is the address of a circular
371  * list of the page's disk buffers.
372  *
373  * For pages belonging to inodes, the page_count() is the number of
374  * attaches, plus 1 if `private' contains something, plus one for
375  * the page cache itself.
376  *
377  * Instead of keeping dirty/clean pages in per address-space lists, we instead
378  * now tag pages as dirty/under writeback in the radix tree.
379  *
380  * There is also a per-mapping radix tree mapping index to the page
381  * in memory if present. The tree is rooted at mapping->root.
382  *
383  * All process pages can do I/O:
384  * - inode pages may need to be read from disk,
385  * - inode pages which have been modified and are MAP_SHARED may need
386  *   to be written to disk,
387  * - private pages which have been modified may need to be swapped out
388  *   to swap space and (later) to be read back into memory.
389  */
390 
391 /*
392  * The zone field is never updated after free_area_init_core()
393  * sets it, so none of the operations on it need to be atomic.
394  */
395 
396 
397 /*
398  * page->flags layout:
399  *
400  * There are three possibilities for how page->flags get
401  * laid out.  The first is for the normal case, without
402  * sparsemem.  The second is for sparsemem when there is
403  * plenty of space for node and section.  The last is when
404  * we have run out of space and have to fall back to an
405  * alternate (slower) way of determining the node.
406  *
407  *        No sparsemem: |       NODE     | ZONE | ... | FLAGS |
408  * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
409  *   no space for node: | SECTION |     ZONE    | ... | FLAGS |
410  */
411 #ifdef CONFIG_SPARSEMEM
412 #define SECTIONS_WIDTH		SECTIONS_SHIFT
413 #else
414 #define SECTIONS_WIDTH		0
415 #endif
416 
417 #define ZONES_WIDTH		ZONES_SHIFT
418 
419 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
420 #define NODES_WIDTH		NODES_SHIFT
421 #else
422 #define NODES_WIDTH		0
423 #endif
424 
425 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
426 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
427 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
428 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
429 
430 /*
431  * We are going to use the flags for the page to node mapping if its in
432  * there.  This includes the case where there is no node, so it is implicit.
433  */
434 #define FLAGS_HAS_NODE		(NODES_WIDTH > 0 || NODES_SHIFT == 0)
435 
436 #ifndef PFN_SECTION_SHIFT
437 #define PFN_SECTION_SHIFT 0
438 #endif
439 
440 /*
441  * Define the bit shifts to access each section.  For non-existant
442  * sections we define the shift as 0; that plus a 0 mask ensures
443  * the compiler will optimise away reference to them.
444  */
445 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
446 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
447 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
448 
449 /* NODE:ZONE or SECTION:ZONE is used to lookup the zone from a page. */
450 #if FLAGS_HAS_NODE
451 #define ZONETABLE_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
452 #else
453 #define ZONETABLE_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
454 #endif
455 #define ZONETABLE_PGSHIFT	ZONES_PGSHIFT
456 
457 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
458 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
459 #endif
460 
461 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
462 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
463 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
464 #define ZONETABLE_MASK		((1UL << ZONETABLE_SHIFT) - 1)
465 
page_zonenum(struct page * page)466 static inline unsigned long page_zonenum(struct page *page)
467 {
468 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
469 }
470 
471 struct zone;
472 extern struct zone *zone_table[];
473 
page_zone_id(struct page * page)474 static inline int page_zone_id(struct page *page)
475 {
476 	return (page->flags >> ZONETABLE_PGSHIFT) & ZONETABLE_MASK;
477 }
page_zone(struct page * page)478 static inline struct zone *page_zone(struct page *page)
479 {
480 	return zone_table[page_zone_id(page)];
481 }
482 
page_to_nid(struct page * page)483 static inline unsigned long page_to_nid(struct page *page)
484 {
485 	if (FLAGS_HAS_NODE)
486 		return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
487 	else
488 		return page_zone(page)->zone_pgdat->node_id;
489 }
page_to_section(struct page * page)490 static inline unsigned long page_to_section(struct page *page)
491 {
492 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
493 }
494 
set_page_zone(struct page * page,unsigned long zone)495 static inline void set_page_zone(struct page *page, unsigned long zone)
496 {
497 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
498 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
499 }
set_page_node(struct page * page,unsigned long node)500 static inline void set_page_node(struct page *page, unsigned long node)
501 {
502 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
503 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
504 }
set_page_section(struct page * page,unsigned long section)505 static inline void set_page_section(struct page *page, unsigned long section)
506 {
507 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
508 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
509 }
510 
set_page_links(struct page * page,unsigned long zone,unsigned long node,unsigned long pfn)511 static inline void set_page_links(struct page *page, unsigned long zone,
512 	unsigned long node, unsigned long pfn)
513 {
514 	set_page_zone(page, zone);
515 	set_page_node(page, node);
516 	set_page_section(page, pfn_to_section_nr(pfn));
517 }
518 
519 /*
520  * Some inline functions in vmstat.h depend on page_zone()
521  */
522 #include <linux/vmstat.h>
523 
524 #ifndef CONFIG_DISCONTIGMEM
525 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
526 extern struct page *mem_map;
527 #endif
528 
lowmem_page_address(struct page * page)529 static __always_inline void *lowmem_page_address(struct page *page)
530 {
531 	return __va(page_to_pfn(page) << PAGE_SHIFT);
532 }
533 
534 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
535 #define HASHED_PAGE_VIRTUAL
536 #endif
537 
538 #if defined(WANT_PAGE_VIRTUAL)
539 #define page_address(page) ((page)->virtual)
540 #define set_page_address(page, address)			\
541 	do {						\
542 		(page)->virtual = (address);		\
543 	} while(0)
544 #define page_address_init()  do { } while(0)
545 #endif
546 
547 #if defined(HASHED_PAGE_VIRTUAL)
548 void *page_address(struct page *page);
549 void set_page_address(struct page *page, void *virtual);
550 void page_address_init(void);
551 #endif
552 
553 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
554 #define page_address(page) lowmem_page_address(page)
555 #define set_page_address(page, address)  do { } while(0)
556 #define page_address_init()  do { } while(0)
557 #endif
558 
559 /*
560  * On an anonymous page mapped into a user virtual memory area,
561  * page->mapping points to its anon_vma, not to a struct address_space;
562  * with the PAGE_MAPPING_ANON bit set to distinguish it.
563  *
564  * Please note that, confusingly, "page_mapping" refers to the inode
565  * address_space which maps the page from disk; whereas "page_mapped"
566  * refers to user virtual address space into which the page is mapped.
567  */
568 #define PAGE_MAPPING_ANON	1
569 
570 extern struct address_space swapper_space;
page_mapping(struct page * page)571 static inline struct address_space *page_mapping(struct page *page)
572 {
573 	struct address_space *mapping = page->mapping;
574 
575 	if (unlikely(PageSwapCache(page)))
576 		mapping = &swapper_space;
577 	else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
578 		mapping = NULL;
579 	return mapping;
580 }
581 
PageAnon(struct page * page)582 static inline int PageAnon(struct page *page)
583 {
584 	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
585 }
586 
587 /*
588  * Return the pagecache index of the passed page.  Regular pagecache pages
589  * use ->index whereas swapcache pages use ->private
590  */
page_index(struct page * page)591 static inline pgoff_t page_index(struct page *page)
592 {
593 	if (unlikely(PageSwapCache(page)))
594 		return page_private(page);
595 	return page->index;
596 }
597 
598 /*
599  * The atomic page->_mapcount, like _count, starts from -1:
600  * so that transitions both from it and to it can be tracked,
601  * using atomic_inc_and_test and atomic_add_negative(-1).
602  */
reset_page_mapcount(struct page * page)603 static inline void reset_page_mapcount(struct page *page)
604 {
605 	atomic_set(&(page)->_mapcount, -1);
606 }
607 
page_mapcount(struct page * page)608 static inline int page_mapcount(struct page *page)
609 {
610 	return atomic_read(&(page)->_mapcount) + 1;
611 }
612 
613 /*
614  * Return true if this page is mapped into pagetables.
615  */
page_mapped(struct page * page)616 static inline int page_mapped(struct page *page)
617 {
618 	return atomic_read(&(page)->_mapcount) >= 0;
619 }
620 
621 /*
622  * Error return values for the *_nopage functions
623  */
624 #define NOPAGE_SIGBUS	(NULL)
625 #define NOPAGE_OOM	((struct page *) (-1))
626 
627 /*
628  * Different kinds of faults, as returned by handle_mm_fault().
629  * Used to decide whether a process gets delivered SIGBUS or
630  * just gets major/minor fault counters bumped up.
631  */
632 #define VM_FAULT_OOM	0x00
633 #define VM_FAULT_SIGBUS	0x01
634 #define VM_FAULT_MINOR	0x02
635 #define VM_FAULT_MAJOR	0x03
636 
637 /*
638  * Special case for get_user_pages.
639  * Must be in a distinct bit from the above VM_FAULT_ flags.
640  */
641 #define VM_FAULT_WRITE	0x10
642 
643 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
644 
645 extern void show_free_areas(void);
646 
647 #ifdef CONFIG_SHMEM
648 struct page *shmem_nopage(struct vm_area_struct *vma,
649 			unsigned long address, int *type);
650 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
651 struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
652 					unsigned long addr);
653 int shmem_lock(struct file *file, int lock, struct user_struct *user);
654 #else
655 #define shmem_nopage filemap_nopage
656 
shmem_lock(struct file * file,int lock,struct user_struct * user)657 static inline int shmem_lock(struct file *file, int lock,
658 			     struct user_struct *user)
659 {
660 	return 0;
661 }
662 
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * new)663 static inline int shmem_set_policy(struct vm_area_struct *vma,
664 				   struct mempolicy *new)
665 {
666 	return 0;
667 }
668 
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr)669 static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
670 						 unsigned long addr)
671 {
672 	return NULL;
673 }
674 #endif
675 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
676 extern int shmem_mmap(struct file *file, struct vm_area_struct *vma);
677 
678 int shmem_zero_setup(struct vm_area_struct *);
679 
680 #ifndef CONFIG_MMU
681 extern unsigned long shmem_get_unmapped_area(struct file *file,
682 					     unsigned long addr,
683 					     unsigned long len,
684 					     unsigned long pgoff,
685 					     unsigned long flags);
686 #endif
687 
can_do_mlock(void)688 static inline int can_do_mlock(void)
689 {
690 	if (capable(CAP_IPC_LOCK))
691 		return 1;
692 	if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
693 		return 1;
694 	return 0;
695 }
696 extern int user_shm_lock(size_t, struct user_struct *);
697 extern void user_shm_unlock(size_t, struct user_struct *);
698 
699 /*
700  * Parameter block passed down to zap_pte_range in exceptional cases.
701  */
702 struct zap_details {
703 	struct vm_area_struct *nonlinear_vma;	/* Check page->index if set */
704 	struct address_space *check_mapping;	/* Check page->mapping if set */
705 	pgoff_t	first_index;			/* Lowest page->index to unmap */
706 	pgoff_t last_index;			/* Highest page->index to unmap */
707 	spinlock_t *i_mmap_lock;		/* For unmap_mapping_range: */
708 	unsigned long truncate_count;		/* Compare vm_truncate_count */
709 };
710 
711 struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
712 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
713 		unsigned long size, struct zap_details *);
714 unsigned long unmap_vmas(struct mmu_gather **tlb,
715 		struct vm_area_struct *start_vma, unsigned long start_addr,
716 		unsigned long end_addr, unsigned long *nr_accounted,
717 		struct zap_details *);
718 void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
719 		unsigned long end, unsigned long floor, unsigned long ceiling);
720 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
721 		unsigned long floor, unsigned long ceiling);
722 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
723 			struct vm_area_struct *vma);
724 int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
725 			unsigned long size, pgprot_t prot);
726 void unmap_mapping_range(struct address_space *mapping,
727 		loff_t const holebegin, loff_t const holelen, int even_cows);
728 
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)729 static inline void unmap_shared_mapping_range(struct address_space *mapping,
730 		loff_t const holebegin, loff_t const holelen)
731 {
732 	unmap_mapping_range(mapping, holebegin, holelen, 0);
733 }
734 
735 extern int vmtruncate(struct inode * inode, loff_t offset);
736 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
737 extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot);
738 extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot);
739 
740 #ifdef CONFIG_MMU
741 extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma,
742 			unsigned long address, int write_access);
743 
handle_mm_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,int write_access)744 static inline int handle_mm_fault(struct mm_struct *mm,
745 			struct vm_area_struct *vma, unsigned long address,
746 			int write_access)
747 {
748 	return __handle_mm_fault(mm, vma, address, write_access) &
749 				(~VM_FAULT_WRITE);
750 }
751 #else
handle_mm_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,int write_access)752 static inline int handle_mm_fault(struct mm_struct *mm,
753 			struct vm_area_struct *vma, unsigned long address,
754 			int write_access)
755 {
756 	/* should never happen if there's no MMU */
757 	BUG();
758 	return VM_FAULT_SIGBUS;
759 }
760 #endif
761 
762 extern int make_pages_present(unsigned long addr, unsigned long end);
763 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
764 void install_arg_page(struct vm_area_struct *, struct page *, unsigned long);
765 
766 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
767 		int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
768 void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
769 
770 int __set_page_dirty_buffers(struct page *page);
771 int __set_page_dirty_nobuffers(struct page *page);
772 int redirty_page_for_writepage(struct writeback_control *wbc,
773 				struct page *page);
774 int FASTCALL(set_page_dirty(struct page *page));
775 int set_page_dirty_lock(struct page *page);
776 int clear_page_dirty_for_io(struct page *page);
777 
778 extern unsigned long do_mremap(unsigned long addr,
779 			       unsigned long old_len, unsigned long new_len,
780 			       unsigned long flags, unsigned long new_addr);
781 
782 /*
783  * Prototype to add a shrinker callback for ageable caches.
784  *
785  * These functions are passed a count `nr_to_scan' and a gfpmask.  They should
786  * scan `nr_to_scan' objects, attempting to free them.
787  *
788  * The callback must return the number of objects which remain in the cache.
789  *
790  * The callback will be passed nr_to_scan == 0 when the VM is querying the
791  * cache size, so a fastpath for that case is appropriate.
792  */
793 typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask);
794 
795 /*
796  * Add an aging callback.  The int is the number of 'seeks' it takes
797  * to recreate one of the objects that these functions age.
798  */
799 
800 #define DEFAULT_SEEKS 2
801 struct shrinker;
802 extern struct shrinker *set_shrinker(int, shrinker_t);
803 extern void remove_shrinker(struct shrinker *shrinker);
804 
805 extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
806 
807 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
808 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
809 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
810 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
811 
812 /*
813  * The following ifdef needed to get the 4level-fixup.h header to work.
814  * Remove it when 4level-fixup.h has been removed.
815  */
816 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
pud_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)817 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
818 {
819 	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
820 		NULL: pud_offset(pgd, address);
821 }
822 
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)823 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
824 {
825 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
826 		NULL: pmd_offset(pud, address);
827 }
828 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
829 
830 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
831 /*
832  * We tuck a spinlock to guard each pagetable page into its struct page,
833  * at page->private, with BUILD_BUG_ON to make sure that this will not
834  * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
835  * When freeing, reset page->mapping so free_pages_check won't complain.
836  */
837 #define __pte_lockptr(page)	&((page)->ptl)
838 #define pte_lock_init(_page)	do {					\
839 	spin_lock_init(__pte_lockptr(_page));				\
840 } while (0)
841 #define pte_lock_deinit(page)	((page)->mapping = NULL)
842 #define pte_lockptr(mm, pmd)	({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
843 #else
844 /*
845  * We use mm->page_table_lock to guard all pagetable pages of the mm.
846  */
847 #define pte_lock_init(page)	do {} while (0)
848 #define pte_lock_deinit(page)	do {} while (0)
849 #define pte_lockptr(mm, pmd)	({(void)(pmd); &(mm)->page_table_lock;})
850 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
851 
852 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
853 ({							\
854 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
855 	pte_t *__pte = pte_offset_map(pmd, address);	\
856 	*(ptlp) = __ptl;				\
857 	spin_lock(__ptl);				\
858 	__pte;						\
859 })
860 
861 #define pte_unmap_unlock(pte, ptl)	do {		\
862 	spin_unlock(ptl);				\
863 	pte_unmap(pte);					\
864 } while (0)
865 
866 #define pte_alloc_map(mm, pmd, address)			\
867 	((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
868 		NULL: pte_offset_map(pmd, address))
869 
870 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
871 	((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
872 		NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
873 
874 #define pte_alloc_kernel(pmd, address)			\
875 	((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
876 		NULL: pte_offset_kernel(pmd, address))
877 
878 extern void free_area_init(unsigned long * zones_size);
879 extern void free_area_init_node(int nid, pg_data_t *pgdat,
880 	unsigned long * zones_size, unsigned long zone_start_pfn,
881 	unsigned long *zholes_size);
882 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long);
883 extern void setup_per_zone_pages_min(void);
884 extern void mem_init(void);
885 extern void show_mem(void);
886 extern void si_meminfo(struct sysinfo * val);
887 extern void si_meminfo_node(struct sysinfo *val, int nid);
888 
889 #ifdef CONFIG_NUMA
890 extern void setup_per_cpu_pageset(void);
891 #else
setup_per_cpu_pageset(void)892 static inline void setup_per_cpu_pageset(void) {}
893 #endif
894 
895 /* prio_tree.c */
896 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
897 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
898 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
899 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
900 	struct prio_tree_iter *iter);
901 
902 #define vma_prio_tree_foreach(vma, iter, root, begin, end)	\
903 	for (prio_tree_iter_init(iter, root, begin, end), vma = NULL;	\
904 		(vma = vma_prio_tree_next(vma, iter)); )
905 
vma_nonlinear_insert(struct vm_area_struct * vma,struct list_head * list)906 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
907 					struct list_head *list)
908 {
909 	vma->shared.vm_set.parent = NULL;
910 	list_add_tail(&vma->shared.vm_set.list, list);
911 }
912 
913 /* mmap.c */
914 extern int __vm_enough_memory(long pages, int cap_sys_admin);
915 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
916 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
917 extern struct vm_area_struct *vma_merge(struct mm_struct *,
918 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
919 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
920 	struct mempolicy *);
921 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
922 extern int split_vma(struct mm_struct *,
923 	struct vm_area_struct *, unsigned long addr, int new_below);
924 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
925 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
926 	struct rb_node **, struct rb_node *);
927 extern void unlink_file_vma(struct vm_area_struct *);
928 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
929 	unsigned long addr, unsigned long len, pgoff_t pgoff);
930 extern void exit_mmap(struct mm_struct *);
931 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
932 
933 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
934 
935 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
936 	unsigned long len, unsigned long prot,
937 	unsigned long flag, unsigned long pgoff);
938 
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long offset)939 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
940 	unsigned long len, unsigned long prot,
941 	unsigned long flag, unsigned long offset)
942 {
943 	unsigned long ret = -EINVAL;
944 	if ((offset + PAGE_ALIGN(len)) < offset)
945 		goto out;
946 	if (!(offset & ~PAGE_MASK))
947 		ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
948 out:
949 	return ret;
950 }
951 
952 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
953 
954 extern unsigned long do_brk(unsigned long, unsigned long);
955 
956 /* filemap.c */
957 extern unsigned long page_unuse(struct page *);
958 extern void truncate_inode_pages(struct address_space *, loff_t);
959 extern void truncate_inode_pages_range(struct address_space *,
960 				       loff_t lstart, loff_t lend);
961 
962 /* generic vm_area_ops exported for stackable file systems */
963 extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *);
964 extern int filemap_populate(struct vm_area_struct *, unsigned long,
965 		unsigned long, pgprot_t, unsigned long, int);
966 
967 /* mm/page-writeback.c */
968 int write_one_page(struct page *page, int wait);
969 
970 /* readahead.c */
971 #define VM_MAX_READAHEAD	128	/* kbytes */
972 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
973 #define VM_MAX_CACHE_HIT    	256	/* max pages in a row in cache before
974 					 * turning readahead off */
975 
976 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
977 			pgoff_t offset, unsigned long nr_to_read);
978 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
979 			pgoff_t offset, unsigned long nr_to_read);
980 unsigned long page_cache_readahead(struct address_space *mapping,
981 			  struct file_ra_state *ra,
982 			  struct file *filp,
983 			  pgoff_t offset,
984 			  unsigned long size);
985 void handle_ra_miss(struct address_space *mapping,
986 		    struct file_ra_state *ra, pgoff_t offset);
987 unsigned long max_sane_readahead(unsigned long nr);
988 
989 /* Do stack extension */
990 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
991 #ifdef CONFIG_IA64
992 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
993 #endif
994 
995 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
996 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
997 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
998 					     struct vm_area_struct **pprev);
999 
1000 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1001    NULL if none.  Assume start_addr < end_addr. */
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)1002 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1003 {
1004 	struct vm_area_struct * vma = find_vma(mm,start_addr);
1005 
1006 	if (vma && end_addr <= vma->vm_start)
1007 		vma = NULL;
1008 	return vma;
1009 }
1010 
vma_pages(struct vm_area_struct * vma)1011 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1012 {
1013 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1014 }
1015 
1016 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1017 struct page *vmalloc_to_page(void *addr);
1018 unsigned long vmalloc_to_pfn(void *addr);
1019 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1020 			unsigned long pfn, unsigned long size, pgprot_t);
1021 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1022 
1023 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1024 			unsigned int foll_flags);
1025 #define FOLL_WRITE	0x01	/* check pte is writable */
1026 #define FOLL_TOUCH	0x02	/* mark page accessed */
1027 #define FOLL_GET	0x04	/* do get_page on page */
1028 #define FOLL_ANON	0x08	/* give ZERO_PAGE if no pgtable */
1029 
1030 #ifdef CONFIG_PROC_FS
1031 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1032 #else
vm_stat_account(struct mm_struct * mm,unsigned long flags,struct file * file,long pages)1033 static inline void vm_stat_account(struct mm_struct *mm,
1034 			unsigned long flags, struct file *file, long pages)
1035 {
1036 }
1037 #endif /* CONFIG_PROC_FS */
1038 
1039 #ifndef CONFIG_DEBUG_PAGEALLOC
1040 static inline void
kernel_map_pages(struct page * page,int numpages,int enable)1041 kernel_map_pages(struct page *page, int numpages, int enable)
1042 {
1043 	if (!PageHighMem(page) && !enable)
1044 		debug_check_no_locks_freed(page_address(page),
1045 					   numpages * PAGE_SIZE);
1046 }
1047 #endif
1048 
1049 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1050 #ifdef	__HAVE_ARCH_GATE_AREA
1051 int in_gate_area_no_task(unsigned long addr);
1052 int in_gate_area(struct task_struct *task, unsigned long addr);
1053 #else
1054 int in_gate_area_no_task(unsigned long addr);
1055 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1056 #endif	/* __HAVE_ARCH_GATE_AREA */
1057 
1058 /* /proc/<pid>/oom_adj set to -17 protects from the oom-killer */
1059 #define OOM_DISABLE -17
1060 
1061 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1062 					void __user *, size_t *, loff_t *);
1063 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1064 			unsigned long lru_pages);
1065 void drop_pagecache(void);
1066 void drop_slab(void);
1067 
1068 #ifndef CONFIG_MMU
1069 #define randomize_va_space 0
1070 #else
1071 extern int randomize_va_space;
1072 #endif
1073 
1074 const char *arch_vma_name(struct vm_area_struct *vma);
1075 
1076 #endif /* __KERNEL__ */
1077 #endif /* _LINUX_MM_H */
1078