1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "base/waitable_event.h"
6
7 #include "base/condition_variable.h"
8 #include "base/lock.h"
9 #include "base/message_loop.h"
10
11 // -----------------------------------------------------------------------------
12 // A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't
13 // support cross-process events (where one process can signal an event which
14 // others are waiting on). Because of this, we can avoid having one thread per
15 // listener in several cases.
16 //
17 // The WaitableEvent maintains a list of waiters, protected by a lock. Each
18 // waiter is either an async wait, in which case we have a Task and the
19 // MessageLoop to run it on, or a blocking wait, in which case we have the
20 // condition variable to signal.
21 //
22 // Waiting involves grabbing the lock and adding oneself to the wait list. Async
23 // waits can be canceled, which means grabbing the lock and removing oneself
24 // from the list.
25 //
26 // Waiting on multiple events is handled by adding a single, synchronous wait to
27 // the wait-list of many events. An event passes a pointer to itself when
28 // firing a waiter and so we can store that pointer to find out which event
29 // triggered.
30 // -----------------------------------------------------------------------------
31
32 namespace base {
33
34 // -----------------------------------------------------------------------------
35 // This is just an abstract base class for waking the two types of waiters
36 // -----------------------------------------------------------------------------
WaitableEvent(bool manual_reset,bool initially_signaled)37 WaitableEvent::WaitableEvent(bool manual_reset, bool initially_signaled)
38 : kernel_(new WaitableEventKernel(manual_reset, initially_signaled)) {
39 }
40
~WaitableEvent()41 WaitableEvent::~WaitableEvent() {
42 }
43
Reset()44 void WaitableEvent::Reset() {
45 AutoLock locked(kernel_->lock_);
46 kernel_->signaled_ = false;
47 }
48
Signal()49 void WaitableEvent::Signal() {
50 AutoLock locked(kernel_->lock_);
51
52 if (kernel_->signaled_)
53 return;
54
55 if (kernel_->manual_reset_) {
56 SignalAll();
57 kernel_->signaled_ = true;
58 } else {
59 // In the case of auto reset, if no waiters were woken, we remain
60 // signaled.
61 if (!SignalOne())
62 kernel_->signaled_ = true;
63 }
64 }
65
IsSignaled()66 bool WaitableEvent::IsSignaled() {
67 AutoLock locked(kernel_->lock_);
68
69 const bool result = kernel_->signaled_;
70 if (result && !kernel_->manual_reset_)
71 kernel_->signaled_ = false;
72 return result;
73 }
74
75 // -----------------------------------------------------------------------------
76 // Synchronous waits
77
78 // -----------------------------------------------------------------------------
79 // This is a synchronous waiter. The thread is waiting on the given condition
80 // variable and the fired flag in this object.
81 // -----------------------------------------------------------------------------
82 class SyncWaiter : public WaitableEvent::Waiter {
83 public:
SyncWaiter()84 SyncWaiter()
85 : fired_(false),
86 signaling_event_(NULL),
87 lock_(),
88 cv_(&lock_) {
89 }
90
Fire(WaitableEvent * signaling_event)91 bool Fire(WaitableEvent* signaling_event) {
92 AutoLock locked(lock_);
93
94 if (fired_)
95 return false;
96
97 fired_ = true;
98 signaling_event_ = signaling_event;
99
100 cv_.Broadcast();
101
102 // Unlike AsyncWaiter objects, SyncWaiter objects are stack-allocated on
103 // the blocking thread's stack. There is no |delete this;| in Fire. The
104 // SyncWaiter object is destroyed when it goes out of scope.
105
106 return true;
107 }
108
signaling_event() const109 WaitableEvent* signaling_event() const {
110 return signaling_event_;
111 }
112
113 // ---------------------------------------------------------------------------
114 // These waiters are always stack allocated and don't delete themselves. Thus
115 // there's no problem and the ABA tag is the same as the object pointer.
116 // ---------------------------------------------------------------------------
Compare(void * tag)117 bool Compare(void* tag) {
118 return this == tag;
119 }
120
121 // ---------------------------------------------------------------------------
122 // Called with lock held.
123 // ---------------------------------------------------------------------------
fired() const124 bool fired() const {
125 return fired_;
126 }
127
128 // ---------------------------------------------------------------------------
129 // During a TimedWait, we need a way to make sure that an auto-reset
130 // WaitableEvent doesn't think that this event has been signaled between
131 // unlocking it and removing it from the wait-list. Called with lock held.
132 // ---------------------------------------------------------------------------
Disable()133 void Disable() {
134 fired_ = true;
135 }
136
lock()137 Lock* lock() {
138 return &lock_;
139 }
140
cv()141 ConditionVariable* cv() {
142 return &cv_;
143 }
144
145 private:
146 bool fired_;
147 WaitableEvent* signaling_event_; // The WaitableEvent which woke us
148 Lock lock_;
149 ConditionVariable cv_;
150 };
151
TimedWait(const TimeDelta & max_time)152 bool WaitableEvent::TimedWait(const TimeDelta& max_time) {
153 const Time end_time(Time::Now() + max_time);
154 const bool finite_time = max_time.ToInternalValue() >= 0;
155
156 kernel_->lock_.Acquire();
157 if (kernel_->signaled_) {
158 if (!kernel_->manual_reset_) {
159 // In this case we were signaled when we had no waiters. Now that
160 // someone has waited upon us, we can automatically reset.
161 kernel_->signaled_ = false;
162 }
163
164 kernel_->lock_.Release();
165 return true;
166 }
167
168 SyncWaiter sw;
169 sw.lock()->Acquire();
170
171 Enqueue(&sw);
172 kernel_->lock_.Release();
173 // We are violating locking order here by holding the SyncWaiter lock but not
174 // the WaitableEvent lock. However, this is safe because we don't lock @lock_
175 // again before unlocking it.
176
177 for (;;) {
178 const Time current_time(Time::Now());
179
180 if (sw.fired() || (finite_time && current_time >= end_time)) {
181 const bool return_value = sw.fired();
182
183 // We can't acquire @lock_ before releasing the SyncWaiter lock (because
184 // of locking order), however, in between the two a signal could be fired
185 // and @sw would accept it, however we will still return false, so the
186 // signal would be lost on an auto-reset WaitableEvent. Thus we call
187 // Disable which makes sw::Fire return false.
188 sw.Disable();
189 sw.lock()->Release();
190
191 kernel_->lock_.Acquire();
192 kernel_->Dequeue(&sw, &sw);
193 kernel_->lock_.Release();
194
195 return return_value;
196 }
197
198 if (finite_time) {
199 const TimeDelta max_wait(end_time - current_time);
200 sw.cv()->TimedWait(max_wait);
201 } else {
202 sw.cv()->Wait();
203 }
204 }
205 }
206
Wait()207 bool WaitableEvent::Wait() {
208 return TimedWait(TimeDelta::FromSeconds(-1));
209 }
210
211 // -----------------------------------------------------------------------------
212
213
214 // -----------------------------------------------------------------------------
215 // Synchronous waiting on multiple objects.
216
217 static bool // StrictWeakOrdering
cmp_fst_addr(const std::pair<WaitableEvent *,unsigned> & a,const std::pair<WaitableEvent *,unsigned> & b)218 cmp_fst_addr(const std::pair<WaitableEvent*, unsigned> &a,
219 const std::pair<WaitableEvent*, unsigned> &b) {
220 return a.first < b.first;
221 }
222
223 // static
WaitMany(WaitableEvent ** raw_waitables,size_t count)224 size_t WaitableEvent::WaitMany(WaitableEvent** raw_waitables,
225 size_t count) {
226 DCHECK(count) << "Cannot wait on no events";
227
228 // We need to acquire the locks in a globally consistent order. Thus we sort
229 // the array of waitables by address. We actually sort a pairs so that we can
230 // map back to the original index values later.
231 std::vector<std::pair<WaitableEvent*, size_t> > waitables;
232 waitables.reserve(count);
233 for (size_t i = 0; i < count; ++i)
234 waitables.push_back(std::make_pair(raw_waitables[i], i));
235
236 DCHECK_EQ(count, waitables.size());
237
238 sort(waitables.begin(), waitables.end(), cmp_fst_addr);
239
240 // The set of waitables must be distinct. Since we have just sorted by
241 // address, we can check this cheaply by comparing pairs of consecutive
242 // elements.
243 for (size_t i = 0; i < waitables.size() - 1; ++i) {
244 DCHECK(waitables[i].first != waitables[i+1].first);
245 }
246
247 SyncWaiter sw;
248
249 const size_t r = EnqueueMany(&waitables[0], count, &sw);
250 if (r) {
251 // One of the events is already signaled. The SyncWaiter has not been
252 // enqueued anywhere. EnqueueMany returns the count of remaining waitables
253 // when the signaled one was seen, so the index of the signaled event is
254 // @count - @r.
255 return waitables[count - r].second;
256 }
257
258 // At this point, we hold the locks on all the WaitableEvents and we have
259 // enqueued our waiter in them all.
260 sw.lock()->Acquire();
261 // Release the WaitableEvent locks in the reverse order
262 for (size_t i = 0; i < count; ++i) {
263 waitables[count - (1 + i)].first->kernel_->lock_.Release();
264 }
265
266 for (;;) {
267 if (sw.fired())
268 break;
269
270 sw.cv()->Wait();
271 }
272 sw.lock()->Release();
273
274 // The address of the WaitableEvent which fired is stored in the SyncWaiter.
275 WaitableEvent *const signaled_event = sw.signaling_event();
276 // This will store the index of the raw_waitables which fired.
277 size_t signaled_index = 0;
278
279 // Take the locks of each WaitableEvent in turn (except the signaled one) and
280 // remove our SyncWaiter from the wait-list
281 for (size_t i = 0; i < count; ++i) {
282 if (raw_waitables[i] != signaled_event) {
283 raw_waitables[i]->kernel_->lock_.Acquire();
284 // There's no possible ABA issue with the address of the SyncWaiter here
285 // because it lives on the stack. Thus the tag value is just the pointer
286 // value again.
287 raw_waitables[i]->kernel_->Dequeue(&sw, &sw);
288 raw_waitables[i]->kernel_->lock_.Release();
289 } else {
290 signaled_index = i;
291 }
292 }
293
294 return signaled_index;
295 }
296
297 // -----------------------------------------------------------------------------
298 // If return value == 0:
299 // The locks of the WaitableEvents have been taken in order and the Waiter has
300 // been enqueued in the wait-list of each. None of the WaitableEvents are
301 // currently signaled
302 // else:
303 // None of the WaitableEvent locks are held. The Waiter has not been enqueued
304 // in any of them and the return value is the index of the first WaitableEvent
305 // which was signaled, from the end of the array.
306 // -----------------------------------------------------------------------------
307 // static
EnqueueMany(std::pair<WaitableEvent *,size_t> * waitables,size_t count,Waiter * waiter)308 size_t WaitableEvent::EnqueueMany
309 (std::pair<WaitableEvent*, size_t>* waitables,
310 size_t count, Waiter* waiter) {
311 if (!count)
312 return 0;
313
314 waitables[0].first->kernel_->lock_.Acquire();
315 if (waitables[0].first->kernel_->signaled_) {
316 if (!waitables[0].first->kernel_->manual_reset_)
317 waitables[0].first->kernel_->signaled_ = false;
318 waitables[0].first->kernel_->lock_.Release();
319 return count;
320 }
321
322 const size_t r = EnqueueMany(waitables + 1, count - 1, waiter);
323 if (r) {
324 waitables[0].first->kernel_->lock_.Release();
325 } else {
326 waitables[0].first->Enqueue(waiter);
327 }
328
329 return r;
330 }
331
332 // -----------------------------------------------------------------------------
333
334
335 // -----------------------------------------------------------------------------
336 // Private functions...
337
338 // -----------------------------------------------------------------------------
339 // Wake all waiting waiters. Called with lock held.
340 // -----------------------------------------------------------------------------
SignalAll()341 bool WaitableEvent::SignalAll() {
342 bool signaled_at_least_one = false;
343
344 for (std::list<Waiter*>::iterator
345 i = kernel_->waiters_.begin(); i != kernel_->waiters_.end(); ++i) {
346 if ((*i)->Fire(this))
347 signaled_at_least_one = true;
348 }
349
350 kernel_->waiters_.clear();
351 return signaled_at_least_one;
352 }
353
354 // ---------------------------------------------------------------------------
355 // Try to wake a single waiter. Return true if one was woken. Called with lock
356 // held.
357 // ---------------------------------------------------------------------------
SignalOne()358 bool WaitableEvent::SignalOne() {
359 for (;;) {
360 if (kernel_->waiters_.empty())
361 return false;
362
363 const bool r = (*kernel_->waiters_.begin())->Fire(this);
364 kernel_->waiters_.pop_front();
365 if (r)
366 return true;
367 }
368 }
369
370 // -----------------------------------------------------------------------------
371 // Add a waiter to the list of those waiting. Called with lock held.
372 // -----------------------------------------------------------------------------
Enqueue(Waiter * waiter)373 void WaitableEvent::Enqueue(Waiter* waiter) {
374 kernel_->waiters_.push_back(waiter);
375 }
376
377 // -----------------------------------------------------------------------------
378 // Remove a waiter from the list of those waiting. Return true if the waiter was
379 // actually removed. Called with lock held.
380 // -----------------------------------------------------------------------------
Dequeue(Waiter * waiter,void * tag)381 bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) {
382 for (std::list<Waiter*>::iterator
383 i = waiters_.begin(); i != waiters_.end(); ++i) {
384 if (*i == waiter && (*i)->Compare(tag)) {
385 waiters_.erase(i);
386 return true;
387 }
388 }
389
390 return false;
391 }
392
393 // -----------------------------------------------------------------------------
394
395 } // namespace base
396