1 // Copyright (c) 2009 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "net/disk_cache/sparse_control.h"
6
7 #include "base/format_macros.h"
8 #include "base/logging.h"
9 #include "base/message_loop.h"
10 #include "base/string_util.h"
11 #include "base/time.h"
12 #include "net/base/io_buffer.h"
13 #include "net/base/net_errors.h"
14 #include "net/disk_cache/backend_impl.h"
15 #include "net/disk_cache/entry_impl.h"
16 #include "net/disk_cache/file.h"
17
18 using base::Time;
19
20 namespace {
21
22 // Stream of the sparse data index.
23 const int kSparseIndex = 2;
24
25 // Stream of the sparse data.
26 const int kSparseData = 1;
27
28 // We can have up to 64k children.
29 const int kMaxMapSize = 8 * 1024;
30
31 // The maximum number of bytes that a child can store.
32 const int kMaxEntrySize = 0x100000;
33
34 // The size of each data block (tracked by the child allocation bitmap).
35 const int kBlockSize = 1024;
36
37 // Returns the name of of a child entry given the base_name and signature of the
38 // parent and the child_id.
39 // If the entry is called entry_name, child entries will be named something
40 // like Range_entry_name:XXX:YYY where XXX is the entry signature and YYY is the
41 // number of the particular child.
GenerateChildName(const std::string & base_name,int64 signature,int64 child_id)42 std::string GenerateChildName(const std::string& base_name, int64 signature,
43 int64 child_id) {
44 return StringPrintf("Range_%s:%" PRIx64 ":%" PRIx64, base_name.c_str(),
45 signature, child_id);
46 }
47
48 // This class deletes the children of a sparse entry.
49 class ChildrenDeleter
50 : public base::RefCounted<ChildrenDeleter>,
51 public disk_cache::FileIOCallback {
52 public:
ChildrenDeleter(disk_cache::BackendImpl * backend,const std::string & name)53 ChildrenDeleter(disk_cache::BackendImpl* backend, const std::string& name)
54 : backend_(backend), name_(name) {}
55
56 virtual void OnFileIOComplete(int bytes_copied);
57
58 // Two ways of deleting the children: if we have the children map, use Start()
59 // directly, otherwise pass the data address to ReadData().
60 void Start(char* buffer, int len);
61 void ReadData(disk_cache::Addr address, int len);
62
63 private:
64 friend class base::RefCounted<ChildrenDeleter>;
~ChildrenDeleter()65 ~ChildrenDeleter() {}
66
67 void DeleteChildren();
68
69 disk_cache::BackendImpl* backend_;
70 std::string name_;
71 disk_cache::Bitmap children_map_;
72 int64 signature_;
73 scoped_array<char> buffer_;
74 DISALLOW_EVIL_CONSTRUCTORS(ChildrenDeleter);
75 };
76
77 // This is the callback of the file operation.
OnFileIOComplete(int bytes_copied)78 void ChildrenDeleter::OnFileIOComplete(int bytes_copied) {
79 char* buffer = buffer_.release();
80 Start(buffer, bytes_copied);
81 }
82
Start(char * buffer,int len)83 void ChildrenDeleter::Start(char* buffer, int len) {
84 buffer_.reset(buffer);
85 if (len < static_cast<int>(sizeof(disk_cache::SparseData)))
86 return Release();
87
88 // Just copy the information from |buffer|, delete |buffer| and start deleting
89 // the child entries.
90 disk_cache::SparseData* data =
91 reinterpret_cast<disk_cache::SparseData*>(buffer);
92 signature_ = data->header.signature;
93
94 int num_bits = (len - sizeof(disk_cache::SparseHeader)) * 8;
95 children_map_.Resize(num_bits, false);
96 children_map_.SetMap(data->bitmap, num_bits / 32);
97 buffer_.reset();
98
99 DeleteChildren();
100 }
101
ReadData(disk_cache::Addr address,int len)102 void ChildrenDeleter::ReadData(disk_cache::Addr address, int len) {
103 DCHECK(address.is_block_file());
104 disk_cache::File* file(backend_->File(address));
105 if (!file)
106 return Release();
107
108 size_t file_offset = address.start_block() * address.BlockSize() +
109 disk_cache::kBlockHeaderSize;
110
111 buffer_.reset(new char[len]);
112 bool completed;
113 if (!file->Read(buffer_.get(), len, file_offset, this, &completed))
114 return Release();
115
116 if (completed)
117 OnFileIOComplete(len);
118
119 // And wait until OnFileIOComplete gets called.
120 }
121
DeleteChildren()122 void ChildrenDeleter::DeleteChildren() {
123 int child_id = 0;
124 if (!children_map_.FindNextSetBit(&child_id)) {
125 // We are done. Just delete this object.
126 return Release();
127 }
128 std::string child_name = GenerateChildName(name_, signature_, child_id);
129 backend_->DoomEntry(child_name);
130 children_map_.Set(child_id, false);
131
132 // Post a task to delete the next child.
133 MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
134 this, &ChildrenDeleter::DeleteChildren));
135 }
136
137 } // namespace.
138
139 namespace disk_cache {
140
~SparseControl()141 SparseControl::~SparseControl() {
142 if (child_)
143 CloseChild();
144 if (init_)
145 WriteSparseData();
146 }
147
Init()148 int SparseControl::Init() {
149 DCHECK(!init_);
150
151 // We should not have sparse data for the exposed entry.
152 if (entry_->GetDataSize(kSparseData))
153 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
154
155 // Now see if there is something where we store our data.
156 int rv = net::OK;
157 int data_len = entry_->GetDataSize(kSparseIndex);
158 if (!data_len) {
159 rv = CreateSparseEntry();
160 } else {
161 rv = OpenSparseEntry(data_len);
162 }
163
164 if (rv == net::OK)
165 init_ = true;
166 return rv;
167 }
168
StartIO(SparseOperation op,int64 offset,net::IOBuffer * buf,int buf_len,net::CompletionCallback * callback)169 int SparseControl::StartIO(SparseOperation op, int64 offset, net::IOBuffer* buf,
170 int buf_len, net::CompletionCallback* callback) {
171 DCHECK(init_);
172 // We don't support simultaneous IO for sparse data.
173 if (operation_ != kNoOperation)
174 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
175
176 if (offset < 0 || buf_len < 0)
177 return net::ERR_INVALID_ARGUMENT;
178
179 // We only support up to 64 GB.
180 if (offset + buf_len >= 0x1000000000LL || offset + buf_len < 0)
181 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
182
183 DCHECK(!user_buf_);
184 DCHECK(!user_callback_);
185
186 if (!buf && (op == kReadOperation || op == kWriteOperation))
187 return 0;
188
189 // Copy the operation parameters.
190 operation_ = op;
191 offset_ = offset;
192 user_buf_ = buf ? new net::DrainableIOBuffer(buf, buf_len) : NULL;
193 buf_len_ = buf_len;
194 user_callback_ = callback;
195
196 result_ = 0;
197 pending_ = false;
198 finished_ = false;
199 abort_ = false;
200
201 DoChildrenIO();
202
203 if (!pending_) {
204 // Everything was done synchronously.
205 operation_ = kNoOperation;
206 user_buf_ = NULL;
207 user_callback_ = NULL;
208 return result_;
209 }
210
211 return net::ERR_IO_PENDING;
212 }
213
GetAvailableRange(int64 offset,int len,int64 * start)214 int SparseControl::GetAvailableRange(int64 offset, int len, int64* start) {
215 DCHECK(init_);
216 // We don't support simultaneous IO for sparse data.
217 if (operation_ != kNoOperation)
218 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
219
220 DCHECK(start);
221
222 range_found_ = false;
223 int result = StartIO(kGetRangeOperation, offset, NULL, len, NULL);
224 if (range_found_) {
225 *start = offset_;
226 return result;
227 }
228
229 // This is a failure. We want to return a valid start value in any case.
230 *start = offset;
231 return result < 0 ? result : 0; // Don't mask error codes to the caller.
232 }
233
CancelIO()234 void SparseControl::CancelIO() {
235 if (operation_ == kNoOperation)
236 return;
237 abort_ = true;
238 }
239
ReadyToUse(net::CompletionCallback * completion_callback)240 int SparseControl::ReadyToUse(net::CompletionCallback* completion_callback) {
241 if (!abort_)
242 return net::OK;
243
244 // We'll grab another reference to keep this object alive because we just have
245 // one extra reference due to the pending IO operation itself, but we'll
246 // release that one before invoking user_callback_.
247 entry_->AddRef(); // Balanced in DoAbortCallbacks.
248 abort_callbacks_.push_back(completion_callback);
249 return net::ERR_IO_PENDING;
250 }
251
252 // Static
DeleteChildren(EntryImpl * entry)253 void SparseControl::DeleteChildren(EntryImpl* entry) {
254 DCHECK(entry->GetEntryFlags() & PARENT_ENTRY);
255 int data_len = entry->GetDataSize(kSparseIndex);
256 if (data_len < static_cast<int>(sizeof(SparseData)) ||
257 entry->GetDataSize(kSparseData))
258 return;
259
260 int map_len = data_len - sizeof(SparseHeader);
261 if (map_len > kMaxMapSize || map_len % 4)
262 return;
263
264 char* buffer;
265 Addr address;
266 entry->GetData(kSparseIndex, &buffer, &address);
267 if (!buffer && !address.is_initialized())
268 return;
269
270 ChildrenDeleter* deleter = new ChildrenDeleter(entry->backend_,
271 entry->GetKey());
272 // The object will self destruct when finished.
273 deleter->AddRef();
274
275 if (buffer) {
276 MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
277 deleter, &ChildrenDeleter::Start, buffer, data_len));
278 } else {
279 MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
280 deleter, &ChildrenDeleter::ReadData, address, data_len));
281 }
282 }
283
284 // We are going to start using this entry to store sparse data, so we have to
285 // initialize our control info.
CreateSparseEntry()286 int SparseControl::CreateSparseEntry() {
287 if (CHILD_ENTRY & entry_->GetEntryFlags())
288 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
289
290 memset(&sparse_header_, 0, sizeof(sparse_header_));
291 sparse_header_.signature = Time::Now().ToInternalValue();
292 sparse_header_.magic = kIndexMagic;
293 sparse_header_.parent_key_len = entry_->GetKey().size();
294 children_map_.Resize(kNumSparseBits, true);
295
296 // Save the header. The bitmap is saved in the destructor.
297 scoped_refptr<net::IOBuffer> buf =
298 new net::WrappedIOBuffer(reinterpret_cast<char*>(&sparse_header_));
299
300 int rv = entry_->WriteData(kSparseIndex, 0, buf, sizeof(sparse_header_), NULL,
301 false);
302 if (rv != sizeof(sparse_header_)) {
303 DLOG(ERROR) << "Unable to save sparse_header_";
304 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
305 }
306
307 entry_->SetEntryFlags(PARENT_ENTRY);
308 return net::OK;
309 }
310
311 // We are opening an entry from disk. Make sure that our control data is there.
OpenSparseEntry(int data_len)312 int SparseControl::OpenSparseEntry(int data_len) {
313 if (data_len < static_cast<int>(sizeof(SparseData)))
314 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
315
316 if (entry_->GetDataSize(kSparseData))
317 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
318
319 if (!(PARENT_ENTRY & entry_->GetEntryFlags()))
320 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
321
322 // Dont't go over board with the bitmap. 8 KB gives us offsets up to 64 GB.
323 int map_len = data_len - sizeof(sparse_header_);
324 if (map_len > kMaxMapSize || map_len % 4)
325 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
326
327 scoped_refptr<net::IOBuffer> buf =
328 new net::WrappedIOBuffer(reinterpret_cast<char*>(&sparse_header_));
329
330 // Read header.
331 int rv = entry_->ReadData(kSparseIndex, 0, buf, sizeof(sparse_header_), NULL);
332 if (rv != static_cast<int>(sizeof(sparse_header_)))
333 return net::ERR_CACHE_READ_FAILURE;
334
335 // The real validation should be performed by the caller. This is just to
336 // double check.
337 if (sparse_header_.magic != kIndexMagic ||
338 sparse_header_.parent_key_len !=
339 static_cast<int>(entry_->GetKey().size()))
340 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
341
342 // Read the actual bitmap.
343 buf = new net::IOBuffer(map_len);
344 rv = entry_->ReadData(kSparseIndex, sizeof(sparse_header_), buf, map_len,
345 NULL);
346 if (rv != map_len)
347 return net::ERR_CACHE_READ_FAILURE;
348
349 // Grow the bitmap to the current size and copy the bits.
350 children_map_.Resize(map_len * 8, false);
351 children_map_.SetMap(reinterpret_cast<uint32*>(buf->data()), map_len);
352 return net::OK;
353 }
354
OpenChild()355 bool SparseControl::OpenChild() {
356 DCHECK_GE(result_, 0);
357
358 std::string key = GenerateChildKey();
359 if (child_) {
360 // Keep using the same child or open another one?.
361 if (key == child_->GetKey())
362 return true;
363 CloseChild();
364 }
365
366 // Se if we are tracking this child.
367 bool child_present = ChildPresent();
368 if (!child_present || !entry_->backend_->OpenEntry(key, &child_))
369 return ContinueWithoutChild(key);
370
371 EntryImpl* child = static_cast<EntryImpl*>(child_);
372 if (!(CHILD_ENTRY & child->GetEntryFlags()) ||
373 child->GetDataSize(kSparseIndex) <
374 static_cast<int>(sizeof(child_data_)))
375 return KillChildAndContinue(key, false);
376
377 scoped_refptr<net::WrappedIOBuffer> buf =
378 new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_));
379
380 // Read signature.
381 int rv = child_->ReadData(kSparseIndex, 0, buf, sizeof(child_data_), NULL);
382 if (rv != sizeof(child_data_))
383 return KillChildAndContinue(key, true); // This is a fatal failure.
384
385 if (child_data_.header.signature != sparse_header_.signature ||
386 child_data_.header.magic != kIndexMagic)
387 return KillChildAndContinue(key, false);
388
389 if (child_data_.header.last_block_len < 0 ||
390 child_data_.header.last_block_len > kBlockSize) {
391 // Make sure this values are always within range.
392 child_data_.header.last_block_len = 0;
393 child_data_.header.last_block = -1;
394 }
395
396 return true;
397 }
398
CloseChild()399 void SparseControl::CloseChild() {
400 scoped_refptr<net::WrappedIOBuffer> buf =
401 new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_));
402
403 // Save the allocation bitmap before closing the child entry.
404 int rv = child_->WriteData(kSparseIndex, 0, buf, sizeof(child_data_),
405 NULL, false);
406 if (rv != sizeof(child_data_))
407 DLOG(ERROR) << "Failed to save child data";
408 child_->Close();
409 child_ = NULL;
410 }
411
GenerateChildKey()412 std::string SparseControl::GenerateChildKey() {
413 return GenerateChildName(entry_->GetKey(), sparse_header_.signature,
414 offset_ >> 20);
415 }
416
417 // We are deleting the child because something went wrong.
KillChildAndContinue(const std::string & key,bool fatal)418 bool SparseControl::KillChildAndContinue(const std::string& key, bool fatal) {
419 SetChildBit(false);
420 child_->Doom();
421 child_->Close();
422 child_ = NULL;
423 if (fatal) {
424 result_ = net::ERR_CACHE_READ_FAILURE;
425 return false;
426 }
427 return ContinueWithoutChild(key);
428 }
429
430 // We were not able to open this child; see what we can do.
ContinueWithoutChild(const std::string & key)431 bool SparseControl::ContinueWithoutChild(const std::string& key) {
432 if (kReadOperation == operation_)
433 return false;
434 if (kGetRangeOperation == operation_)
435 return true;
436
437 if (!entry_->backend_->CreateEntry(key, &child_)) {
438 child_ = NULL;
439 result_ = net::ERR_CACHE_READ_FAILURE;
440 return false;
441 }
442 // Write signature.
443 InitChildData();
444 return true;
445 }
446
ChildPresent()447 bool SparseControl::ChildPresent() {
448 int child_bit = static_cast<int>(offset_ >> 20);
449 if (children_map_.Size() <= child_bit)
450 return false;
451
452 return children_map_.Get(child_bit);
453 }
454
SetChildBit(bool value)455 void SparseControl::SetChildBit(bool value) {
456 int child_bit = static_cast<int>(offset_ >> 20);
457
458 // We may have to increase the bitmap of child entries.
459 if (children_map_.Size() <= child_bit)
460 children_map_.Resize(Bitmap::RequiredArraySize(child_bit + 1) * 32, true);
461
462 children_map_.Set(child_bit, value);
463 }
464
WriteSparseData()465 void SparseControl::WriteSparseData() {
466 scoped_refptr<net::IOBuffer> buf = new net::WrappedIOBuffer(
467 reinterpret_cast<const char*>(children_map_.GetMap()));
468
469 int len = children_map_.ArraySize() * 4;
470 int rv = entry_->WriteData(kSparseIndex, sizeof(sparse_header_), buf, len,
471 NULL, false);
472 if (rv != len) {
473 DLOG(ERROR) << "Unable to save sparse map";
474 }
475 }
476
VerifyRange()477 bool SparseControl::VerifyRange() {
478 DCHECK_GE(result_, 0);
479
480 child_offset_ = static_cast<int>(offset_) & (kMaxEntrySize - 1);
481 child_len_ = std::min(buf_len_, kMaxEntrySize - child_offset_);
482
483 // We can write to (or get info from) anywhere in this child.
484 if (operation_ != kReadOperation)
485 return true;
486
487 // Check that there are no holes in this range.
488 int last_bit = (child_offset_ + child_len_ + 1023) >> 10;
489 int start = child_offset_ >> 10;
490 if (child_map_.FindNextBit(&start, last_bit, false)) {
491 // Something is not here.
492 DCHECK_GE(child_data_.header.last_block_len, 0);
493 DCHECK_LT(child_data_.header.last_block_len, kMaxEntrySize);
494 int partial_block_len = PartialBlockLength(start);
495 if (start == child_offset_ >> 10) {
496 // It looks like we don't have anything.
497 if (partial_block_len <= (child_offset_ & (kBlockSize - 1)))
498 return false;
499 }
500
501 // We have the first part.
502 child_len_ = (start << 10) - child_offset_;
503 if (partial_block_len) {
504 // We may have a few extra bytes.
505 child_len_ = std::min(child_len_ + partial_block_len, buf_len_);
506 }
507 // There is no need to read more after this one.
508 buf_len_ = child_len_;
509 }
510 return true;
511 }
512
UpdateRange(int result)513 void SparseControl::UpdateRange(int result) {
514 if (result <= 0 || operation_ != kWriteOperation)
515 return;
516
517 DCHECK_GE(child_data_.header.last_block_len, 0);
518 DCHECK_LT(child_data_.header.last_block_len, kMaxEntrySize);
519
520 // Write the bitmap.
521 int first_bit = child_offset_ >> 10;
522 int block_offset = child_offset_ & (kBlockSize - 1);
523 if (block_offset && (child_data_.header.last_block != first_bit ||
524 child_data_.header.last_block_len < block_offset)) {
525 // The first block is not completely filled; ignore it.
526 first_bit++;
527 }
528
529 int last_bit = (child_offset_ + result) >> 10;
530 block_offset = (child_offset_ + result) & (kBlockSize - 1);
531
532 // This condition will hit with the following criteria:
533 // 1. The first byte doesn't follow the last write.
534 // 2. The first byte is in the middle of a block.
535 // 3. The first byte and the last byte are in the same block.
536 if (first_bit > last_bit)
537 return;
538
539 if (block_offset && !child_map_.Get(last_bit)) {
540 // The last block is not completely filled; save it for later.
541 child_data_.header.last_block = last_bit;
542 child_data_.header.last_block_len = block_offset;
543 } else {
544 child_data_.header.last_block = -1;
545 }
546
547 child_map_.SetRange(first_bit, last_bit, true);
548 }
549
PartialBlockLength(int block_index) const550 int SparseControl::PartialBlockLength(int block_index) const {
551 if (block_index == child_data_.header.last_block)
552 return child_data_.header.last_block_len;
553
554 // This may be the last stored index.
555 int entry_len = child_->GetDataSize(kSparseData);
556 if (block_index == entry_len >> 10)
557 return entry_len & (kBlockSize - 1);
558
559 // This is really empty.
560 return 0;
561 }
562
InitChildData()563 void SparseControl::InitChildData() {
564 // We know the real type of child_.
565 EntryImpl* child = static_cast<EntryImpl*>(child_);
566 child->SetEntryFlags(CHILD_ENTRY);
567
568 memset(&child_data_, 0, sizeof(child_data_));
569 child_data_.header = sparse_header_;
570
571 scoped_refptr<net::WrappedIOBuffer> buf =
572 new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_));
573
574 int rv = child_->WriteData(kSparseIndex, 0, buf, sizeof(child_data_),
575 NULL, false);
576 if (rv != sizeof(child_data_))
577 DLOG(ERROR) << "Failed to save child data";
578 SetChildBit(true);
579 }
580
DoChildrenIO()581 void SparseControl::DoChildrenIO() {
582 while (DoChildIO()) continue;
583
584 if (pending_ && finished_)
585 DoUserCallback();
586 }
587
DoChildIO()588 bool SparseControl::DoChildIO() {
589 finished_ = true;
590 if (!buf_len_ || result_ < 0)
591 return false;
592
593 if (!OpenChild())
594 return false;
595
596 if (!VerifyRange())
597 return false;
598
599 // We have more work to do. Let's not trigger a callback to the caller.
600 finished_ = false;
601 net::CompletionCallback* callback = user_callback_ ? &child_callback_ : NULL;
602
603 int rv = 0;
604 switch (operation_) {
605 case kReadOperation:
606 rv = child_->ReadData(kSparseData, child_offset_, user_buf_, child_len_,
607 callback);
608 break;
609 case kWriteOperation:
610 rv = child_->WriteData(kSparseData, child_offset_, user_buf_, child_len_,
611 callback, false);
612 break;
613 case kGetRangeOperation:
614 rv = DoGetAvailableRange();
615 break;
616 default:
617 NOTREACHED();
618 }
619
620 if (rv == net::ERR_IO_PENDING) {
621 if (!pending_) {
622 pending_ = true;
623 // The child will protect himself against closing the entry while IO is in
624 // progress. However, this entry can still be closed, and that would not
625 // be a good thing for us, so we increase the refcount until we're
626 // finished doing sparse stuff.
627 entry_->AddRef(); // Balanced in DoUserCallback.
628 }
629 return false;
630 }
631 if (!rv)
632 return false;
633
634 DoChildIOCompleted(rv);
635 return true;
636 }
637
DoGetAvailableRange()638 int SparseControl::DoGetAvailableRange() {
639 if (!child_)
640 return child_len_; // Move on to the next child.
641
642 // Check that there are no holes in this range.
643 int last_bit = (child_offset_ + child_len_ + 1023) >> 10;
644 int start = child_offset_ >> 10;
645 int partial_start_bytes = PartialBlockLength(start);
646 int found = start;
647 int bits_found = child_map_.FindBits(&found, last_bit, true);
648
649 // We don't care if there is a partial block in the middle of the range.
650 int block_offset = child_offset_ & (kBlockSize - 1);
651 if (!bits_found && partial_start_bytes <= block_offset)
652 return child_len_;
653
654 // We are done. Just break the loop and reset result_ to our real result.
655 range_found_ = true;
656
657 // found now points to the first 1. Lets see if we have zeros before it.
658 int empty_start = std::max((found << 10) - child_offset_, 0);
659
660 int bytes_found = bits_found << 10;
661 bytes_found += PartialBlockLength(found + bits_found);
662
663 if (start == found)
664 bytes_found -= block_offset;
665
666 // If the user is searching past the end of this child, bits_found is the
667 // right result; otherwise, we have some empty space at the start of this
668 // query that we have to subtract from the range that we searched.
669 result_ = std::min(bytes_found, child_len_ - empty_start);
670
671 if (!bits_found) {
672 result_ = std::min(partial_start_bytes - block_offset, child_len_);
673 empty_start = 0;
674 }
675
676 // Only update offset_ when this query found zeros at the start.
677 if (empty_start)
678 offset_ += empty_start;
679
680 // This will actually break the loop.
681 buf_len_ = 0;
682 return 0;
683 }
684
DoChildIOCompleted(int result)685 void SparseControl::DoChildIOCompleted(int result) {
686 if (result < 0) {
687 // We fail the whole operation if we encounter an error.
688 result_ = result;
689 return;
690 }
691
692 UpdateRange(result);
693
694 result_ += result;
695 offset_ += result;
696 buf_len_ -= result;
697
698 // We'll be reusing the user provided buffer for the next chunk.
699 if (buf_len_ && user_buf_)
700 user_buf_->DidConsume(result);
701 }
702
OnChildIOCompleted(int result)703 void SparseControl::OnChildIOCompleted(int result) {
704 DCHECK_NE(net::ERR_IO_PENDING, result);
705 DoChildIOCompleted(result);
706
707 if (abort_) {
708 // We'll return the current result of the operation, which may be less than
709 // the bytes to read or write, but the user cancelled the operation.
710 abort_ = false;
711 DoUserCallback();
712 return DoAbortCallbacks();
713 }
714
715 // We are running a callback from the message loop. It's time to restart what
716 // we were doing before.
717 DoChildrenIO();
718 }
719
DoUserCallback()720 void SparseControl::DoUserCallback() {
721 DCHECK(user_callback_);
722 net::CompletionCallback* c = user_callback_;
723 user_callback_ = NULL;
724 user_buf_ = NULL;
725 pending_ = false;
726 operation_ = kNoOperation;
727 entry_->Release(); // Don't touch object after this line.
728 c->Run(result_);
729 }
730
DoAbortCallbacks()731 void SparseControl::DoAbortCallbacks() {
732 for (size_t i = 0; i < abort_callbacks_.size(); i++) {
733 // Releasing all references to entry_ may result in the destruction of this
734 // object so we should not be touching it after the last Release().
735 net::CompletionCallback* c = abort_callbacks_[i];
736 if (i == abort_callbacks_.size() - 1)
737 abort_callbacks_.clear();
738
739 entry_->Release(); // Don't touch object after this line.
740 c->Run(net::OK);
741 }
742 }
743
744 } // namespace disk_cache
745