• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _LINUX_JIFFIES_H
2 #define _LINUX_JIFFIES_H
3 
4 #include <linux/calc64.h>
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/time.h>
8 #include <linux/timex.h>
9 #include <asm/param.h>			/* for HZ */
10 
11 /*
12  * The following defines establish the engineering parameters of the PLL
13  * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
14  * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
15  * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
16  * nearest power of two in order to avoid hardware multiply operations.
17  */
18 #if HZ >= 12 && HZ < 24
19 # define SHIFT_HZ	4
20 #elif HZ >= 24 && HZ < 48
21 # define SHIFT_HZ	5
22 #elif HZ >= 48 && HZ < 96
23 # define SHIFT_HZ	6
24 #elif HZ >= 96 && HZ < 192
25 # define SHIFT_HZ	7
26 #elif HZ >= 192 && HZ < 384
27 # define SHIFT_HZ	8
28 #elif HZ >= 384 && HZ < 768
29 # define SHIFT_HZ	9
30 #elif HZ >= 768 && HZ < 1536
31 # define SHIFT_HZ	10
32 #else
33 # error You lose.
34 #endif
35 
36 /* LATCH is used in the interval timer and ftape setup. */
37 #define LATCH  ((CLOCK_TICK_RATE + HZ/2) / HZ)	/* For divider */
38 
39 #define LATCH_HPET ((HPET_TICK_RATE + HZ/2) / HZ)
40 
41 /* Suppose we want to devide two numbers NOM and DEN: NOM/DEN, the we can
42  * improve accuracy by shifting LSH bits, hence calculating:
43  *     (NOM << LSH) / DEN
44  * This however means trouble for large NOM, because (NOM << LSH) may no
45  * longer fit in 32 bits. The following way of calculating this gives us
46  * some slack, under the following conditions:
47  *   - (NOM / DEN) fits in (32 - LSH) bits.
48  *   - (NOM % DEN) fits in (32 - LSH) bits.
49  */
50 #define SH_DIV(NOM,DEN,LSH) (   (((NOM) / (DEN)) << (LSH))              \
51                              + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
52 
53 /* HZ is the requested value. ACTHZ is actual HZ ("<< 8" is for accuracy) */
54 #define ACTHZ (SH_DIV (CLOCK_TICK_RATE, LATCH, 8))
55 
56 #define ACTHZ_HPET (SH_DIV (HPET_TICK_RATE, LATCH_HPET, 8))
57 
58 /* TICK_NSEC is the time between ticks in nsec assuming real ACTHZ */
59 #define TICK_NSEC (SH_DIV (1000000UL * 1000, ACTHZ, 8))
60 
61 #define TICK_NSEC_HPET (SH_DIV(1000000UL * 1000, ACTHZ_HPET, 8))
62 
63 /* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
64 #define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
65 
66 /* TICK_USEC_TO_NSEC is the time between ticks in nsec assuming real ACTHZ and	*/
67 /* a value TUSEC for TICK_USEC (can be set bij adjtimex)		*/
68 #define TICK_USEC_TO_NSEC(TUSEC) (SH_DIV (TUSEC * USER_HZ * 1000, ACTHZ, 8))
69 
70 /* some arch's have a small-data section that can be accessed register-relative
71  * but that can only take up to, say, 4-byte variables. jiffies being part of
72  * an 8-byte variable may not be correctly accessed unless we force the issue
73  */
74 #define __jiffy_data  __attribute__((section(".data")))
75 
76 /*
77  * The 64-bit value is not volatile - you MUST NOT read it
78  * without sampling the sequence number in xtime_lock.
79  * get_jiffies_64() will do this for you as appropriate.
80  */
81 extern u64 __jiffy_data jiffies_64;
82 extern unsigned long volatile __jiffy_data jiffies;
83 
84 #if (BITS_PER_LONG < 64)
85 u64 get_jiffies_64(void);
86 #else
get_jiffies_64(void)87 static inline u64 get_jiffies_64(void)
88 {
89 	return (u64)jiffies;
90 }
91 #endif
92 
93 /*
94  *	These inlines deal with timer wrapping correctly. You are
95  *	strongly encouraged to use them
96  *	1. Because people otherwise forget
97  *	2. Because if the timer wrap changes in future you won't have to
98  *	   alter your driver code.
99  *
100  * time_after(a,b) returns true if the time a is after time b.
101  *
102  * Do this with "<0" and ">=0" to only test the sign of the result. A
103  * good compiler would generate better code (and a really good compiler
104  * wouldn't care). Gcc is currently neither.
105  */
106 #define time_after(a,b)		\
107 	(typecheck(unsigned long, a) && \
108 	 typecheck(unsigned long, b) && \
109 	 ((long)(b) - (long)(a) < 0))
110 #define time_before(a,b)	time_after(b,a)
111 
112 #define time_after_eq(a,b)	\
113 	(typecheck(unsigned long, a) && \
114 	 typecheck(unsigned long, b) && \
115 	 ((long)(a) - (long)(b) >= 0))
116 #define time_before_eq(a,b)	time_after_eq(b,a)
117 
118 /*
119  * Have the 32 bit jiffies value wrap 5 minutes after boot
120  * so jiffies wrap bugs show up earlier.
121  */
122 #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
123 
124 /*
125  * Change timeval to jiffies, trying to avoid the
126  * most obvious overflows..
127  *
128  * And some not so obvious.
129  *
130  * Note that we don't want to return MAX_LONG, because
131  * for various timeout reasons we often end up having
132  * to wait "jiffies+1" in order to guarantee that we wait
133  * at _least_ "jiffies" - so "jiffies+1" had better still
134  * be positive.
135  */
136 #define MAX_JIFFY_OFFSET ((~0UL >> 1)-1)
137 
138 /*
139  * We want to do realistic conversions of time so we need to use the same
140  * values the update wall clock code uses as the jiffies size.  This value
141  * is: TICK_NSEC (which is defined in timex.h).  This
142  * is a constant and is in nanoseconds.  We will used scaled math
143  * with a set of scales defined here as SEC_JIFFIE_SC,  USEC_JIFFIE_SC and
144  * NSEC_JIFFIE_SC.  Note that these defines contain nothing but
145  * constants and so are computed at compile time.  SHIFT_HZ (computed in
146  * timex.h) adjusts the scaling for different HZ values.
147 
148  * Scaled math???  What is that?
149  *
150  * Scaled math is a way to do integer math on values that would,
151  * otherwise, either overflow, underflow, or cause undesired div
152  * instructions to appear in the execution path.  In short, we "scale"
153  * up the operands so they take more bits (more precision, less
154  * underflow), do the desired operation and then "scale" the result back
155  * by the same amount.  If we do the scaling by shifting we avoid the
156  * costly mpy and the dastardly div instructions.
157 
158  * Suppose, for example, we want to convert from seconds to jiffies
159  * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE.  The
160  * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
161  * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
162  * might calculate at compile time, however, the result will only have
163  * about 3-4 bits of precision (less for smaller values of HZ).
164  *
165  * So, we scale as follows:
166  * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
167  * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
168  * Then we make SCALE a power of two so:
169  * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
170  * Now we define:
171  * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
172  * jiff = (sec * SEC_CONV) >> SCALE;
173  *
174  * Often the math we use will expand beyond 32-bits so we tell C how to
175  * do this and pass the 64-bit result of the mpy through the ">> SCALE"
176  * which should take the result back to 32-bits.  We want this expansion
177  * to capture as much precision as possible.  At the same time we don't
178  * want to overflow so we pick the SCALE to avoid this.  In this file,
179  * that means using a different scale for each range of HZ values (as
180  * defined in timex.h).
181  *
182  * For those who want to know, gcc will give a 64-bit result from a "*"
183  * operator if the result is a long long AND at least one of the
184  * operands is cast to long long (usually just prior to the "*" so as
185  * not to confuse it into thinking it really has a 64-bit operand,
186  * which, buy the way, it can do, but it take more code and at least 2
187  * mpys).
188 
189  * We also need to be aware that one second in nanoseconds is only a
190  * couple of bits away from overflowing a 32-bit word, so we MUST use
191  * 64-bits to get the full range time in nanoseconds.
192 
193  */
194 
195 /*
196  * Here are the scales we will use.  One for seconds, nanoseconds and
197  * microseconds.
198  *
199  * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
200  * check if the sign bit is set.  If not, we bump the shift count by 1.
201  * (Gets an extra bit of precision where we can use it.)
202  * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
203  * Haven't tested others.
204 
205  * Limits of cpp (for #if expressions) only long (no long long), but
206  * then we only need the most signicant bit.
207  */
208 
209 #define SEC_JIFFIE_SC (31 - SHIFT_HZ)
210 #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
211 #undef SEC_JIFFIE_SC
212 #define SEC_JIFFIE_SC (32 - SHIFT_HZ)
213 #endif
214 #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
215 #define USEC_JIFFIE_SC (SEC_JIFFIE_SC + 19)
216 #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
217                                 TICK_NSEC -1) / (u64)TICK_NSEC))
218 
219 #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
220                                         TICK_NSEC -1) / (u64)TICK_NSEC))
221 #define USEC_CONVERSION  \
222                     ((unsigned long)((((u64)NSEC_PER_USEC << USEC_JIFFIE_SC) +\
223                                         TICK_NSEC -1) / (u64)TICK_NSEC))
224 /*
225  * USEC_ROUND is used in the timeval to jiffie conversion.  See there
226  * for more details.  It is the scaled resolution rounding value.  Note
227  * that it is a 64-bit value.  Since, when it is applied, we are already
228  * in jiffies (albit scaled), it is nothing but the bits we will shift
229  * off.
230  */
231 #define USEC_ROUND (u64)(((u64)1 << USEC_JIFFIE_SC) - 1)
232 /*
233  * The maximum jiffie value is (MAX_INT >> 1).  Here we translate that
234  * into seconds.  The 64-bit case will overflow if we are not careful,
235  * so use the messy SH_DIV macro to do it.  Still all constants.
236  */
237 #if BITS_PER_LONG < 64
238 # define MAX_SEC_IN_JIFFIES \
239 	(long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
240 #else	/* take care of overflow on 64 bits machines */
241 # define MAX_SEC_IN_JIFFIES \
242 	(SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
243 
244 #endif
245 
246 /*
247  * Convert jiffies to milliseconds and back.
248  *
249  * Avoid unnecessary multiplications/divisions in the
250  * two most common HZ cases:
251  */
jiffies_to_msecs(const unsigned long j)252 static inline unsigned int jiffies_to_msecs(const unsigned long j)
253 {
254 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
255 	return (MSEC_PER_SEC / HZ) * j;
256 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
257 	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
258 #else
259 	return (j * MSEC_PER_SEC) / HZ;
260 #endif
261 }
262 
jiffies_to_usecs(const unsigned long j)263 static inline unsigned int jiffies_to_usecs(const unsigned long j)
264 {
265 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
266 	return (USEC_PER_SEC / HZ) * j;
267 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
268 	return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
269 #else
270 	return (j * USEC_PER_SEC) / HZ;
271 #endif
272 }
273 
msecs_to_jiffies(const unsigned int m)274 static inline unsigned long msecs_to_jiffies(const unsigned int m)
275 {
276 	if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
277 		return MAX_JIFFY_OFFSET;
278 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
279 	return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
280 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
281 	return m * (HZ / MSEC_PER_SEC);
282 #else
283 	return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC;
284 #endif
285 }
286 
usecs_to_jiffies(const unsigned int u)287 static inline unsigned long usecs_to_jiffies(const unsigned int u)
288 {
289 	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
290 		return MAX_JIFFY_OFFSET;
291 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
292 	return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
293 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
294 	return u * (HZ / USEC_PER_SEC);
295 #else
296 	return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC;
297 #endif
298 }
299 
300 /*
301  * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
302  * that a remainder subtract here would not do the right thing as the
303  * resolution values don't fall on second boundries.  I.e. the line:
304  * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
305  *
306  * Rather, we just shift the bits off the right.
307  *
308  * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
309  * value to a scaled second value.
310  */
311 static __inline__ unsigned long
timespec_to_jiffies(const struct timespec * value)312 timespec_to_jiffies(const struct timespec *value)
313 {
314 	unsigned long sec = value->tv_sec;
315 	long nsec = value->tv_nsec + TICK_NSEC - 1;
316 
317 	if (sec >= MAX_SEC_IN_JIFFIES){
318 		sec = MAX_SEC_IN_JIFFIES;
319 		nsec = 0;
320 	}
321 	return (((u64)sec * SEC_CONVERSION) +
322 		(((u64)nsec * NSEC_CONVERSION) >>
323 		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
324 
325 }
326 
327 static __inline__ void
jiffies_to_timespec(const unsigned long jiffies,struct timespec * value)328 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
329 {
330 	/*
331 	 * Convert jiffies to nanoseconds and separate with
332 	 * one divide.
333 	 */
334 	u64 nsec = (u64)jiffies * TICK_NSEC;
335 	value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
336 }
337 
338 /* Same for "timeval"
339  *
340  * Well, almost.  The problem here is that the real system resolution is
341  * in nanoseconds and the value being converted is in micro seconds.
342  * Also for some machines (those that use HZ = 1024, in-particular),
343  * there is a LARGE error in the tick size in microseconds.
344 
345  * The solution we use is to do the rounding AFTER we convert the
346  * microsecond part.  Thus the USEC_ROUND, the bits to be shifted off.
347  * Instruction wise, this should cost only an additional add with carry
348  * instruction above the way it was done above.
349  */
350 static __inline__ unsigned long
timeval_to_jiffies(const struct timeval * value)351 timeval_to_jiffies(const struct timeval *value)
352 {
353 	unsigned long sec = value->tv_sec;
354 	long usec = value->tv_usec;
355 
356 	if (sec >= MAX_SEC_IN_JIFFIES){
357 		sec = MAX_SEC_IN_JIFFIES;
358 		usec = 0;
359 	}
360 	return (((u64)sec * SEC_CONVERSION) +
361 		(((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
362 		 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
363 }
364 
365 static __inline__ void
jiffies_to_timeval(const unsigned long jiffies,struct timeval * value)366 jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
367 {
368 	/*
369 	 * Convert jiffies to nanoseconds and separate with
370 	 * one divide.
371 	 */
372 	u64 nsec = (u64)jiffies * TICK_NSEC;
373 	long tv_usec;
374 
375 	value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
376 	tv_usec /= NSEC_PER_USEC;
377 	value->tv_usec = tv_usec;
378 }
379 
380 /*
381  * Convert jiffies/jiffies_64 to clock_t and back.
382  */
jiffies_to_clock_t(long x)383 static inline clock_t jiffies_to_clock_t(long x)
384 {
385 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
386 	return x / (HZ / USER_HZ);
387 #else
388 	u64 tmp = (u64)x * TICK_NSEC;
389 	do_div(tmp, (NSEC_PER_SEC / USER_HZ));
390 	return (long)tmp;
391 #endif
392 }
393 
clock_t_to_jiffies(unsigned long x)394 static inline unsigned long clock_t_to_jiffies(unsigned long x)
395 {
396 #if (HZ % USER_HZ)==0
397 	if (x >= ~0UL / (HZ / USER_HZ))
398 		return ~0UL;
399 	return x * (HZ / USER_HZ);
400 #else
401 	u64 jif;
402 
403 	/* Don't worry about loss of precision here .. */
404 	if (x >= ~0UL / HZ * USER_HZ)
405 		return ~0UL;
406 
407 	/* .. but do try to contain it here */
408 	jif = x * (u64) HZ;
409 	do_div(jif, USER_HZ);
410 	return jif;
411 #endif
412 }
413 
jiffies_64_to_clock_t(u64 x)414 static inline u64 jiffies_64_to_clock_t(u64 x)
415 {
416 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
417 	do_div(x, HZ / USER_HZ);
418 #else
419 	/*
420 	 * There are better ways that don't overflow early,
421 	 * but even this doesn't overflow in hundreds of years
422 	 * in 64 bits, so..
423 	 */
424 	x *= TICK_NSEC;
425 	do_div(x, (NSEC_PER_SEC / USER_HZ));
426 #endif
427 	return x;
428 }
429 
nsec_to_clock_t(u64 x)430 static inline u64 nsec_to_clock_t(u64 x)
431 {
432 #if (NSEC_PER_SEC % USER_HZ) == 0
433 	do_div(x, (NSEC_PER_SEC / USER_HZ));
434 #elif (USER_HZ % 512) == 0
435 	x *= USER_HZ/512;
436 	do_div(x, (NSEC_PER_SEC / 512));
437 #else
438 	/*
439          * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
440          * overflow after 64.99 years.
441          * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
442          */
443 	x *= 9;
444 	do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2))
445 	                          / USER_HZ));
446 #endif
447 	return x;
448 }
449 
450 #endif
451