• Home
  • Raw
  • Download

Lines Matching refs:_Tp

83 template <class _Tp>
84 static void _divT(const _Tp& __z1_r, const _Tp& __z1_i, in _divT()
85 const _Tp& __z2_r, const _Tp& __z2_i, in _divT()
86 _Tp& __res_r, _Tp& __res_i) { in _divT()
87 _Tp __ar = __z2_r >= 0 ? __z2_r : -__z2_r; in _divT()
88 _Tp __ai = __z2_i >= 0 ? __z2_i : -__z2_i; in _divT()
91 _Tp __ratio = __z2_r / __z2_i; in _divT()
92 _Tp __denom = __z2_i * (1 + __ratio * __ratio); in _divT()
97 _Tp __ratio = __z2_i / __z2_r; in _divT()
98 _Tp __denom = __z2_r * (1 + __ratio * __ratio); in _divT()
104 template <class _Tp>
105 static void _divT(const _Tp& __z1_r, in _divT()
106 const _Tp& __z2_r, const _Tp& __z2_i, in _divT()
107 _Tp& __res_r, _Tp& __res_i) { in _divT()
108 _Tp __ar = __z2_r >= 0 ? __z2_r : -__z2_r; in _divT()
109 _Tp __ai = __z2_i >= 0 ? __z2_i : -__z2_i; in _divT()
112 _Tp __ratio = __z2_r / __z2_i; in _divT()
113 _Tp __denom = __z2_i * (1 + __ratio * __ratio); in _divT()
118 _Tp __ratio = __z2_i / __z2_r; in _divT()
119 _Tp __denom = __z2_r * (1 + __ratio * __ratio); in _divT()
166 template <class _Tp>
167 static complex<_Tp> sqrtT(const complex<_Tp>& z) { in sqrtT()
168 _Tp re = z._M_re; in sqrtT()
169 _Tp im = z._M_im; in sqrtT()
170 _Tp mag = ::hypot(re, im); in sqrtT()
171 complex<_Tp> result; in sqrtT()
201 template <class _Tp>
202 static complex<_Tp> expT(const complex<_Tp>& z) { in expT()
203 _Tp expx = ::exp(z._M_re); in expT()
204 return complex<_Tp>(expx * ::cos(z._M_im), in expT()
220 template <class _Tp>
221 static complex<_Tp> log10T(const complex<_Tp>& z, const _Tp& ln10_inv) { in log10T()
222 complex<_Tp> r; in log10T()
245 template <class _Tp>
246 static complex<_Tp> logT(const complex<_Tp>& z) { in logT()
247 complex<_Tp> r; in logT()
266 template <class _Tp>
267 static complex<_Tp> powT(const _Tp& a, const complex<_Tp>& b) { in powT()
268 _Tp logr = ::log(a); in powT()
269 _Tp x = ::exp(logr * b._M_re); in powT()
270 _Tp y = logr * b._M_im; in powT()
272 return complex<_Tp>(x * ::cos(y), x * ::sin(y)); in powT()
275 template <class _Tp>
276 static complex<_Tp> powT(const complex<_Tp>& z_in, int n) { in powT()
277 complex<_Tp> z = z_in; in powT()
278 z = _STLP_PRIV __power(z, (n < 0 ? -n : n), multiplies< complex<_Tp> >()); in powT()
280 return _Tp(1.0) / z; in powT()
285 template <class _Tp>
286 static complex<_Tp> powT(const complex<_Tp>& a, const _Tp& b) { in powT()
287 _Tp logr = ::log(::hypot(a._M_re,a._M_im)); in powT()
288 _Tp logi = ::atan2(a._M_im, a._M_re); in powT()
289 _Tp x = ::exp(logr * b); in powT()
290 _Tp y = logi * b; in powT()
292 return complex<_Tp>(x * ::cos(y), x * ::sin(y)); in powT()
295 template <class _Tp>
296 static complex<_Tp> powT(const complex<_Tp>& a, const complex<_Tp>& b) { in powT()
297 _Tp logr = ::log(::hypot(a._M_re,a._M_im)); in powT()
298 _Tp logi = ::atan2(a._M_im, a._M_re); in powT()
299 _Tp x = ::exp(logr * b._M_re - logi * b._M_im); in powT()
300 _Tp y = logr * b._M_im + logi * b._M_re; in powT()
302 return complex<_Tp>(x * ::cos(y), x * ::sin(y)); in powT()