//===--- ParseDeclCXX.cpp - C++ Declaration Parsing -----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the C++ Declaration portions of the Parser interfaces. // //===----------------------------------------------------------------------===// #include "clang/Basic/OperatorKinds.h" #include "clang/Parse/Parser.h" #include "clang/Parse/ParseDiagnostic.h" #include "clang/Sema/DeclSpec.h" #include "clang/Sema/Scope.h" #include "clang/Sema/ParsedTemplate.h" #include "clang/Sema/PrettyDeclStackTrace.h" #include "RAIIObjectsForParser.h" using namespace clang; /// ParseNamespace - We know that the current token is a namespace keyword. This /// may either be a top level namespace or a block-level namespace alias. If /// there was an inline keyword, it has already been parsed. /// /// namespace-definition: [C++ 7.3: basic.namespace] /// named-namespace-definition /// unnamed-namespace-definition /// /// unnamed-namespace-definition: /// 'inline'[opt] 'namespace' attributes[opt] '{' namespace-body '}' /// /// named-namespace-definition: /// original-namespace-definition /// extension-namespace-definition /// /// original-namespace-definition: /// 'inline'[opt] 'namespace' identifier attributes[opt] /// '{' namespace-body '}' /// /// extension-namespace-definition: /// 'inline'[opt] 'namespace' original-namespace-name /// '{' namespace-body '}' /// /// namespace-alias-definition: [C++ 7.3.2: namespace.alias] /// 'namespace' identifier '=' qualified-namespace-specifier ';' /// Decl *Parser::ParseNamespace(unsigned Context, SourceLocation &DeclEnd, SourceLocation InlineLoc) { assert(Tok.is(tok::kw_namespace) && "Not a namespace!"); SourceLocation NamespaceLoc = ConsumeToken(); // eat the 'namespace'. if (Tok.is(tok::code_completion)) { Actions.CodeCompleteNamespaceDecl(getCurScope()); ConsumeCodeCompletionToken(); } SourceLocation IdentLoc; IdentifierInfo *Ident = 0; std::vector ExtraIdentLoc; std::vector ExtraIdent; std::vector ExtraNamespaceLoc; Token attrTok; if (Tok.is(tok::identifier)) { Ident = Tok.getIdentifierInfo(); IdentLoc = ConsumeToken(); // eat the identifier. while (Tok.is(tok::coloncolon) && NextToken().is(tok::identifier)) { ExtraNamespaceLoc.push_back(ConsumeToken()); ExtraIdent.push_back(Tok.getIdentifierInfo()); ExtraIdentLoc.push_back(ConsumeToken()); } } // Read label attributes, if present. ParsedAttributes attrs(AttrFactory); if (Tok.is(tok::kw___attribute)) { attrTok = Tok; ParseGNUAttributes(attrs); } if (Tok.is(tok::equal)) { if (!attrs.empty()) Diag(attrTok, diag::err_unexpected_namespace_attributes_alias); if (InlineLoc.isValid()) Diag(InlineLoc, diag::err_inline_namespace_alias) << FixItHint::CreateRemoval(InlineLoc); return ParseNamespaceAlias(NamespaceLoc, IdentLoc, Ident, DeclEnd); } if (Tok.isNot(tok::l_brace)) { if (!ExtraIdent.empty()) { Diag(ExtraNamespaceLoc[0], diag::err_nested_namespaces_with_double_colon) << SourceRange(ExtraNamespaceLoc.front(), ExtraIdentLoc.back()); } Diag(Tok, Ident ? diag::err_expected_lbrace : diag::err_expected_ident_lbrace); return 0; } SourceLocation LBrace = ConsumeBrace(); if (getCurScope()->isClassScope() || getCurScope()->isTemplateParamScope() || getCurScope()->isInObjcMethodScope() || getCurScope()->getBlockParent() || getCurScope()->getFnParent()) { if (!ExtraIdent.empty()) { Diag(ExtraNamespaceLoc[0], diag::err_nested_namespaces_with_double_colon) << SourceRange(ExtraNamespaceLoc.front(), ExtraIdentLoc.back()); } Diag(LBrace, diag::err_namespace_nonnamespace_scope); SkipUntil(tok::r_brace, false); return 0; } if (!ExtraIdent.empty()) { TentativeParsingAction TPA(*this); SkipUntil(tok::r_brace, /*StopAtSemi*/false, /*DontConsume*/true); Token rBraceToken = Tok; TPA.Revert(); if (!rBraceToken.is(tok::r_brace)) { Diag(ExtraNamespaceLoc[0], diag::err_nested_namespaces_with_double_colon) << SourceRange(ExtraNamespaceLoc.front(), ExtraIdentLoc.back()); } else { std::string NamespaceFix; for (std::vector::iterator I = ExtraIdent.begin(), E = ExtraIdent.end(); I != E; ++I) { NamespaceFix += " { namespace "; NamespaceFix += (*I)->getName(); } std::string RBraces; for (unsigned i = 0, e = ExtraIdent.size(); i != e; ++i) RBraces += "} "; Diag(ExtraNamespaceLoc[0], diag::err_nested_namespaces_with_double_colon) << FixItHint::CreateReplacement(SourceRange(ExtraNamespaceLoc.front(), ExtraIdentLoc.back()), NamespaceFix) << FixItHint::CreateInsertion(rBraceToken.getLocation(), RBraces); } } // If we're still good, complain about inline namespaces in non-C++0x now. if (!getLang().CPlusPlus0x && InlineLoc.isValid()) Diag(InlineLoc, diag::ext_inline_namespace); // Enter a scope for the namespace. ParseScope NamespaceScope(this, Scope::DeclScope); Decl *NamespcDecl = Actions.ActOnStartNamespaceDef(getCurScope(), InlineLoc, NamespaceLoc, IdentLoc, Ident, LBrace, attrs.getList()); PrettyDeclStackTraceEntry CrashInfo(Actions, NamespcDecl, NamespaceLoc, "parsing namespace"); SourceLocation RBraceLoc; // Parse the contents of the namespace. This includes parsing recovery on // any improperly nested namespaces. ParseInnerNamespace(ExtraIdentLoc, ExtraIdent, ExtraNamespaceLoc, 0, InlineLoc, LBrace, attrs, RBraceLoc); // Leave the namespace scope. NamespaceScope.Exit(); Actions.ActOnFinishNamespaceDef(NamespcDecl, RBraceLoc); DeclEnd = RBraceLoc; return NamespcDecl; } /// ParseInnerNamespace - Parse the contents of a namespace. void Parser::ParseInnerNamespace(std::vector& IdentLoc, std::vector& Ident, std::vector& NamespaceLoc, unsigned int index, SourceLocation& InlineLoc, SourceLocation& LBrace, ParsedAttributes& attrs, SourceLocation& RBraceLoc) { if (index == Ident.size()) { while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) { ParsedAttributesWithRange attrs(AttrFactory); MaybeParseCXX0XAttributes(attrs); MaybeParseMicrosoftAttributes(attrs); ParseExternalDeclaration(attrs); } RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBrace); return; } // Parse improperly nested namespaces. ParseScope NamespaceScope(this, Scope::DeclScope); Decl *NamespcDecl = Actions.ActOnStartNamespaceDef(getCurScope(), SourceLocation(), NamespaceLoc[index], IdentLoc[index], Ident[index], LBrace, attrs.getList()); ParseInnerNamespace(IdentLoc, Ident, NamespaceLoc, ++index, InlineLoc, LBrace, attrs, RBraceLoc); NamespaceScope.Exit(); Actions.ActOnFinishNamespaceDef(NamespcDecl, RBraceLoc); } /// ParseNamespaceAlias - Parse the part after the '=' in a namespace /// alias definition. /// Decl *Parser::ParseNamespaceAlias(SourceLocation NamespaceLoc, SourceLocation AliasLoc, IdentifierInfo *Alias, SourceLocation &DeclEnd) { assert(Tok.is(tok::equal) && "Not equal token"); ConsumeToken(); // eat the '='. if (Tok.is(tok::code_completion)) { Actions.CodeCompleteNamespaceAliasDecl(getCurScope()); ConsumeCodeCompletionToken(); } CXXScopeSpec SS; // Parse (optional) nested-name-specifier. ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false); if (SS.isInvalid() || Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_expected_namespace_name); // Skip to end of the definition and eat the ';'. SkipUntil(tok::semi); return 0; } // Parse identifier. IdentifierInfo *Ident = Tok.getIdentifierInfo(); SourceLocation IdentLoc = ConsumeToken(); // Eat the ';'. DeclEnd = Tok.getLocation(); ExpectAndConsume(tok::semi, diag::err_expected_semi_after_namespace_name, "", tok::semi); return Actions.ActOnNamespaceAliasDef(getCurScope(), NamespaceLoc, AliasLoc, Alias, SS, IdentLoc, Ident); } /// ParseLinkage - We know that the current token is a string_literal /// and just before that, that extern was seen. /// /// linkage-specification: [C++ 7.5p2: dcl.link] /// 'extern' string-literal '{' declaration-seq[opt] '}' /// 'extern' string-literal declaration /// Decl *Parser::ParseLinkage(ParsingDeclSpec &DS, unsigned Context) { assert(Tok.is(tok::string_literal) && "Not a string literal!"); llvm::SmallString<8> LangBuffer; bool Invalid = false; llvm::StringRef Lang = PP.getSpelling(Tok, LangBuffer, &Invalid); if (Invalid) return 0; SourceLocation Loc = ConsumeStringToken(); ParseScope LinkageScope(this, Scope::DeclScope); Decl *LinkageSpec = Actions.ActOnStartLinkageSpecification(getCurScope(), DS.getSourceRange().getBegin(), Loc, Lang, Tok.is(tok::l_brace) ? Tok.getLocation() : SourceLocation()); ParsedAttributesWithRange attrs(AttrFactory); MaybeParseCXX0XAttributes(attrs); MaybeParseMicrosoftAttributes(attrs); if (Tok.isNot(tok::l_brace)) { // Reset the source range in DS, as the leading "extern" // does not really belong to the inner declaration ... DS.SetRangeStart(SourceLocation()); DS.SetRangeEnd(SourceLocation()); // ... but anyway remember that such an "extern" was seen. DS.setExternInLinkageSpec(true); ParseExternalDeclaration(attrs, &DS); return Actions.ActOnFinishLinkageSpecification(getCurScope(), LinkageSpec, SourceLocation()); } DS.abort(); ProhibitAttributes(attrs); SourceLocation LBrace = ConsumeBrace(); while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) { ParsedAttributesWithRange attrs(AttrFactory); MaybeParseCXX0XAttributes(attrs); MaybeParseMicrosoftAttributes(attrs); ParseExternalDeclaration(attrs); } SourceLocation RBrace = MatchRHSPunctuation(tok::r_brace, LBrace); return Actions.ActOnFinishLinkageSpecification(getCurScope(), LinkageSpec, RBrace); } /// ParseUsingDirectiveOrDeclaration - Parse C++ using using-declaration or /// using-directive. Assumes that current token is 'using'. Decl *Parser::ParseUsingDirectiveOrDeclaration(unsigned Context, const ParsedTemplateInfo &TemplateInfo, SourceLocation &DeclEnd, ParsedAttributesWithRange &attrs, Decl **OwnedType) { assert(Tok.is(tok::kw_using) && "Not using token"); // Eat 'using'. SourceLocation UsingLoc = ConsumeToken(); if (Tok.is(tok::code_completion)) { Actions.CodeCompleteUsing(getCurScope()); ConsumeCodeCompletionToken(); } // 'using namespace' means this is a using-directive. if (Tok.is(tok::kw_namespace)) { // Template parameters are always an error here. if (TemplateInfo.Kind) { SourceRange R = TemplateInfo.getSourceRange(); Diag(UsingLoc, diag::err_templated_using_directive) << R << FixItHint::CreateRemoval(R); } return ParseUsingDirective(Context, UsingLoc, DeclEnd, attrs); } // Otherwise, it must be a using-declaration or an alias-declaration. // Using declarations can't have attributes. ProhibitAttributes(attrs); return ParseUsingDeclaration(Context, TemplateInfo, UsingLoc, DeclEnd, AS_none, OwnedType); } /// ParseUsingDirective - Parse C++ using-directive, assumes /// that current token is 'namespace' and 'using' was already parsed. /// /// using-directive: [C++ 7.3.p4: namespace.udir] /// 'using' 'namespace' ::[opt] nested-name-specifier[opt] /// namespace-name ; /// [GNU] using-directive: /// 'using' 'namespace' ::[opt] nested-name-specifier[opt] /// namespace-name attributes[opt] ; /// Decl *Parser::ParseUsingDirective(unsigned Context, SourceLocation UsingLoc, SourceLocation &DeclEnd, ParsedAttributes &attrs) { assert(Tok.is(tok::kw_namespace) && "Not 'namespace' token"); // Eat 'namespace'. SourceLocation NamespcLoc = ConsumeToken(); if (Tok.is(tok::code_completion)) { Actions.CodeCompleteUsingDirective(getCurScope()); ConsumeCodeCompletionToken(); } CXXScopeSpec SS; // Parse (optional) nested-name-specifier. ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false); IdentifierInfo *NamespcName = 0; SourceLocation IdentLoc = SourceLocation(); // Parse namespace-name. if (SS.isInvalid() || Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_expected_namespace_name); // If there was invalid namespace name, skip to end of decl, and eat ';'. SkipUntil(tok::semi); // FIXME: Are there cases, when we would like to call ActOnUsingDirective? return 0; } // Parse identifier. NamespcName = Tok.getIdentifierInfo(); IdentLoc = ConsumeToken(); // Parse (optional) attributes (most likely GNU strong-using extension). bool GNUAttr = false; if (Tok.is(tok::kw___attribute)) { GNUAttr = true; ParseGNUAttributes(attrs); } // Eat ';'. DeclEnd = Tok.getLocation(); ExpectAndConsume(tok::semi, GNUAttr ? diag::err_expected_semi_after_attribute_list : diag::err_expected_semi_after_namespace_name, "", tok::semi); return Actions.ActOnUsingDirective(getCurScope(), UsingLoc, NamespcLoc, SS, IdentLoc, NamespcName, attrs.getList()); } /// ParseUsingDeclaration - Parse C++ using-declaration or alias-declaration. /// Assumes that 'using' was already seen. /// /// using-declaration: [C++ 7.3.p3: namespace.udecl] /// 'using' 'typename'[opt] ::[opt] nested-name-specifier /// unqualified-id /// 'using' :: unqualified-id /// /// alias-declaration: C++0x [decl.typedef]p2 /// 'using' identifier = type-id ; /// Decl *Parser::ParseUsingDeclaration(unsigned Context, const ParsedTemplateInfo &TemplateInfo, SourceLocation UsingLoc, SourceLocation &DeclEnd, AccessSpecifier AS, Decl **OwnedType) { CXXScopeSpec SS; SourceLocation TypenameLoc; bool IsTypeName; // Ignore optional 'typename'. // FIXME: This is wrong; we should parse this as a typename-specifier. if (Tok.is(tok::kw_typename)) { TypenameLoc = Tok.getLocation(); ConsumeToken(); IsTypeName = true; } else IsTypeName = false; // Parse nested-name-specifier. ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false); // Check nested-name specifier. if (SS.isInvalid()) { SkipUntil(tok::semi); return 0; } // Parse the unqualified-id. We allow parsing of both constructor and // destructor names and allow the action module to diagnose any semantic // errors. UnqualifiedId Name; if (ParseUnqualifiedId(SS, /*EnteringContext=*/false, /*AllowDestructorName=*/true, /*AllowConstructorName=*/true, ParsedType(), Name)) { SkipUntil(tok::semi); return 0; } ParsedAttributes attrs(AttrFactory); // Maybe this is an alias-declaration. bool IsAliasDecl = Tok.is(tok::equal); TypeResult TypeAlias; if (IsAliasDecl) { // TODO: Attribute support. C++0x attributes may appear before the equals. // Where can GNU attributes appear? ConsumeToken(); if (!getLang().CPlusPlus0x) Diag(Tok.getLocation(), diag::ext_alias_declaration); // Type alias templates cannot be specialized. int SpecKind = -1; if (TemplateInfo.Kind == ParsedTemplateInfo::Template && Name.getKind() == UnqualifiedId::IK_TemplateId) SpecKind = 0; if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization) SpecKind = 1; if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) SpecKind = 2; if (SpecKind != -1) { SourceRange Range; if (SpecKind == 0) Range = SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc); else Range = TemplateInfo.getSourceRange(); Diag(Range.getBegin(), diag::err_alias_declaration_specialization) << SpecKind << Range; SkipUntil(tok::semi); return 0; } // Name must be an identifier. if (Name.getKind() != UnqualifiedId::IK_Identifier) { Diag(Name.StartLocation, diag::err_alias_declaration_not_identifier); // No removal fixit: can't recover from this. SkipUntil(tok::semi); return 0; } else if (IsTypeName) Diag(TypenameLoc, diag::err_alias_declaration_not_identifier) << FixItHint::CreateRemoval(SourceRange(TypenameLoc, SS.isNotEmpty() ? SS.getEndLoc() : TypenameLoc)); else if (SS.isNotEmpty()) Diag(SS.getBeginLoc(), diag::err_alias_declaration_not_identifier) << FixItHint::CreateRemoval(SS.getRange()); TypeAlias = ParseTypeName(0, TemplateInfo.Kind ? Declarator::AliasTemplateContext : Declarator::AliasDeclContext, 0, AS, OwnedType); } else // Parse (optional) attributes (most likely GNU strong-using extension). MaybeParseGNUAttributes(attrs); // Eat ';'. DeclEnd = Tok.getLocation(); ExpectAndConsume(tok::semi, diag::err_expected_semi_after, !attrs.empty() ? "attributes list" : IsAliasDecl ? "alias declaration" : "using declaration", tok::semi); // Diagnose an attempt to declare a templated using-declaration. // In C++0x, alias-declarations can be templates: // template <...> using id = type; if (TemplateInfo.Kind && !IsAliasDecl) { SourceRange R = TemplateInfo.getSourceRange(); Diag(UsingLoc, diag::err_templated_using_declaration) << R << FixItHint::CreateRemoval(R); // Unfortunately, we have to bail out instead of recovering by // ignoring the parameters, just in case the nested name specifier // depends on the parameters. return 0; } if (IsAliasDecl) { TemplateParameterLists *TemplateParams = TemplateInfo.TemplateParams; MultiTemplateParamsArg TemplateParamsArg(Actions, TemplateParams ? TemplateParams->data() : 0, TemplateParams ? TemplateParams->size() : 0); return Actions.ActOnAliasDeclaration(getCurScope(), AS, TemplateParamsArg, UsingLoc, Name, TypeAlias); } return Actions.ActOnUsingDeclaration(getCurScope(), AS, true, UsingLoc, SS, Name, attrs.getList(), IsTypeName, TypenameLoc); } /// ParseStaticAssertDeclaration - Parse C++0x or C1X static_assert-declaration. /// /// [C++0x] static_assert-declaration: /// static_assert ( constant-expression , string-literal ) ; /// /// [C1X] static_assert-declaration: /// _Static_assert ( constant-expression , string-literal ) ; /// Decl *Parser::ParseStaticAssertDeclaration(SourceLocation &DeclEnd){ assert((Tok.is(tok::kw_static_assert) || Tok.is(tok::kw__Static_assert)) && "Not a static_assert declaration"); if (Tok.is(tok::kw__Static_assert) && !getLang().C1X) Diag(Tok, diag::ext_c1x_static_assert); SourceLocation StaticAssertLoc = ConsumeToken(); if (Tok.isNot(tok::l_paren)) { Diag(Tok, diag::err_expected_lparen); return 0; } SourceLocation LParenLoc = ConsumeParen(); ExprResult AssertExpr(ParseConstantExpression()); if (AssertExpr.isInvalid()) { SkipUntil(tok::semi); return 0; } if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "", tok::semi)) return 0; if (Tok.isNot(tok::string_literal)) { Diag(Tok, diag::err_expected_string_literal); SkipUntil(tok::semi); return 0; } ExprResult AssertMessage(ParseStringLiteralExpression()); if (AssertMessage.isInvalid()) return 0; SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc); DeclEnd = Tok.getLocation(); ExpectAndConsumeSemi(diag::err_expected_semi_after_static_assert); return Actions.ActOnStaticAssertDeclaration(StaticAssertLoc, AssertExpr.take(), AssertMessage.take(), RParenLoc); } /// ParseDecltypeSpecifier - Parse a C++0x decltype specifier. /// /// 'decltype' ( expression ) /// void Parser::ParseDecltypeSpecifier(DeclSpec &DS) { assert(Tok.is(tok::kw_decltype) && "Not a decltype specifier"); SourceLocation StartLoc = ConsumeToken(); SourceLocation LParenLoc = Tok.getLocation(); if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "decltype")) { SkipUntil(tok::r_paren); return; } // Parse the expression // C++0x [dcl.type.simple]p4: // The operand of the decltype specifier is an unevaluated operand. EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated); ExprResult Result = ParseExpression(); if (Result.isInvalid()) { SkipUntil(tok::r_paren); return; } // Match the ')' SourceLocation RParenLoc; if (Tok.is(tok::r_paren)) RParenLoc = ConsumeParen(); else MatchRHSPunctuation(tok::r_paren, LParenLoc); if (RParenLoc.isInvalid()) return; const char *PrevSpec = 0; unsigned DiagID; // Check for duplicate type specifiers (e.g. "int decltype(a)"). if (DS.SetTypeSpecType(DeclSpec::TST_decltype, StartLoc, PrevSpec, DiagID, Result.release())) Diag(StartLoc, DiagID) << PrevSpec; } void Parser::ParseUnderlyingTypeSpecifier(DeclSpec &DS) { assert(Tok.is(tok::kw___underlying_type) && "Not an underlying type specifier"); SourceLocation StartLoc = ConsumeToken(); SourceLocation LParenLoc = Tok.getLocation(); if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "__underlying_type")) { SkipUntil(tok::r_paren); return; } TypeResult Result = ParseTypeName(); if (Result.isInvalid()) { SkipUntil(tok::r_paren); return; } // Match the ')' SourceLocation RParenLoc; if (Tok.is(tok::r_paren)) RParenLoc = ConsumeParen(); else MatchRHSPunctuation(tok::r_paren, LParenLoc); if (RParenLoc.isInvalid()) return; const char *PrevSpec = 0; unsigned DiagID; if (DS.SetTypeSpecType(DeclSpec::TST_underlyingType, StartLoc, PrevSpec, DiagID, Result.release())) Diag(StartLoc, DiagID) << PrevSpec; } /// ParseClassName - Parse a C++ class-name, which names a class. Note /// that we only check that the result names a type; semantic analysis /// will need to verify that the type names a class. The result is /// either a type or NULL, depending on whether a type name was /// found. /// /// class-name: [C++ 9.1] /// identifier /// simple-template-id /// Parser::TypeResult Parser::ParseClassName(SourceLocation &EndLocation, CXXScopeSpec &SS) { // Check whether we have a template-id that names a type. if (Tok.is(tok::annot_template_id)) { TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); if (TemplateId->Kind == TNK_Type_template || TemplateId->Kind == TNK_Dependent_template_name) { AnnotateTemplateIdTokenAsType(); assert(Tok.is(tok::annot_typename) && "template-id -> type failed"); ParsedType Type = getTypeAnnotation(Tok); EndLocation = Tok.getAnnotationEndLoc(); ConsumeToken(); if (Type) return Type; return true; } // Fall through to produce an error below. } if (Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_expected_class_name); return true; } IdentifierInfo *Id = Tok.getIdentifierInfo(); SourceLocation IdLoc = ConsumeToken(); if (Tok.is(tok::less)) { // It looks the user intended to write a template-id here, but the // template-name was wrong. Try to fix that. TemplateNameKind TNK = TNK_Type_template; TemplateTy Template; if (!Actions.DiagnoseUnknownTemplateName(*Id, IdLoc, getCurScope(), &SS, Template, TNK)) { Diag(IdLoc, diag::err_unknown_template_name) << Id; } if (!Template) return true; // Form the template name UnqualifiedId TemplateName; TemplateName.setIdentifier(Id, IdLoc); // Parse the full template-id, then turn it into a type. if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateName, SourceLocation(), true)) return true; if (TNK == TNK_Dependent_template_name) AnnotateTemplateIdTokenAsType(); // If we didn't end up with a typename token, there's nothing more we // can do. if (Tok.isNot(tok::annot_typename)) return true; // Retrieve the type from the annotation token, consume that token, and // return. EndLocation = Tok.getAnnotationEndLoc(); ParsedType Type = getTypeAnnotation(Tok); ConsumeToken(); return Type; } // We have an identifier; check whether it is actually a type. ParsedType Type = Actions.getTypeName(*Id, IdLoc, getCurScope(), &SS, true, false, ParsedType(), /*NonTrivialTypeSourceInfo=*/true); if (!Type) { Diag(IdLoc, diag::err_expected_class_name); return true; } // Consume the identifier. EndLocation = IdLoc; // Fake up a Declarator to use with ActOnTypeName. DeclSpec DS(AttrFactory); DS.SetRangeStart(IdLoc); DS.SetRangeEnd(EndLocation); DS.getTypeSpecScope() = SS; const char *PrevSpec = 0; unsigned DiagID; DS.SetTypeSpecType(TST_typename, IdLoc, PrevSpec, DiagID, Type); Declarator DeclaratorInfo(DS, Declarator::TypeNameContext); return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); } /// ParseClassSpecifier - Parse a C++ class-specifier [C++ class] or /// elaborated-type-specifier [C++ dcl.type.elab]; we can't tell which /// until we reach the start of a definition or see a token that /// cannot start a definition. If SuppressDeclarations is true, we do know. /// /// class-specifier: [C++ class] /// class-head '{' member-specification[opt] '}' /// class-head '{' member-specification[opt] '}' attributes[opt] /// class-head: /// class-key identifier[opt] base-clause[opt] /// class-key nested-name-specifier identifier base-clause[opt] /// class-key nested-name-specifier[opt] simple-template-id /// base-clause[opt] /// [GNU] class-key attributes[opt] identifier[opt] base-clause[opt] /// [GNU] class-key attributes[opt] nested-name-specifier /// identifier base-clause[opt] /// [GNU] class-key attributes[opt] nested-name-specifier[opt] /// simple-template-id base-clause[opt] /// class-key: /// 'class' /// 'struct' /// 'union' /// /// elaborated-type-specifier: [C++ dcl.type.elab] /// class-key ::[opt] nested-name-specifier[opt] identifier /// class-key ::[opt] nested-name-specifier[opt] 'template'[opt] /// simple-template-id /// /// Note that the C++ class-specifier and elaborated-type-specifier, /// together, subsume the C99 struct-or-union-specifier: /// /// struct-or-union-specifier: [C99 6.7.2.1] /// struct-or-union identifier[opt] '{' struct-contents '}' /// struct-or-union identifier /// [GNU] struct-or-union attributes[opt] identifier[opt] '{' struct-contents /// '}' attributes[opt] /// [GNU] struct-or-union attributes[opt] identifier /// struct-or-union: /// 'struct' /// 'union' void Parser::ParseClassSpecifier(tok::TokenKind TagTokKind, SourceLocation StartLoc, DeclSpec &DS, const ParsedTemplateInfo &TemplateInfo, AccessSpecifier AS, bool SuppressDeclarations){ DeclSpec::TST TagType; if (TagTokKind == tok::kw_struct) TagType = DeclSpec::TST_struct; else if (TagTokKind == tok::kw_class) TagType = DeclSpec::TST_class; else { assert(TagTokKind == tok::kw_union && "Not a class specifier"); TagType = DeclSpec::TST_union; } if (Tok.is(tok::code_completion)) { // Code completion for a struct, class, or union name. Actions.CodeCompleteTag(getCurScope(), TagType); ConsumeCodeCompletionToken(); } // C++03 [temp.explicit] 14.7.2/8: // The usual access checking rules do not apply to names used to specify // explicit instantiations. // // As an extension we do not perform access checking on the names used to // specify explicit specializations either. This is important to allow // specializing traits classes for private types. bool SuppressingAccessChecks = false; if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation || TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization) { Actions.ActOnStartSuppressingAccessChecks(); SuppressingAccessChecks = true; } ParsedAttributes attrs(AttrFactory); // If attributes exist after tag, parse them. if (Tok.is(tok::kw___attribute)) ParseGNUAttributes(attrs); // If declspecs exist after tag, parse them. while (Tok.is(tok::kw___declspec)) ParseMicrosoftDeclSpec(attrs); // If C++0x attributes exist here, parse them. // FIXME: Are we consistent with the ordering of parsing of different // styles of attributes? MaybeParseCXX0XAttributes(attrs); if (TagType == DeclSpec::TST_struct && !Tok.is(tok::identifier) && Tok.getIdentifierInfo() && (Tok.is(tok::kw___is_arithmetic) || Tok.is(tok::kw___is_convertible) || Tok.is(tok::kw___is_empty) || Tok.is(tok::kw___is_floating_point) || Tok.is(tok::kw___is_function) || Tok.is(tok::kw___is_fundamental) || Tok.is(tok::kw___is_integral) || Tok.is(tok::kw___is_member_function_pointer) || Tok.is(tok::kw___is_member_pointer) || Tok.is(tok::kw___is_pod) || Tok.is(tok::kw___is_pointer) || Tok.is(tok::kw___is_same) || Tok.is(tok::kw___is_scalar) || Tok.is(tok::kw___is_signed) || Tok.is(tok::kw___is_unsigned) || Tok.is(tok::kw___is_void))) { // GNU libstdc++ 4.2 and libc++ uaw certain intrinsic names as the // name of struct templates, but some are keywords in GCC >= 4.3 // and Clang. Therefore, when we see the token sequence "struct // X", make X into a normal identifier rather than a keyword, to // allow libstdc++ 4.2 and libc++ to work properly. Tok.getIdentifierInfo()->RevertTokenIDToIdentifier(); Tok.setKind(tok::identifier); } // Parse the (optional) nested-name-specifier. CXXScopeSpec &SS = DS.getTypeSpecScope(); if (getLang().CPlusPlus) { // "FOO : BAR" is not a potential typo for "FOO::BAR". ColonProtectionRAIIObject X(*this); if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), true)) DS.SetTypeSpecError(); if (SS.isSet()) if (Tok.isNot(tok::identifier) && Tok.isNot(tok::annot_template_id)) Diag(Tok, diag::err_expected_ident); } TemplateParameterLists *TemplateParams = TemplateInfo.TemplateParams; // Parse the (optional) class name or simple-template-id. IdentifierInfo *Name = 0; SourceLocation NameLoc; TemplateIdAnnotation *TemplateId = 0; if (Tok.is(tok::identifier)) { Name = Tok.getIdentifierInfo(); NameLoc = ConsumeToken(); if (Tok.is(tok::less) && getLang().CPlusPlus) { // The name was supposed to refer to a template, but didn't. // Eat the template argument list and try to continue parsing this as // a class (or template thereof). TemplateArgList TemplateArgs; SourceLocation LAngleLoc, RAngleLoc; if (ParseTemplateIdAfterTemplateName(TemplateTy(), NameLoc, SS, true, LAngleLoc, TemplateArgs, RAngleLoc)) { // We couldn't parse the template argument list at all, so don't // try to give any location information for the list. LAngleLoc = RAngleLoc = SourceLocation(); } Diag(NameLoc, diag::err_explicit_spec_non_template) << (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) << (TagType == DeclSpec::TST_class? 0 : TagType == DeclSpec::TST_struct? 1 : 2) << Name << SourceRange(LAngleLoc, RAngleLoc); // Strip off the last template parameter list if it was empty, since // we've removed its template argument list. if (TemplateParams && TemplateInfo.LastParameterListWasEmpty) { if (TemplateParams && TemplateParams->size() > 1) { TemplateParams->pop_back(); } else { TemplateParams = 0; const_cast(TemplateInfo).Kind = ParsedTemplateInfo::NonTemplate; } } else if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) { // Pretend this is just a forward declaration. TemplateParams = 0; const_cast(TemplateInfo).Kind = ParsedTemplateInfo::NonTemplate; const_cast(TemplateInfo).TemplateLoc = SourceLocation(); const_cast(TemplateInfo).ExternLoc = SourceLocation(); } } } else if (Tok.is(tok::annot_template_id)) { TemplateId = takeTemplateIdAnnotation(Tok); NameLoc = ConsumeToken(); if (TemplateId->Kind != TNK_Type_template && TemplateId->Kind != TNK_Dependent_template_name) { // The template-name in the simple-template-id refers to // something other than a class template. Give an appropriate // error message and skip to the ';'. SourceRange Range(NameLoc); if (SS.isNotEmpty()) Range.setBegin(SS.getBeginLoc()); Diag(TemplateId->LAngleLoc, diag::err_template_spec_syntax_non_template) << Name << static_cast(TemplateId->Kind) << Range; DS.SetTypeSpecError(); SkipUntil(tok::semi, false, true); if (SuppressingAccessChecks) Actions.ActOnStopSuppressingAccessChecks(); return; } } // As soon as we're finished parsing the class's template-id, turn access // checking back on. if (SuppressingAccessChecks) Actions.ActOnStopSuppressingAccessChecks(); // There are four options here. If we have 'struct foo;', then this // is either a forward declaration or a friend declaration, which // have to be treated differently. If we have 'struct foo {...', // 'struct foo :...' or 'struct foo final[opt]' then this is a // definition. Otherwise we have something like 'struct foo xyz', a reference. // However, in some contexts, things look like declarations but are just // references, e.g. // new struct s; // or // &T::operator struct s; // For these, SuppressDeclarations is true. Sema::TagUseKind TUK; if (SuppressDeclarations) TUK = Sema::TUK_Reference; else if (Tok.is(tok::l_brace) || (getLang().CPlusPlus && Tok.is(tok::colon)) || isCXX0XFinalKeyword()) { if (DS.isFriendSpecified()) { // C++ [class.friend]p2: // A class shall not be defined in a friend declaration. Diag(Tok.getLocation(), diag::err_friend_decl_defines_class) << SourceRange(DS.getFriendSpecLoc()); // Skip everything up to the semicolon, so that this looks like a proper // friend class (or template thereof) declaration. SkipUntil(tok::semi, true, true); TUK = Sema::TUK_Friend; } else { // Okay, this is a class definition. TUK = Sema::TUK_Definition; } } else if (Tok.is(tok::semi)) TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration; else TUK = Sema::TUK_Reference; if (!Name && !TemplateId && (DS.getTypeSpecType() == DeclSpec::TST_error || TUK != Sema::TUK_Definition)) { if (DS.getTypeSpecType() != DeclSpec::TST_error) { // We have a declaration or reference to an anonymous class. Diag(StartLoc, diag::err_anon_type_definition) << DeclSpec::getSpecifierName(TagType); } SkipUntil(tok::comma, true); return; } // Create the tag portion of the class or class template. DeclResult TagOrTempResult = true; // invalid TypeResult TypeResult = true; // invalid bool Owned = false; if (TemplateId) { // Explicit specialization, class template partial specialization, // or explicit instantiation. ASTTemplateArgsPtr TemplateArgsPtr(Actions, TemplateId->getTemplateArgs(), TemplateId->NumArgs); if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation && TUK == Sema::TUK_Declaration) { // This is an explicit instantiation of a class template. TagOrTempResult = Actions.ActOnExplicitInstantiation(getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, TagType, StartLoc, SS, TemplateId->Template, TemplateId->TemplateNameLoc, TemplateId->LAngleLoc, TemplateArgsPtr, TemplateId->RAngleLoc, attrs.getList()); // Friend template-ids are treated as references unless // they have template headers, in which case they're ill-formed // (FIXME: "template friend class A::B;"). // We diagnose this error in ActOnClassTemplateSpecialization. } else if (TUK == Sema::TUK_Reference || (TUK == Sema::TUK_Friend && TemplateInfo.Kind == ParsedTemplateInfo::NonTemplate)) { TypeResult = Actions.ActOnTagTemplateIdType(TUK, TagType, StartLoc, TemplateId->SS, TemplateId->Template, TemplateId->TemplateNameLoc, TemplateId->LAngleLoc, TemplateArgsPtr, TemplateId->RAngleLoc); } else { // This is an explicit specialization or a class template // partial specialization. TemplateParameterLists FakedParamLists; if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) { // This looks like an explicit instantiation, because we have // something like // // template class Foo // // but it actually has a definition. Most likely, this was // meant to be an explicit specialization, but the user forgot // the '<>' after 'template'. assert(TUK == Sema::TUK_Definition && "Expected a definition here"); SourceLocation LAngleLoc = PP.getLocForEndOfToken(TemplateInfo.TemplateLoc); Diag(TemplateId->TemplateNameLoc, diag::err_explicit_instantiation_with_definition) << SourceRange(TemplateInfo.TemplateLoc) << FixItHint::CreateInsertion(LAngleLoc, "<>"); // Create a fake template parameter list that contains only // "template<>", so that we treat this construct as a class // template specialization. FakedParamLists.push_back( Actions.ActOnTemplateParameterList(0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, 0, 0, LAngleLoc)); TemplateParams = &FakedParamLists; } // Build the class template specialization. TagOrTempResult = Actions.ActOnClassTemplateSpecialization(getCurScope(), TagType, TUK, StartLoc, SS, TemplateId->Template, TemplateId->TemplateNameLoc, TemplateId->LAngleLoc, TemplateArgsPtr, TemplateId->RAngleLoc, attrs.getList(), MultiTemplateParamsArg(Actions, TemplateParams? &(*TemplateParams)[0] : 0, TemplateParams? TemplateParams->size() : 0)); } } else if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation && TUK == Sema::TUK_Declaration) { // Explicit instantiation of a member of a class template // specialization, e.g., // // template struct Outer::Inner; // TagOrTempResult = Actions.ActOnExplicitInstantiation(getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, TagType, StartLoc, SS, Name, NameLoc, attrs.getList()); } else if (TUK == Sema::TUK_Friend && TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate) { TagOrTempResult = Actions.ActOnTemplatedFriendTag(getCurScope(), DS.getFriendSpecLoc(), TagType, StartLoc, SS, Name, NameLoc, attrs.getList(), MultiTemplateParamsArg(Actions, TemplateParams? &(*TemplateParams)[0] : 0, TemplateParams? TemplateParams->size() : 0)); } else { if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation && TUK == Sema::TUK_Definition) { // FIXME: Diagnose this particular error. } bool IsDependent = false; // Don't pass down template parameter lists if this is just a tag // reference. For example, we don't need the template parameters here: // template class A *makeA(T t); MultiTemplateParamsArg TParams; if (TUK != Sema::TUK_Reference && TemplateParams) TParams = MultiTemplateParamsArg(&(*TemplateParams)[0], TemplateParams->size()); // Declaration or definition of a class type TagOrTempResult = Actions.ActOnTag(getCurScope(), TagType, TUK, StartLoc, SS, Name, NameLoc, attrs.getList(), AS, TParams, Owned, IsDependent, false, false, clang::TypeResult()); // If ActOnTag said the type was dependent, try again with the // less common call. if (IsDependent) { assert(TUK == Sema::TUK_Reference || TUK == Sema::TUK_Friend); TypeResult = Actions.ActOnDependentTag(getCurScope(), TagType, TUK, SS, Name, StartLoc, NameLoc); } } // If there is a body, parse it and inform the actions module. if (TUK == Sema::TUK_Definition) { assert(Tok.is(tok::l_brace) || (getLang().CPlusPlus && Tok.is(tok::colon)) || isCXX0XFinalKeyword()); if (getLang().CPlusPlus) ParseCXXMemberSpecification(StartLoc, TagType, TagOrTempResult.get()); else ParseStructUnionBody(StartLoc, TagType, TagOrTempResult.get()); } const char *PrevSpec = 0; unsigned DiagID; bool Result; if (!TypeResult.isInvalid()) { Result = DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc, NameLoc.isValid() ? NameLoc : StartLoc, PrevSpec, DiagID, TypeResult.get()); } else if (!TagOrTempResult.isInvalid()) { Result = DS.SetTypeSpecType(TagType, StartLoc, NameLoc.isValid() ? NameLoc : StartLoc, PrevSpec, DiagID, TagOrTempResult.get(), Owned); } else { DS.SetTypeSpecError(); return; } if (Result) Diag(StartLoc, DiagID) << PrevSpec; // At this point, we've successfully parsed a class-specifier in 'definition' // form (e.g. "struct foo { int x; }". While we could just return here, we're // going to look at what comes after it to improve error recovery. If an // impossible token occurs next, we assume that the programmer forgot a ; at // the end of the declaration and recover that way. // // This switch enumerates the valid "follow" set for definition. if (TUK == Sema::TUK_Definition) { bool ExpectedSemi = true; switch (Tok.getKind()) { default: break; case tok::semi: // struct foo {...} ; case tok::star: // struct foo {...} * P; case tok::amp: // struct foo {...} & R = ... case tok::identifier: // struct foo {...} V ; case tok::r_paren: //(struct foo {...} ) {4} case tok::annot_cxxscope: // struct foo {...} a:: b; case tok::annot_typename: // struct foo {...} a ::b; case tok::annot_template_id: // struct foo {...} a ::b; case tok::l_paren: // struct foo {...} ( x); case tok::comma: // __builtin_offsetof(struct foo{...} , ExpectedSemi = false; break; // Type qualifiers case tok::kw_const: // struct foo {...} const x; case tok::kw_volatile: // struct foo {...} volatile x; case tok::kw_restrict: // struct foo {...} restrict x; case tok::kw_inline: // struct foo {...} inline foo() {}; // Storage-class specifiers case tok::kw_static: // struct foo {...} static x; case tok::kw_extern: // struct foo {...} extern x; case tok::kw_typedef: // struct foo {...} typedef x; case tok::kw_register: // struct foo {...} register x; case tok::kw_auto: // struct foo {...} auto x; case tok::kw_mutable: // struct foo {...} mutable x; // As shown above, type qualifiers and storage class specifiers absolutely // can occur after class specifiers according to the grammar. However, // almost no one actually writes code like this. If we see one of these, // it is much more likely that someone missed a semi colon and the // type/storage class specifier we're seeing is part of the *next* // intended declaration, as in: // // struct foo { ... } // typedef int X; // // We'd really like to emit a missing semicolon error instead of emitting // an error on the 'int' saying that you can't have two type specifiers in // the same declaration of X. Because of this, we look ahead past this // token to see if it's a type specifier. If so, we know the code is // otherwise invalid, so we can produce the expected semi error. if (!isKnownToBeTypeSpecifier(NextToken())) ExpectedSemi = false; break; case tok::r_brace: // struct bar { struct foo {...} } // Missing ';' at end of struct is accepted as an extension in C mode. if (!getLang().CPlusPlus) ExpectedSemi = false; break; } // C++ [temp]p3 In a template-declaration which defines a class, no // declarator is permitted. if (TemplateInfo.Kind) ExpectedSemi = true; if (ExpectedSemi) { ExpectAndConsume(tok::semi, diag::err_expected_semi_after_tagdecl, TagType == DeclSpec::TST_class ? "class" : TagType == DeclSpec::TST_struct? "struct" : "union"); // Push this token back into the preprocessor and change our current token // to ';' so that the rest of the code recovers as though there were an // ';' after the definition. PP.EnterToken(Tok); Tok.setKind(tok::semi); } } } /// ParseBaseClause - Parse the base-clause of a C++ class [C++ class.derived]. /// /// base-clause : [C++ class.derived] /// ':' base-specifier-list /// base-specifier-list: /// base-specifier '...'[opt] /// base-specifier-list ',' base-specifier '...'[opt] void Parser::ParseBaseClause(Decl *ClassDecl) { assert(Tok.is(tok::colon) && "Not a base clause"); ConsumeToken(); // Build up an array of parsed base specifiers. llvm::SmallVector BaseInfo; while (true) { // Parse a base-specifier. BaseResult Result = ParseBaseSpecifier(ClassDecl); if (Result.isInvalid()) { // Skip the rest of this base specifier, up until the comma or // opening brace. SkipUntil(tok::comma, tok::l_brace, true, true); } else { // Add this to our array of base specifiers. BaseInfo.push_back(Result.get()); } // If the next token is a comma, consume it and keep reading // base-specifiers. if (Tok.isNot(tok::comma)) break; // Consume the comma. ConsumeToken(); } // Attach the base specifiers Actions.ActOnBaseSpecifiers(ClassDecl, BaseInfo.data(), BaseInfo.size()); } /// ParseBaseSpecifier - Parse a C++ base-specifier. A base-specifier is /// one entry in the base class list of a class specifier, for example: /// class foo : public bar, virtual private baz { /// 'public bar' and 'virtual private baz' are each base-specifiers. /// /// base-specifier: [C++ class.derived] /// ::[opt] nested-name-specifier[opt] class-name /// 'virtual' access-specifier[opt] ::[opt] nested-name-specifier[opt] /// class-name /// access-specifier 'virtual'[opt] ::[opt] nested-name-specifier[opt] /// class-name Parser::BaseResult Parser::ParseBaseSpecifier(Decl *ClassDecl) { bool IsVirtual = false; SourceLocation StartLoc = Tok.getLocation(); // Parse the 'virtual' keyword. if (Tok.is(tok::kw_virtual)) { ConsumeToken(); IsVirtual = true; } // Parse an (optional) access specifier. AccessSpecifier Access = getAccessSpecifierIfPresent(); if (Access != AS_none) ConsumeToken(); // Parse the 'virtual' keyword (again!), in case it came after the // access specifier. if (Tok.is(tok::kw_virtual)) { SourceLocation VirtualLoc = ConsumeToken(); if (IsVirtual) { // Complain about duplicate 'virtual' Diag(VirtualLoc, diag::err_dup_virtual) << FixItHint::CreateRemoval(VirtualLoc); } IsVirtual = true; } // Parse optional '::' and optional nested-name-specifier. CXXScopeSpec SS; ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false); // The location of the base class itself. SourceLocation BaseLoc = Tok.getLocation(); // Parse the class-name. SourceLocation EndLocation; TypeResult BaseType = ParseClassName(EndLocation, SS); if (BaseType.isInvalid()) return true; // Parse the optional ellipsis (for a pack expansion). The ellipsis is // actually part of the base-specifier-list grammar productions, but we // parse it here for convenience. SourceLocation EllipsisLoc; if (Tok.is(tok::ellipsis)) EllipsisLoc = ConsumeToken(); // Find the complete source range for the base-specifier. SourceRange Range(StartLoc, EndLocation); // Notify semantic analysis that we have parsed a complete // base-specifier. return Actions.ActOnBaseSpecifier(ClassDecl, Range, IsVirtual, Access, BaseType.get(), BaseLoc, EllipsisLoc); } /// getAccessSpecifierIfPresent - Determine whether the next token is /// a C++ access-specifier. /// /// access-specifier: [C++ class.derived] /// 'private' /// 'protected' /// 'public' AccessSpecifier Parser::getAccessSpecifierIfPresent() const { switch (Tok.getKind()) { default: return AS_none; case tok::kw_private: return AS_private; case tok::kw_protected: return AS_protected; case tok::kw_public: return AS_public; } } void Parser::HandleMemberFunctionDefaultArgs(Declarator& DeclaratorInfo, Decl *ThisDecl) { // We just declared a member function. If this member function // has any default arguments, we'll need to parse them later. LateParsedMethodDeclaration *LateMethod = 0; DeclaratorChunk::FunctionTypeInfo &FTI = DeclaratorInfo.getFunctionTypeInfo(); for (unsigned ParamIdx = 0; ParamIdx < FTI.NumArgs; ++ParamIdx) { if (LateMethod || FTI.ArgInfo[ParamIdx].DefaultArgTokens) { if (!LateMethod) { // Push this method onto the stack of late-parsed method // declarations. LateMethod = new LateParsedMethodDeclaration(this, ThisDecl); getCurrentClass().LateParsedDeclarations.push_back(LateMethod); LateMethod->TemplateScope = getCurScope()->isTemplateParamScope(); // Add all of the parameters prior to this one (they don't // have default arguments). LateMethod->DefaultArgs.reserve(FTI.NumArgs); for (unsigned I = 0; I < ParamIdx; ++I) LateMethod->DefaultArgs.push_back( LateParsedDefaultArgument(FTI.ArgInfo[I].Param)); } // Add this parameter to the list of parameters (it or may // not have a default argument). LateMethod->DefaultArgs.push_back( LateParsedDefaultArgument(FTI.ArgInfo[ParamIdx].Param, FTI.ArgInfo[ParamIdx].DefaultArgTokens)); } } } /// isCXX0XVirtSpecifier - Determine whether the next token is a C++0x /// virt-specifier. /// /// virt-specifier: /// override /// final VirtSpecifiers::Specifier Parser::isCXX0XVirtSpecifier() const { if (!getLang().CPlusPlus) return VirtSpecifiers::VS_None; if (Tok.is(tok::identifier)) { IdentifierInfo *II = Tok.getIdentifierInfo(); // Initialize the contextual keywords. if (!Ident_final) { Ident_final = &PP.getIdentifierTable().get("final"); Ident_override = &PP.getIdentifierTable().get("override"); } if (II == Ident_override) return VirtSpecifiers::VS_Override; if (II == Ident_final) return VirtSpecifiers::VS_Final; } return VirtSpecifiers::VS_None; } /// ParseOptionalCXX0XVirtSpecifierSeq - Parse a virt-specifier-seq. /// /// virt-specifier-seq: /// virt-specifier /// virt-specifier-seq virt-specifier void Parser::ParseOptionalCXX0XVirtSpecifierSeq(VirtSpecifiers &VS) { while (true) { VirtSpecifiers::Specifier Specifier = isCXX0XVirtSpecifier(); if (Specifier == VirtSpecifiers::VS_None) return; // C++ [class.mem]p8: // A virt-specifier-seq shall contain at most one of each virt-specifier. const char *PrevSpec = 0; if (VS.SetSpecifier(Specifier, Tok.getLocation(), PrevSpec)) Diag(Tok.getLocation(), diag::err_duplicate_virt_specifier) << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation()); if (!getLang().CPlusPlus0x) Diag(Tok.getLocation(), diag::ext_override_control_keyword) << VirtSpecifiers::getSpecifierName(Specifier); ConsumeToken(); } } /// isCXX0XFinalKeyword - Determine whether the next token is a C++0x /// contextual 'final' keyword. bool Parser::isCXX0XFinalKeyword() const { if (!getLang().CPlusPlus) return false; if (!Tok.is(tok::identifier)) return false; // Initialize the contextual keywords. if (!Ident_final) { Ident_final = &PP.getIdentifierTable().get("final"); Ident_override = &PP.getIdentifierTable().get("override"); } return Tok.getIdentifierInfo() == Ident_final; } /// ParseCXXClassMemberDeclaration - Parse a C++ class member declaration. /// /// member-declaration: /// decl-specifier-seq[opt] member-declarator-list[opt] ';' /// function-definition ';'[opt] /// ::[opt] nested-name-specifier template[opt] unqualified-id ';'[TODO] /// using-declaration [TODO] /// [C++0x] static_assert-declaration /// template-declaration /// [GNU] '__extension__' member-declaration /// /// member-declarator-list: /// member-declarator /// member-declarator-list ',' member-declarator /// /// member-declarator: /// declarator virt-specifier-seq[opt] pure-specifier[opt] /// declarator constant-initializer[opt] /// [C++11] declarator brace-or-equal-initializer[opt] /// identifier[opt] ':' constant-expression /// /// virt-specifier-seq: /// virt-specifier /// virt-specifier-seq virt-specifier /// /// virt-specifier: /// override /// final /// new /// /// pure-specifier: /// '= 0' /// /// constant-initializer: /// '=' constant-expression /// void Parser::ParseCXXClassMemberDeclaration(AccessSpecifier AS, const ParsedTemplateInfo &TemplateInfo, ParsingDeclRAIIObject *TemplateDiags) { if (Tok.is(tok::at)) { if (getLang().ObjC1 && NextToken().isObjCAtKeyword(tok::objc_defs)) Diag(Tok, diag::err_at_defs_cxx); else Diag(Tok, diag::err_at_in_class); ConsumeToken(); SkipUntil(tok::r_brace); return; } // Access declarations. if (!TemplateInfo.Kind && (Tok.is(tok::identifier) || Tok.is(tok::coloncolon)) && !TryAnnotateCXXScopeToken() && Tok.is(tok::annot_cxxscope)) { bool isAccessDecl = false; if (NextToken().is(tok::identifier)) isAccessDecl = GetLookAheadToken(2).is(tok::semi); else isAccessDecl = NextToken().is(tok::kw_operator); if (isAccessDecl) { // Collect the scope specifier token we annotated earlier. CXXScopeSpec SS; ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false); // Try to parse an unqualified-id. UnqualifiedId Name; if (ParseUnqualifiedId(SS, false, true, true, ParsedType(), Name)) { SkipUntil(tok::semi); return; } // TODO: recover from mistakenly-qualified operator declarations. if (ExpectAndConsume(tok::semi, diag::err_expected_semi_after, "access declaration", tok::semi)) return; Actions.ActOnUsingDeclaration(getCurScope(), AS, false, SourceLocation(), SS, Name, /* AttrList */ 0, /* IsTypeName */ false, SourceLocation()); return; } } // static_assert-declaration if (Tok.is(tok::kw_static_assert) || Tok.is(tok::kw__Static_assert)) { // FIXME: Check for templates SourceLocation DeclEnd; ParseStaticAssertDeclaration(DeclEnd); return; } if (Tok.is(tok::kw_template)) { assert(!TemplateInfo.TemplateParams && "Nested template improperly parsed?"); SourceLocation DeclEnd; ParseDeclarationStartingWithTemplate(Declarator::MemberContext, DeclEnd, AS); return; } // Handle: member-declaration ::= '__extension__' member-declaration if (Tok.is(tok::kw___extension__)) { // __extension__ silences extension warnings in the subexpression. ExtensionRAIIObject O(Diags); // Use RAII to do this. ConsumeToken(); return ParseCXXClassMemberDeclaration(AS, TemplateInfo, TemplateDiags); } // Don't parse FOO:BAR as if it were a typo for FOO::BAR, in this context it // is a bitfield. ColonProtectionRAIIObject X(*this); ParsedAttributesWithRange attrs(AttrFactory); // Optional C++0x attribute-specifier MaybeParseCXX0XAttributes(attrs); MaybeParseMicrosoftAttributes(attrs); if (Tok.is(tok::kw_using)) { ProhibitAttributes(attrs); // Eat 'using'. SourceLocation UsingLoc = ConsumeToken(); if (Tok.is(tok::kw_namespace)) { Diag(UsingLoc, diag::err_using_namespace_in_class); SkipUntil(tok::semi, true, true); } else { SourceLocation DeclEnd; // Otherwise, it must be a using-declaration or an alias-declaration. ParseUsingDeclaration(Declarator::MemberContext, TemplateInfo, UsingLoc, DeclEnd, AS); } return; } // decl-specifier-seq: // Parse the common declaration-specifiers piece. ParsingDeclSpec DS(*this, TemplateDiags); DS.takeAttributesFrom(attrs); ParseDeclarationSpecifiers(DS, TemplateInfo, AS, DSC_class); MultiTemplateParamsArg TemplateParams(Actions, TemplateInfo.TemplateParams? TemplateInfo.TemplateParams->data() : 0, TemplateInfo.TemplateParams? TemplateInfo.TemplateParams->size() : 0); if (Tok.is(tok::semi)) { ConsumeToken(); Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS, DS, TemplateParams); DS.complete(TheDecl); return; } ParsingDeclarator DeclaratorInfo(*this, DS, Declarator::MemberContext); VirtSpecifiers VS; ExprResult Init; if (Tok.isNot(tok::colon)) { // Don't parse FOO:BAR as if it were a typo for FOO::BAR. ColonProtectionRAIIObject X(*this); // Parse the first declarator. ParseDeclarator(DeclaratorInfo); // Error parsing the declarator? if (!DeclaratorInfo.hasName()) { // If so, skip until the semi-colon or a }. SkipUntil(tok::r_brace, true, true); if (Tok.is(tok::semi)) ConsumeToken(); return; } ParseOptionalCXX0XVirtSpecifierSeq(VS); // If attributes exist after the declarator, but before an '{', parse them. MaybeParseGNUAttributes(DeclaratorInfo); // MSVC permits pure specifier on inline functions declared at class scope. // Hence check for =0 before checking for function definition. if (getLang().Microsoft && Tok.is(tok::equal) && DeclaratorInfo.isFunctionDeclarator() && NextToken().is(tok::numeric_constant)) { ConsumeToken(); Init = ParseInitializer(); if (Init.isInvalid()) SkipUntil(tok::comma, true, true); } bool IsDefinition = false; // function-definition: // // In C++11, a non-function declarator followed by an open brace is a // braced-init-list for an in-class member initialization, not an // erroneous function definition. if (Tok.is(tok::l_brace) && !getLang().CPlusPlus0x) { IsDefinition = true; } else if (DeclaratorInfo.isFunctionDeclarator()) { if (Tok.is(tok::l_brace) || Tok.is(tok::colon) || Tok.is(tok::kw_try)) { IsDefinition = true; } else if (Tok.is(tok::equal)) { const Token &KW = NextToken(); if (KW.is(tok::kw_default) || KW.is(tok::kw_delete)) IsDefinition = true; } } if (IsDefinition) { if (!DeclaratorInfo.isFunctionDeclarator()) { Diag(Tok, diag::err_func_def_no_params); ConsumeBrace(); SkipUntil(tok::r_brace, true); // Consume the optional ';' if (Tok.is(tok::semi)) ConsumeToken(); return; } if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) { Diag(Tok, diag::err_function_declared_typedef); // This recovery skips the entire function body. It would be nice // to simply call ParseCXXInlineMethodDef() below, however Sema // assumes the declarator represents a function, not a typedef. ConsumeBrace(); SkipUntil(tok::r_brace, true); // Consume the optional ';' if (Tok.is(tok::semi)) ConsumeToken(); return; } ParseCXXInlineMethodDef(AS, DeclaratorInfo, TemplateInfo, VS, Init); // Consume the ';' - it's optional unless we have a delete or default if (Tok.is(tok::semi)) { ConsumeToken(); } return; } } // member-declarator-list: // member-declarator // member-declarator-list ',' member-declarator llvm::SmallVector DeclsInGroup; ExprResult BitfieldSize; while (1) { // member-declarator: // declarator pure-specifier[opt] // declarator brace-or-equal-initializer[opt] // identifier[opt] ':' constant-expression if (Tok.is(tok::colon)) { ConsumeToken(); BitfieldSize = ParseConstantExpression(); if (BitfieldSize.isInvalid()) SkipUntil(tok::comma, true, true); } // If a simple-asm-expr is present, parse it. if (Tok.is(tok::kw_asm)) { SourceLocation Loc; ExprResult AsmLabel(ParseSimpleAsm(&Loc)); if (AsmLabel.isInvalid()) SkipUntil(tok::comma, true, true); DeclaratorInfo.setAsmLabel(AsmLabel.release()); DeclaratorInfo.SetRangeEnd(Loc); } // If attributes exist after the declarator, parse them. MaybeParseGNUAttributes(DeclaratorInfo); // FIXME: When g++ adds support for this, we'll need to check whether it // goes before or after the GNU attributes and __asm__. ParseOptionalCXX0XVirtSpecifierSeq(VS); bool HasDeferredInitializer = false; if (Tok.is(tok::equal) || Tok.is(tok::l_brace)) { if (BitfieldSize.get()) { Diag(Tok, diag::err_bitfield_member_init); SkipUntil(tok::comma, true, true); } else { HasDeferredInitializer = !DeclaratorInfo.isDeclarationOfFunction() && DeclaratorInfo.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static && DeclaratorInfo.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef; if (!HasDeferredInitializer) { SourceLocation EqualLoc; Init = ParseCXXMemberInitializer( DeclaratorInfo.isDeclarationOfFunction(), EqualLoc); if (Init.isInvalid()) SkipUntil(tok::comma, true, true); } } } // NOTE: If Sema is the Action module and declarator is an instance field, // this call will *not* return the created decl; It will return null. // See Sema::ActOnCXXMemberDeclarator for details. Decl *ThisDecl = 0; if (DS.isFriendSpecified()) { // TODO: handle initializers, bitfields, 'delete' ThisDecl = Actions.ActOnFriendFunctionDecl(getCurScope(), DeclaratorInfo, /*IsDefinition*/ false, move(TemplateParams)); } else { ThisDecl = Actions.ActOnCXXMemberDeclarator(getCurScope(), AS, DeclaratorInfo, move(TemplateParams), BitfieldSize.release(), VS, Init.release(), HasDeferredInitializer, /*IsDefinition*/ false); } if (ThisDecl) DeclsInGroup.push_back(ThisDecl); if (DeclaratorInfo.isFunctionDeclarator() && DeclaratorInfo.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef) { HandleMemberFunctionDefaultArgs(DeclaratorInfo, ThisDecl); } DeclaratorInfo.complete(ThisDecl); if (HasDeferredInitializer) { if (!getLang().CPlusPlus0x) Diag(Tok, diag::warn_nonstatic_member_init_accepted_as_extension); if (DeclaratorInfo.isArrayOfUnknownBound()) { // C++0x [dcl.array]p3: An array bound may also be omitted when the // declarator is followed by an initializer. // // A brace-or-equal-initializer for a member-declarator is not an // initializer in the gramamr, so this is ill-formed. Diag(Tok, diag::err_incomplete_array_member_init); SkipUntil(tok::comma, true, true); // Avoid later warnings about a class member of incomplete type. ThisDecl->setInvalidDecl(); } else ParseCXXNonStaticMemberInitializer(ThisDecl); } // If we don't have a comma, it is either the end of the list (a ';') // or an error, bail out. if (Tok.isNot(tok::comma)) break; // Consume the comma. ConsumeToken(); // Parse the next declarator. DeclaratorInfo.clear(); VS.clear(); BitfieldSize = 0; Init = 0; // Attributes are only allowed on the second declarator. MaybeParseGNUAttributes(DeclaratorInfo); if (Tok.isNot(tok::colon)) ParseDeclarator(DeclaratorInfo); } if (ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list)) { // Skip to end of block or statement. SkipUntil(tok::r_brace, true, true); // If we stopped at a ';', eat it. if (Tok.is(tok::semi)) ConsumeToken(); return; } Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup.data(), DeclsInGroup.size()); } /// ParseCXXMemberInitializer - Parse the brace-or-equal-initializer or /// pure-specifier. Also detect and reject any attempted defaulted/deleted /// function definition. The location of the '=', if any, will be placed in /// EqualLoc. /// /// pure-specifier: /// '= 0' /// /// brace-or-equal-initializer: /// '=' initializer-expression /// braced-init-list [TODO] /// /// initializer-clause: /// assignment-expression /// braced-init-list [TODO] /// /// defaulted/deleted function-definition: /// '=' 'default' /// '=' 'delete' /// /// Prior to C++0x, the assignment-expression in an initializer-clause must /// be a constant-expression. ExprResult Parser::ParseCXXMemberInitializer(bool IsFunction, SourceLocation &EqualLoc) { assert((Tok.is(tok::equal) || Tok.is(tok::l_brace)) && "Data member initializer not starting with '=' or '{'"); if (Tok.is(tok::equal)) { EqualLoc = ConsumeToken(); if (Tok.is(tok::kw_delete)) { // In principle, an initializer of '= delete p;' is legal, but it will // never type-check. It's better to diagnose it as an ill-formed expression // than as an ill-formed deleted non-function member. // An initializer of '= delete p, foo' will never be parsed, because // a top-level comma always ends the initializer expression. const Token &Next = NextToken(); if (IsFunction || Next.is(tok::semi) || Next.is(tok::comma) || Next.is(tok::eof)) { if (IsFunction) Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration) << 1 /* delete */; else Diag(ConsumeToken(), diag::err_deleted_non_function); return ExprResult(); } } else if (Tok.is(tok::kw_default)) { Diag(ConsumeToken(), diag::err_default_special_members); if (IsFunction) Diag(Tok, diag::err_default_delete_in_multiple_declaration) << 0 /* default */; else Diag(ConsumeToken(), diag::err_default_special_members); return ExprResult(); } return ParseInitializer(); } else return ExprError(Diag(Tok, diag::err_generalized_initializer_lists)); } /// ParseCXXMemberSpecification - Parse the class definition. /// /// member-specification: /// member-declaration member-specification[opt] /// access-specifier ':' member-specification[opt] /// void Parser::ParseCXXMemberSpecification(SourceLocation RecordLoc, unsigned TagType, Decl *TagDecl) { assert((TagType == DeclSpec::TST_struct || TagType == DeclSpec::TST_union || TagType == DeclSpec::TST_class) && "Invalid TagType!"); PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc, "parsing struct/union/class body"); // Determine whether this is a non-nested class. Note that local // classes are *not* considered to be nested classes. bool NonNestedClass = true; if (!ClassStack.empty()) { for (const Scope *S = getCurScope(); S; S = S->getParent()) { if (S->isClassScope()) { // We're inside a class scope, so this is a nested class. NonNestedClass = false; break; } if ((S->getFlags() & Scope::FnScope)) { // If we're in a function or function template declared in the // body of a class, then this is a local class rather than a // nested class. const Scope *Parent = S->getParent(); if (Parent->isTemplateParamScope()) Parent = Parent->getParent(); if (Parent->isClassScope()) break; } } } // Enter a scope for the class. ParseScope ClassScope(this, Scope::ClassScope|Scope::DeclScope); // Note that we are parsing a new (potentially-nested) class definition. ParsingClassDefinition ParsingDef(*this, TagDecl, NonNestedClass); if (TagDecl) Actions.ActOnTagStartDefinition(getCurScope(), TagDecl); SourceLocation FinalLoc; // Parse the optional 'final' keyword. if (getLang().CPlusPlus && Tok.is(tok::identifier)) { IdentifierInfo *II = Tok.getIdentifierInfo(); // Initialize the contextual keywords. if (!Ident_final) { Ident_final = &PP.getIdentifierTable().get("final"); Ident_override = &PP.getIdentifierTable().get("override"); } if (II == Ident_final) FinalLoc = ConsumeToken(); if (!getLang().CPlusPlus0x) Diag(FinalLoc, diag::ext_override_control_keyword) << "final"; } if (Tok.is(tok::colon)) { ParseBaseClause(TagDecl); if (!Tok.is(tok::l_brace)) { Diag(Tok, diag::err_expected_lbrace_after_base_specifiers); if (TagDecl) Actions.ActOnTagDefinitionError(getCurScope(), TagDecl); return; } } assert(Tok.is(tok::l_brace)); SourceLocation LBraceLoc = ConsumeBrace(); if (TagDecl) Actions.ActOnStartCXXMemberDeclarations(getCurScope(), TagDecl, FinalLoc, LBraceLoc); // C++ 11p3: Members of a class defined with the keyword class are private // by default. Members of a class defined with the keywords struct or union // are public by default. AccessSpecifier CurAS; if (TagType == DeclSpec::TST_class) CurAS = AS_private; else CurAS = AS_public; SourceLocation RBraceLoc; if (TagDecl) { // While we still have something to read, read the member-declarations. while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) { // Each iteration of this loop reads one member-declaration. if (getLang().Microsoft && (Tok.is(tok::kw___if_exists) || Tok.is(tok::kw___if_not_exists))) { ParseMicrosoftIfExistsClassDeclaration((DeclSpec::TST)TagType, CurAS); continue; } // Check for extraneous top-level semicolon. if (Tok.is(tok::semi)) { Diag(Tok, diag::ext_extra_struct_semi) << DeclSpec::getSpecifierName((DeclSpec::TST)TagType) << FixItHint::CreateRemoval(Tok.getLocation()); ConsumeToken(); continue; } AccessSpecifier AS = getAccessSpecifierIfPresent(); if (AS != AS_none) { // Current token is a C++ access specifier. CurAS = AS; SourceLocation ASLoc = Tok.getLocation(); ConsumeToken(); if (Tok.is(tok::colon)) Actions.ActOnAccessSpecifier(AS, ASLoc, Tok.getLocation()); else Diag(Tok, diag::err_expected_colon); ConsumeToken(); continue; } // FIXME: Make sure we don't have a template here. // Parse all the comma separated declarators. ParseCXXClassMemberDeclaration(CurAS); } RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc); } else { SkipUntil(tok::r_brace, false, false); } // If attributes exist after class contents, parse them. ParsedAttributes attrs(AttrFactory); MaybeParseGNUAttributes(attrs); if (TagDecl) Actions.ActOnFinishCXXMemberSpecification(getCurScope(), RecordLoc, TagDecl, LBraceLoc, RBraceLoc, attrs.getList()); // C++0x [class.mem]p2: Within the class member-specification, the class is // regarded as complete within function bodies, default arguments, exception- // specifications, and brace-or-equal-initializers for non-static data // members (including such things in nested classes). // // FIXME: Only function bodies and brace-or-equal-initializers are currently // handled. Fix the others! if (TagDecl && NonNestedClass) { // We are not inside a nested class. This class and its nested classes // are complete and we can parse the delayed portions of method // declarations and the lexed inline method definitions. SourceLocation SavedPrevTokLocation = PrevTokLocation; ParseLexedMethodDeclarations(getCurrentClass()); ParseLexedMemberInitializers(getCurrentClass()); ParseLexedMethodDefs(getCurrentClass()); PrevTokLocation = SavedPrevTokLocation; } if (TagDecl) Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl, RBraceLoc); // Leave the class scope. ParsingDef.Pop(); ClassScope.Exit(); } /// ParseConstructorInitializer - Parse a C++ constructor initializer, /// which explicitly initializes the members or base classes of a /// class (C++ [class.base.init]). For example, the three initializers /// after the ':' in the Derived constructor below: /// /// @code /// class Base { }; /// class Derived : Base { /// int x; /// float f; /// public: /// Derived(float f) : Base(), x(17), f(f) { } /// }; /// @endcode /// /// [C++] ctor-initializer: /// ':' mem-initializer-list /// /// [C++] mem-initializer-list: /// mem-initializer ...[opt] /// mem-initializer ...[opt] , mem-initializer-list void Parser::ParseConstructorInitializer(Decl *ConstructorDecl) { assert(Tok.is(tok::colon) && "Constructor initializer always starts with ':'"); // Poison the SEH identifiers so they are flagged as illegal in constructor initializers PoisonSEHIdentifiersRAIIObject PoisonSEHIdentifiers(*this, true); SourceLocation ColonLoc = ConsumeToken(); llvm::SmallVector MemInitializers; bool AnyErrors = false; do { if (Tok.is(tok::code_completion)) { Actions.CodeCompleteConstructorInitializer(ConstructorDecl, MemInitializers.data(), MemInitializers.size()); ConsumeCodeCompletionToken(); } else { MemInitResult MemInit = ParseMemInitializer(ConstructorDecl); if (!MemInit.isInvalid()) MemInitializers.push_back(MemInit.get()); else AnyErrors = true; } if (Tok.is(tok::comma)) ConsumeToken(); else if (Tok.is(tok::l_brace)) break; // If the next token looks like a base or member initializer, assume that // we're just missing a comma. else if (Tok.is(tok::identifier) || Tok.is(tok::coloncolon)) { SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation); Diag(Loc, diag::err_ctor_init_missing_comma) << FixItHint::CreateInsertion(Loc, ", "); } else { // Skip over garbage, until we get to '{'. Don't eat the '{'. Diag(Tok.getLocation(), diag::err_expected_lbrace_or_comma); SkipUntil(tok::l_brace, true, true); break; } } while (true); Actions.ActOnMemInitializers(ConstructorDecl, ColonLoc, MemInitializers.data(), MemInitializers.size(), AnyErrors); } /// ParseMemInitializer - Parse a C++ member initializer, which is /// part of a constructor initializer that explicitly initializes one /// member or base class (C++ [class.base.init]). See /// ParseConstructorInitializer for an example. /// /// [C++] mem-initializer: /// mem-initializer-id '(' expression-list[opt] ')' /// [C++0x] mem-initializer-id braced-init-list /// /// [C++] mem-initializer-id: /// '::'[opt] nested-name-specifier[opt] class-name /// identifier Parser::MemInitResult Parser::ParseMemInitializer(Decl *ConstructorDecl) { // parse '::'[opt] nested-name-specifier[opt] CXXScopeSpec SS; ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false); ParsedType TemplateTypeTy; if (Tok.is(tok::annot_template_id)) { TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); if (TemplateId->Kind == TNK_Type_template || TemplateId->Kind == TNK_Dependent_template_name) { AnnotateTemplateIdTokenAsType(); assert(Tok.is(tok::annot_typename) && "template-id -> type failed"); TemplateTypeTy = getTypeAnnotation(Tok); } } if (!TemplateTypeTy && Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_expected_member_or_base_name); return true; } // Get the identifier. This may be a member name or a class name, // but we'll let the semantic analysis determine which it is. IdentifierInfo *II = Tok.is(tok::identifier) ? Tok.getIdentifierInfo() : 0; SourceLocation IdLoc = ConsumeToken(); // Parse the '('. if (getLang().CPlusPlus0x && Tok.is(tok::l_brace)) { // FIXME: Do something with the braced-init-list. ParseBraceInitializer(); return true; } else if(Tok.is(tok::l_paren)) { SourceLocation LParenLoc = ConsumeParen(); // Parse the optional expression-list. ExprVector ArgExprs(Actions); CommaLocsTy CommaLocs; if (Tok.isNot(tok::r_paren) && ParseExpressionList(ArgExprs, CommaLocs)) { SkipUntil(tok::r_paren); return true; } SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc); SourceLocation EllipsisLoc; if (Tok.is(tok::ellipsis)) EllipsisLoc = ConsumeToken(); return Actions.ActOnMemInitializer(ConstructorDecl, getCurScope(), SS, II, TemplateTypeTy, IdLoc, LParenLoc, ArgExprs.take(), ArgExprs.size(), RParenLoc, EllipsisLoc); } Diag(Tok, getLang().CPlusPlus0x ? diag::err_expected_lparen_or_lbrace : diag::err_expected_lparen); return true; } /// \brief Parse a C++ exception-specification if present (C++0x [except.spec]). /// /// exception-specification: /// dynamic-exception-specification /// noexcept-specification /// /// noexcept-specification: /// 'noexcept' /// 'noexcept' '(' constant-expression ')' ExceptionSpecificationType Parser::MaybeParseExceptionSpecification(SourceRange &SpecificationRange, llvm::SmallVectorImpl &DynamicExceptions, llvm::SmallVectorImpl &DynamicExceptionRanges, ExprResult &NoexceptExpr) { ExceptionSpecificationType Result = EST_None; // See if there's a dynamic specification. if (Tok.is(tok::kw_throw)) { Result = ParseDynamicExceptionSpecification(SpecificationRange, DynamicExceptions, DynamicExceptionRanges); assert(DynamicExceptions.size() == DynamicExceptionRanges.size() && "Produced different number of exception types and ranges."); } // If there's no noexcept specification, we're done. if (Tok.isNot(tok::kw_noexcept)) return Result; // If we already had a dynamic specification, parse the noexcept for, // recovery, but emit a diagnostic and don't store the results. SourceRange NoexceptRange; ExceptionSpecificationType NoexceptType = EST_None; SourceLocation KeywordLoc = ConsumeToken(); if (Tok.is(tok::l_paren)) { // There is an argument. SourceLocation LParenLoc = ConsumeParen(); NoexceptType = EST_ComputedNoexcept; NoexceptExpr = ParseConstantExpression(); // The argument must be contextually convertible to bool. We use // ActOnBooleanCondition for this purpose. if (!NoexceptExpr.isInvalid()) NoexceptExpr = Actions.ActOnBooleanCondition(getCurScope(), KeywordLoc, NoexceptExpr.get()); SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc); NoexceptRange = SourceRange(KeywordLoc, RParenLoc); } else { // There is no argument. NoexceptType = EST_BasicNoexcept; NoexceptRange = SourceRange(KeywordLoc, KeywordLoc); } if (Result == EST_None) { SpecificationRange = NoexceptRange; Result = NoexceptType; // If there's a dynamic specification after a noexcept specification, // parse that and ignore the results. if (Tok.is(tok::kw_throw)) { Diag(Tok.getLocation(), diag::err_dynamic_and_noexcept_specification); ParseDynamicExceptionSpecification(NoexceptRange, DynamicExceptions, DynamicExceptionRanges); } } else { Diag(Tok.getLocation(), diag::err_dynamic_and_noexcept_specification); } return Result; } /// ParseDynamicExceptionSpecification - Parse a C++ /// dynamic-exception-specification (C++ [except.spec]). /// /// dynamic-exception-specification: /// 'throw' '(' type-id-list [opt] ')' /// [MS] 'throw' '(' '...' ')' /// /// type-id-list: /// type-id ... [opt] /// type-id-list ',' type-id ... [opt] /// ExceptionSpecificationType Parser::ParseDynamicExceptionSpecification( SourceRange &SpecificationRange, llvm::SmallVectorImpl &Exceptions, llvm::SmallVectorImpl &Ranges) { assert(Tok.is(tok::kw_throw) && "expected throw"); SpecificationRange.setBegin(ConsumeToken()); if (!Tok.is(tok::l_paren)) { Diag(Tok, diag::err_expected_lparen_after) << "throw"; SpecificationRange.setEnd(SpecificationRange.getBegin()); return EST_DynamicNone; } SourceLocation LParenLoc = ConsumeParen(); // Parse throw(...), a Microsoft extension that means "this function // can throw anything". if (Tok.is(tok::ellipsis)) { SourceLocation EllipsisLoc = ConsumeToken(); if (!getLang().Microsoft) Diag(EllipsisLoc, diag::ext_ellipsis_exception_spec); SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc); SpecificationRange.setEnd(RParenLoc); return EST_MSAny; } // Parse the sequence of type-ids. SourceRange Range; while (Tok.isNot(tok::r_paren)) { TypeResult Res(ParseTypeName(&Range)); if (Tok.is(tok::ellipsis)) { // C++0x [temp.variadic]p5: // - In a dynamic-exception-specification (15.4); the pattern is a // type-id. SourceLocation Ellipsis = ConsumeToken(); Range.setEnd(Ellipsis); if (!Res.isInvalid()) Res = Actions.ActOnPackExpansion(Res.get(), Ellipsis); } if (!Res.isInvalid()) { Exceptions.push_back(Res.get()); Ranges.push_back(Range); } if (Tok.is(tok::comma)) ConsumeToken(); else break; } SpecificationRange.setEnd(MatchRHSPunctuation(tok::r_paren, LParenLoc)); return Exceptions.empty() ? EST_DynamicNone : EST_Dynamic; } /// ParseTrailingReturnType - Parse a trailing return type on a new-style /// function declaration. TypeResult Parser::ParseTrailingReturnType() { assert(Tok.is(tok::arrow) && "expected arrow"); ConsumeToken(); // FIXME: Need to suppress declarations when parsing this typename. // Otherwise in this function definition: // // auto f() -> struct X {} // // struct X is parsed as class definition because of the trailing // brace. SourceRange Range; return ParseTypeName(&Range); } /// \brief We have just started parsing the definition of a new class, /// so push that class onto our stack of classes that is currently /// being parsed. Sema::ParsingClassState Parser::PushParsingClass(Decl *ClassDecl, bool NonNestedClass) { assert((NonNestedClass || !ClassStack.empty()) && "Nested class without outer class"); ClassStack.push(new ParsingClass(ClassDecl, NonNestedClass)); return Actions.PushParsingClass(); } /// \brief Deallocate the given parsed class and all of its nested /// classes. void Parser::DeallocateParsedClasses(Parser::ParsingClass *Class) { for (unsigned I = 0, N = Class->LateParsedDeclarations.size(); I != N; ++I) delete Class->LateParsedDeclarations[I]; delete Class; } /// \brief Pop the top class of the stack of classes that are /// currently being parsed. /// /// This routine should be called when we have finished parsing the /// definition of a class, but have not yet popped the Scope /// associated with the class's definition. /// /// \returns true if the class we've popped is a top-level class, /// false otherwise. void Parser::PopParsingClass(Sema::ParsingClassState state) { assert(!ClassStack.empty() && "Mismatched push/pop for class parsing"); Actions.PopParsingClass(state); ParsingClass *Victim = ClassStack.top(); ClassStack.pop(); if (Victim->TopLevelClass) { // Deallocate all of the nested classes of this class, // recursively: we don't need to keep any of this information. DeallocateParsedClasses(Victim); return; } assert(!ClassStack.empty() && "Missing top-level class?"); if (Victim->LateParsedDeclarations.empty()) { // The victim is a nested class, but we will not need to perform // any processing after the definition of this class since it has // no members whose handling was delayed. Therefore, we can just // remove this nested class. DeallocateParsedClasses(Victim); return; } // This nested class has some members that will need to be processed // after the top-level class is completely defined. Therefore, add // it to the list of nested classes within its parent. assert(getCurScope()->isClassScope() && "Nested class outside of class scope?"); ClassStack.top()->LateParsedDeclarations.push_back(new LateParsedClass(this, Victim)); Victim->TemplateScope = getCurScope()->getParent()->isTemplateParamScope(); } /// ParseCXX0XAttributes - Parse a C++0x attribute-specifier. Currently only /// parses standard attributes. /// /// [C++0x] attribute-specifier: /// '[' '[' attribute-list ']' ']' /// /// [C++0x] attribute-list: /// attribute[opt] /// attribute-list ',' attribute[opt] /// /// [C++0x] attribute: /// attribute-token attribute-argument-clause[opt] /// /// [C++0x] attribute-token: /// identifier /// attribute-scoped-token /// /// [C++0x] attribute-scoped-token: /// attribute-namespace '::' identifier /// /// [C++0x] attribute-namespace: /// identifier /// /// [C++0x] attribute-argument-clause: /// '(' balanced-token-seq ')' /// /// [C++0x] balanced-token-seq: /// balanced-token /// balanced-token-seq balanced-token /// /// [C++0x] balanced-token: /// '(' balanced-token-seq ')' /// '[' balanced-token-seq ']' /// '{' balanced-token-seq '}' /// any token but '(', ')', '[', ']', '{', or '}' void Parser::ParseCXX0XAttributes(ParsedAttributesWithRange &attrs, SourceLocation *endLoc) { assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square) && "Not a C++0x attribute list"); SourceLocation StartLoc = Tok.getLocation(), Loc; ConsumeBracket(); ConsumeBracket(); if (Tok.is(tok::comma)) { Diag(Tok.getLocation(), diag::err_expected_ident); ConsumeToken(); } while (Tok.is(tok::identifier) || Tok.is(tok::comma)) { // attribute not present if (Tok.is(tok::comma)) { ConsumeToken(); continue; } IdentifierInfo *ScopeName = 0, *AttrName = Tok.getIdentifierInfo(); SourceLocation ScopeLoc, AttrLoc = ConsumeToken(); // scoped attribute if (Tok.is(tok::coloncolon)) { ConsumeToken(); if (!Tok.is(tok::identifier)) { Diag(Tok.getLocation(), diag::err_expected_ident); SkipUntil(tok::r_square, tok::comma, true, true); continue; } ScopeName = AttrName; ScopeLoc = AttrLoc; AttrName = Tok.getIdentifierInfo(); AttrLoc = ConsumeToken(); } bool AttrParsed = false; // No scoped names are supported; ideally we could put all non-standard // attributes into namespaces. if (!ScopeName) { switch(AttributeList::getKind(AttrName)) { // No arguments case AttributeList::AT_carries_dependency: case AttributeList::AT_noreturn: { if (Tok.is(tok::l_paren)) { Diag(Tok.getLocation(), diag::err_cxx0x_attribute_forbids_arguments) << AttrName->getName(); break; } attrs.addNew(AttrName, AttrLoc, 0, AttrLoc, 0, SourceLocation(), 0, 0, false, true); AttrParsed = true; break; } // One argument; must be a type-id or assignment-expression case AttributeList::AT_aligned: { if (Tok.isNot(tok::l_paren)) { Diag(Tok.getLocation(), diag::err_cxx0x_attribute_requires_arguments) << AttrName->getName(); break; } SourceLocation ParamLoc = ConsumeParen(); ExprResult ArgExpr = ParseCXX0XAlignArgument(ParamLoc); MatchRHSPunctuation(tok::r_paren, ParamLoc); ExprVector ArgExprs(Actions); ArgExprs.push_back(ArgExpr.release()); attrs.addNew(AttrName, AttrLoc, 0, AttrLoc, 0, ParamLoc, ArgExprs.take(), 1, false, true); AttrParsed = true; break; } // Silence warnings default: break; } } // Skip the entire parameter clause, if any if (!AttrParsed && Tok.is(tok::l_paren)) { ConsumeParen(); // SkipUntil maintains the balancedness of tokens. SkipUntil(tok::r_paren, false); } } if (ExpectAndConsume(tok::r_square, diag::err_expected_rsquare)) SkipUntil(tok::r_square, false); Loc = Tok.getLocation(); if (ExpectAndConsume(tok::r_square, diag::err_expected_rsquare)) SkipUntil(tok::r_square, false); attrs.Range = SourceRange(StartLoc, Loc); } /// ParseCXX0XAlignArgument - Parse the argument to C++0x's [[align]] /// attribute. /// /// FIXME: Simply returns an alignof() expression if the argument is a /// type. Ideally, the type should be propagated directly into Sema. /// /// [C++0x] 'align' '(' type-id ')' /// [C++0x] 'align' '(' assignment-expression ')' ExprResult Parser::ParseCXX0XAlignArgument(SourceLocation Start) { if (isTypeIdInParens()) { EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated); SourceLocation TypeLoc = Tok.getLocation(); ParsedType Ty = ParseTypeName().get(); SourceRange TypeRange(Start, Tok.getLocation()); return Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true, Ty.getAsOpaquePtr(), TypeRange); } else return ParseConstantExpression(); } /// ParseMicrosoftAttributes - Parse a Microsoft attribute [Attr] /// /// [MS] ms-attribute: /// '[' token-seq ']' /// /// [MS] ms-attribute-seq: /// ms-attribute[opt] /// ms-attribute ms-attribute-seq void Parser::ParseMicrosoftAttributes(ParsedAttributes &attrs, SourceLocation *endLoc) { assert(Tok.is(tok::l_square) && "Not a Microsoft attribute list"); while (Tok.is(tok::l_square)) { ConsumeBracket(); SkipUntil(tok::r_square, true, true); if (endLoc) *endLoc = Tok.getLocation(); ExpectAndConsume(tok::r_square, diag::err_expected_rsquare); } } void Parser::ParseMicrosoftIfExistsClassDeclaration(DeclSpec::TST TagType, AccessSpecifier& CurAS) { bool Result; if (ParseMicrosoftIfExistsCondition(Result)) return; if (Tok.isNot(tok::l_brace)) { Diag(Tok, diag::err_expected_lbrace); return; } ConsumeBrace(); // Condition is false skip all inside the {}. if (!Result) { SkipUntil(tok::r_brace, false); return; } // Condition is true, parse the declaration. while (Tok.isNot(tok::r_brace)) { // __if_exists, __if_not_exists can nest. if ((Tok.is(tok::kw___if_exists) || Tok.is(tok::kw___if_not_exists))) { ParseMicrosoftIfExistsClassDeclaration((DeclSpec::TST)TagType, CurAS); continue; } // Check for extraneous top-level semicolon. if (Tok.is(tok::semi)) { Diag(Tok, diag::ext_extra_struct_semi) << DeclSpec::getSpecifierName((DeclSpec::TST)TagType) << FixItHint::CreateRemoval(Tok.getLocation()); ConsumeToken(); continue; } AccessSpecifier AS = getAccessSpecifierIfPresent(); if (AS != AS_none) { // Current token is a C++ access specifier. CurAS = AS; SourceLocation ASLoc = Tok.getLocation(); ConsumeToken(); if (Tok.is(tok::colon)) Actions.ActOnAccessSpecifier(AS, ASLoc, Tok.getLocation()); else Diag(Tok, diag::err_expected_colon); ConsumeToken(); continue; } // Parse all the comma separated declarators. ParseCXXClassMemberDeclaration(CurAS); } if (Tok.isNot(tok::r_brace)) { Diag(Tok, diag::err_expected_rbrace); return; } ConsumeBrace(); }