//===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // It contains the tablegen backend that emits the decoder functions for // targets with fixed length instruction set. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "decoder-emitter" #include "FixedLenDecoderEmitter.h" #include "CodeGenTarget.h" #include "Record.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include #include #include using namespace llvm; // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system // for a bit value. // // BIT_UNFILTERED is used as the init value for a filter position. It is used // only for filter processings. typedef enum { BIT_TRUE, // '1' BIT_FALSE, // '0' BIT_UNSET, // '?' BIT_UNFILTERED // unfiltered } bit_value_t; static bool ValueSet(bit_value_t V) { return (V == BIT_TRUE || V == BIT_FALSE); } static bool ValueNotSet(bit_value_t V) { return (V == BIT_UNSET); } static int Value(bit_value_t V) { return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1); } static bit_value_t bitFromBits(BitsInit &bits, unsigned index) { if (BitInit *bit = dynamic_cast(bits.getBit(index))) return bit->getValue() ? BIT_TRUE : BIT_FALSE; // The bit is uninitialized. return BIT_UNSET; } // Prints the bit value for each position. static void dumpBits(raw_ostream &o, BitsInit &bits) { unsigned index; for (index = bits.getNumBits(); index > 0; index--) { switch (bitFromBits(bits, index - 1)) { case BIT_TRUE: o << "1"; break; case BIT_FALSE: o << "0"; break; case BIT_UNSET: o << "_"; break; default: assert(0 && "unexpected return value from bitFromBits"); } } } static BitsInit &getBitsField(const Record &def, const char *str) { BitsInit *bits = def.getValueAsBitsInit(str); return *bits; } // Forward declaration. class FilterChooser; // Representation of the instruction to work on. typedef std::vector insn_t; /// Filter - Filter works with FilterChooser to produce the decoding tree for /// the ISA. /// /// It is useful to think of a Filter as governing the switch stmts of the /// decoding tree in a certain level. Each case stmt delegates to an inferior /// FilterChooser to decide what further decoding logic to employ, or in another /// words, what other remaining bits to look at. The FilterChooser eventually /// chooses a best Filter to do its job. /// /// This recursive scheme ends when the number of Opcodes assigned to the /// FilterChooser becomes 1 or if there is a conflict. A conflict happens when /// the Filter/FilterChooser combo does not know how to distinguish among the /// Opcodes assigned. /// /// An example of a conflict is /// /// Conflict: /// 111101000.00........00010000.... /// 111101000.00........0001........ /// 1111010...00........0001........ /// 1111010...00.................... /// 1111010......................... /// 1111............................ /// ................................ /// VST4q8a 111101000_00________00010000____ /// VST4q8b 111101000_00________00010000____ /// /// The Debug output shows the path that the decoding tree follows to reach the /// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced /// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters. /// /// The encoding info in the .td files does not specify this meta information, /// which could have been used by the decoder to resolve the conflict. The /// decoder could try to decode the even/odd register numbering and assign to /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a" /// version and return the Opcode since the two have the same Asm format string. class Filter { protected: FilterChooser *Owner; // points to the FilterChooser who owns this filter unsigned StartBit; // the starting bit position unsigned NumBits; // number of bits to filter bool Mixed; // a mixed region contains both set and unset bits // Map of well-known segment value to the set of uid's with that value. std::map > FilteredInstructions; // Set of uid's with non-constant segment values. std::vector VariableInstructions; // Map of well-known segment value to its delegate. std::map FilterChooserMap; // Number of instructions which fall under FilteredInstructions category. unsigned NumFiltered; // Keeps track of the last opcode in the filtered bucket. unsigned LastOpcFiltered; // Number of instructions which fall under VariableInstructions category. unsigned NumVariable; public: unsigned getNumFiltered() { return NumFiltered; } unsigned getNumVariable() { return NumVariable; } unsigned getSingletonOpc() { assert(NumFiltered == 1); return LastOpcFiltered; } // Return the filter chooser for the group of instructions without constant // segment values. FilterChooser &getVariableFC() { assert(NumFiltered == 1); assert(FilterChooserMap.size() == 1); return *(FilterChooserMap.find((unsigned)-1)->second); } Filter(const Filter &f); Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed); ~Filter(); // Divides the decoding task into sub tasks and delegates them to the // inferior FilterChooser's. // // A special case arises when there's only one entry in the filtered // instructions. In order to unambiguously decode the singleton, we need to // match the remaining undecoded encoding bits against the singleton. void recurse(); // Emit code to decode instructions given a segment or segments of bits. void emit(raw_ostream &o, unsigned &Indentation); // Returns the number of fanout produced by the filter. More fanout implies // the filter distinguishes more categories of instructions. unsigned usefulness() const; }; // End of class Filter // These are states of our finite state machines used in FilterChooser's // filterProcessor() which produces the filter candidates to use. typedef enum { ATTR_NONE, ATTR_FILTERED, ATTR_ALL_SET, ATTR_ALL_UNSET, ATTR_MIXED } bitAttr_t; /// FilterChooser - FilterChooser chooses the best filter among a set of Filters /// in order to perform the decoding of instructions at the current level. /// /// Decoding proceeds from the top down. Based on the well-known encoding bits /// of instructions available, FilterChooser builds up the possible Filters that /// can further the task of decoding by distinguishing among the remaining /// candidate instructions. /// /// Once a filter has been chosen, it is called upon to divide the decoding task /// into sub-tasks and delegates them to its inferior FilterChoosers for further /// processings. /// /// It is useful to think of a Filter as governing the switch stmts of the /// decoding tree. And each case is delegated to an inferior FilterChooser to /// decide what further remaining bits to look at. class FilterChooser { protected: friend class Filter; // Vector of codegen instructions to choose our filter. const std::vector &AllInstructions; // Vector of uid's for this filter chooser to work on. const std::vector Opcodes; // Lookup table for the operand decoding of instructions. std::map > &Operands; // Vector of candidate filters. std::vector Filters; // Array of bit values passed down from our parent. // Set to all BIT_UNFILTERED's for Parent == NULL. std::vector FilterBitValues; // Links to the FilterChooser above us in the decoding tree. FilterChooser *Parent; // Index of the best filter from Filters. int BestIndex; // Width of instructions unsigned BitWidth; public: FilterChooser(const FilterChooser &FC) : AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes), Operands(FC.Operands), Filters(FC.Filters), FilterBitValues(FC.FilterBitValues), Parent(FC.Parent), BestIndex(FC.BestIndex), BitWidth(FC.BitWidth) { } FilterChooser(const std::vector &Insts, const std::vector &IDs, std::map > &Ops, unsigned BW) : AllInstructions(Insts), Opcodes(IDs), Operands(Ops), Filters(), Parent(NULL), BestIndex(-1), BitWidth(BW) { for (unsigned i = 0; i < BitWidth; ++i) FilterBitValues.push_back(BIT_UNFILTERED); doFilter(); } FilterChooser(const std::vector &Insts, const std::vector &IDs, std::map > &Ops, std::vector &ParentFilterBitValues, FilterChooser &parent) : AllInstructions(Insts), Opcodes(IDs), Operands(Ops), Filters(), FilterBitValues(ParentFilterBitValues), Parent(&parent), BestIndex(-1), BitWidth(parent.BitWidth) { doFilter(); } // The top level filter chooser has NULL as its parent. bool isTopLevel() { return Parent == NULL; } // Emit the top level typedef and decodeInstruction() function. void emitTop(raw_ostream &o, unsigned Indentation, std::string Namespace); protected: // Populates the insn given the uid. void insnWithID(insn_t &Insn, unsigned Opcode) const { BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst"); for (unsigned i = 0; i < BitWidth; ++i) Insn.push_back(bitFromBits(Bits, i)); } // Returns the record name. const std::string &nameWithID(unsigned Opcode) const { return AllInstructions[Opcode]->TheDef->getName(); } // Populates the field of the insn given the start position and the number of // consecutive bits to scan for. // // Returns false if there exists any uninitialized bit value in the range. // Returns true, otherwise. bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit, unsigned NumBits) const; /// dumpFilterArray - dumpFilterArray prints out debugging info for the given /// filter array as a series of chars. void dumpFilterArray(raw_ostream &o, std::vector & filter); /// dumpStack - dumpStack traverses the filter chooser chain and calls /// dumpFilterArray on each filter chooser up to the top level one. void dumpStack(raw_ostream &o, const char *prefix); Filter &bestFilter() { assert(BestIndex != -1 && "BestIndex not set"); return Filters[BestIndex]; } // Called from Filter::recurse() when singleton exists. For debug purpose. void SingletonExists(unsigned Opc); bool PositionFiltered(unsigned i) { return ValueSet(FilterBitValues[i]); } // Calculates the island(s) needed to decode the instruction. // This returns a lit of undecoded bits of an instructions, for example, // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be // decoded bits in order to verify that the instruction matches the Opcode. unsigned getIslands(std::vector &StartBits, std::vector &EndBits, std::vector &FieldVals, insn_t &Insn); // Emits code to decode the singleton. Return true if we have matched all the // well-known bits. bool emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,unsigned Opc); // Emits code to decode the singleton, and then to decode the rest. void emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,Filter &Best); // Assign a single filter and run with it. void runSingleFilter(FilterChooser &owner, unsigned startBit, unsigned numBit, bool mixed); // reportRegion is a helper function for filterProcessor to mark a region as // eligible for use as a filter region. void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex, bool AllowMixed); // FilterProcessor scans the well-known encoding bits of the instructions and // builds up a list of candidate filters. It chooses the best filter and // recursively descends down the decoding tree. bool filterProcessor(bool AllowMixed, bool Greedy = true); // Decides on the best configuration of filter(s) to use in order to decode // the instructions. A conflict of instructions may occur, in which case we // dump the conflict set to the standard error. void doFilter(); // Emits code to decode our share of instructions. Returns true if the // emitted code causes a return, which occurs if we know how to decode // the instruction at this level or the instruction is not decodeable. bool emit(raw_ostream &o, unsigned &Indentation); }; /////////////////////////// // // // Filter Implmenetation // // // /////////////////////////// Filter::Filter(const Filter &f) : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed), FilteredInstructions(f.FilteredInstructions), VariableInstructions(f.VariableInstructions), FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered), LastOpcFiltered(f.LastOpcFiltered), NumVariable(f.NumVariable) { } Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed) : Owner(&owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) { assert(StartBit + NumBits - 1 < Owner->BitWidth); NumFiltered = 0; LastOpcFiltered = 0; NumVariable = 0; for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) { insn_t Insn; // Populates the insn given the uid. Owner->insnWithID(Insn, Owner->Opcodes[i]); uint64_t Field; // Scans the segment for possibly well-specified encoding bits. bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits); if (ok) { // The encoding bits are well-known. Lets add the uid of the // instruction into the bucket keyed off the constant field value. LastOpcFiltered = Owner->Opcodes[i]; FilteredInstructions[Field].push_back(LastOpcFiltered); ++NumFiltered; } else { // Some of the encoding bit(s) are unspecfied. This contributes to // one additional member of "Variable" instructions. VariableInstructions.push_back(Owner->Opcodes[i]); ++NumVariable; } } assert((FilteredInstructions.size() + VariableInstructions.size() > 0) && "Filter returns no instruction categories"); } Filter::~Filter() { std::map::iterator filterIterator; for (filterIterator = FilterChooserMap.begin(); filterIterator != FilterChooserMap.end(); filterIterator++) { delete filterIterator->second; } } // Divides the decoding task into sub tasks and delegates them to the // inferior FilterChooser's. // // A special case arises when there's only one entry in the filtered // instructions. In order to unambiguously decode the singleton, we need to // match the remaining undecoded encoding bits against the singleton. void Filter::recurse() { std::map >::const_iterator mapIterator; // Starts by inheriting our parent filter chooser's filter bit values. std::vector BitValueArray(Owner->FilterBitValues); unsigned bitIndex; if (VariableInstructions.size()) { // Conservatively marks each segment position as BIT_UNSET. for (bitIndex = 0; bitIndex < NumBits; bitIndex++) BitValueArray[StartBit + bitIndex] = BIT_UNSET; // Delegates to an inferior filter chooser for further processing on this // group of instructions whose segment values are variable. FilterChooserMap.insert(std::pair( (unsigned)-1, new FilterChooser(Owner->AllInstructions, VariableInstructions, Owner->Operands, BitValueArray, *Owner) )); } // No need to recurse for a singleton filtered instruction. // See also Filter::emit(). if (getNumFiltered() == 1) { //Owner->SingletonExists(LastOpcFiltered); assert(FilterChooserMap.size() == 1); return; } // Otherwise, create sub choosers. for (mapIterator = FilteredInstructions.begin(); mapIterator != FilteredInstructions.end(); mapIterator++) { // Marks all the segment positions with either BIT_TRUE or BIT_FALSE. for (bitIndex = 0; bitIndex < NumBits; bitIndex++) { if (mapIterator->first & (1ULL << bitIndex)) BitValueArray[StartBit + bitIndex] = BIT_TRUE; else BitValueArray[StartBit + bitIndex] = BIT_FALSE; } // Delegates to an inferior filter chooser for further processing on this // category of instructions. FilterChooserMap.insert(std::pair( mapIterator->first, new FilterChooser(Owner->AllInstructions, mapIterator->second, Owner->Operands, BitValueArray, *Owner) )); } } // Emit code to decode instructions given a segment or segments of bits. void Filter::emit(raw_ostream &o, unsigned &Indentation) { o.indent(Indentation) << "// Check Inst{"; if (NumBits > 1) o << (StartBit + NumBits - 1) << '-'; o << StartBit << "} ...\n"; o.indent(Indentation) << "switch (fieldFromInstruction" << Owner->BitWidth << "(insn, " << StartBit << ", " << NumBits << ")) {\n"; std::map::iterator filterIterator; bool DefaultCase = false; for (filterIterator = FilterChooserMap.begin(); filterIterator != FilterChooserMap.end(); filterIterator++) { // Field value -1 implies a non-empty set of variable instructions. // See also recurse(). if (filterIterator->first == (unsigned)-1) { DefaultCase = true; o.indent(Indentation) << "default:\n"; o.indent(Indentation) << " break; // fallthrough\n"; // Closing curly brace for the switch statement. // This is unconventional because we want the default processing to be // performed for the fallthrough cases as well, i.e., when the "cases" // did not prove a decoded instruction. o.indent(Indentation) << "}\n"; } else o.indent(Indentation) << "case " << filterIterator->first << ":\n"; // We arrive at a category of instructions with the same segment value. // Now delegate to the sub filter chooser for further decodings. // The case may fallthrough, which happens if the remaining well-known // encoding bits do not match exactly. if (!DefaultCase) { ++Indentation; ++Indentation; } bool finished = filterIterator->second->emit(o, Indentation); // For top level default case, there's no need for a break statement. if (Owner->isTopLevel() && DefaultCase) break; if (!finished) o.indent(Indentation) << "break;\n"; if (!DefaultCase) { --Indentation; --Indentation; } } // If there is no default case, we still need to supply a closing brace. if (!DefaultCase) { // Closing curly brace for the switch statement. o.indent(Indentation) << "}\n"; } } // Returns the number of fanout produced by the filter. More fanout implies // the filter distinguishes more categories of instructions. unsigned Filter::usefulness() const { if (VariableInstructions.size()) return FilteredInstructions.size(); else return FilteredInstructions.size() + 1; } ////////////////////////////////// // // // Filterchooser Implementation // // // ////////////////////////////////// // Emit the top level typedef and decodeInstruction() function. void FilterChooser::emitTop(raw_ostream &o, unsigned Indentation, std::string Namespace) { o.indent(Indentation) << "static bool decode" << Namespace << "Instruction" << BitWidth << "(MCInst &MI, uint" << BitWidth << "_t insn, uint64_t Address, " << "const void *Decoder) {\n"; o.indent(Indentation) << " unsigned tmp = 0;\n"; ++Indentation; ++Indentation; // Emits code to decode the instructions. emit(o, Indentation); o << '\n'; o.indent(Indentation) << "return false;\n"; --Indentation; --Indentation; o.indent(Indentation) << "}\n"; o << '\n'; } // Populates the field of the insn given the start position and the number of // consecutive bits to scan for. // // Returns false if and on the first uninitialized bit value encountered. // Returns true, otherwise. bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit, unsigned NumBits) const { Field = 0; for (unsigned i = 0; i < NumBits; ++i) { if (Insn[StartBit + i] == BIT_UNSET) return false; if (Insn[StartBit + i] == BIT_TRUE) Field = Field | (1ULL << i); } return true; } /// dumpFilterArray - dumpFilterArray prints out debugging info for the given /// filter array as a series of chars. void FilterChooser::dumpFilterArray(raw_ostream &o, std::vector &filter) { unsigned bitIndex; for (bitIndex = BitWidth; bitIndex > 0; bitIndex--) { switch (filter[bitIndex - 1]) { case BIT_UNFILTERED: o << "."; break; case BIT_UNSET: o << "_"; break; case BIT_TRUE: o << "1"; break; case BIT_FALSE: o << "0"; break; } } } /// dumpStack - dumpStack traverses the filter chooser chain and calls /// dumpFilterArray on each filter chooser up to the top level one. void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) { FilterChooser *current = this; while (current) { o << prefix; dumpFilterArray(o, current->FilterBitValues); o << '\n'; current = current->Parent; } } // Called from Filter::recurse() when singleton exists. For debug purpose. void FilterChooser::SingletonExists(unsigned Opc) { insn_t Insn0; insnWithID(Insn0, Opc); errs() << "Singleton exists: " << nameWithID(Opc) << " with its decoding dominating "; for (unsigned i = 0; i < Opcodes.size(); ++i) { if (Opcodes[i] == Opc) continue; errs() << nameWithID(Opcodes[i]) << ' '; } errs() << '\n'; dumpStack(errs(), "\t\t"); for (unsigned i = 0; i < Opcodes.size(); i++) { const std::string &Name = nameWithID(Opcodes[i]); errs() << '\t' << Name << " "; dumpBits(errs(), getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst")); errs() << '\n'; } } // Calculates the island(s) needed to decode the instruction. // This returns a list of undecoded bits of an instructions, for example, // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be // decoded bits in order to verify that the instruction matches the Opcode. unsigned FilterChooser::getIslands(std::vector &StartBits, std::vector &EndBits, std::vector &FieldVals, insn_t &Insn) { unsigned Num, BitNo; Num = BitNo = 0; uint64_t FieldVal = 0; // 0: Init // 1: Water (the bit value does not affect decoding) // 2: Island (well-known bit value needed for decoding) int State = 0; int Val = -1; for (unsigned i = 0; i < BitWidth; ++i) { Val = Value(Insn[i]); bool Filtered = PositionFiltered(i); switch (State) { default: assert(0 && "Unreachable code!"); break; case 0: case 1: if (Filtered || Val == -1) State = 1; // Still in Water else { State = 2; // Into the Island BitNo = 0; StartBits.push_back(i); FieldVal = Val; } break; case 2: if (Filtered || Val == -1) { State = 1; // Into the Water EndBits.push_back(i - 1); FieldVals.push_back(FieldVal); ++Num; } else { State = 2; // Still in Island ++BitNo; FieldVal = FieldVal | Val << BitNo; } break; } } // If we are still in Island after the loop, do some housekeeping. if (State == 2) { EndBits.push_back(BitWidth - 1); FieldVals.push_back(FieldVal); ++Num; } assert(StartBits.size() == Num && EndBits.size() == Num && FieldVals.size() == Num); return Num; } // Emits code to decode the singleton. Return true if we have matched all the // well-known bits. bool FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation, unsigned Opc) { std::vector StartBits; std::vector EndBits; std::vector FieldVals; insn_t Insn; insnWithID(Insn, Opc); // Look for islands of undecoded bits of the singleton. getIslands(StartBits, EndBits, FieldVals, Insn); unsigned Size = StartBits.size(); unsigned I, NumBits; // If we have matched all the well-known bits, just issue a return. if (Size == 0) { o.indent(Indentation) << "{\n"; o.indent(Indentation) << " MI.setOpcode(" << Opc << ");\n"; std::vector& InsnOperands = Operands[Opc]; for (std::vector::iterator I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) { // If a custom instruction decoder was specified, use that. if (I->FieldBase == ~0U && I->FieldLength == ~0U) { o.indent(Indentation) << " " << I->Decoder << "(MI, insn, Address, Decoder);\n"; break; } o.indent(Indentation) << " tmp = fieldFromInstruction" << BitWidth << "(insn, " << I->FieldBase << ", " << I->FieldLength << ");\n"; if (I->Decoder != "") { o.indent(Indentation) << " " << I->Decoder << "(MI, tmp, Address, Decoder);\n"; } else { o.indent(Indentation) << " MI.addOperand(MCOperand::CreateImm(tmp));\n"; } } o.indent(Indentation) << " return true; // " << nameWithID(Opc) << '\n'; o.indent(Indentation) << "}\n"; return true; } // Otherwise, there are more decodings to be done! // Emit code to match the island(s) for the singleton. o.indent(Indentation) << "// Check "; for (I = Size; I != 0; --I) { o << "Inst{" << EndBits[I-1] << '-' << StartBits[I-1] << "} "; if (I > 1) o << "&& "; else o << "for singleton decoding...\n"; } o.indent(Indentation) << "if ("; for (I = Size; I != 0; --I) { NumBits = EndBits[I-1] - StartBits[I-1] + 1; o << "fieldFromInstruction" << BitWidth << "(insn, " << StartBits[I-1] << ", " << NumBits << ") == " << FieldVals[I-1]; if (I > 1) o << " && "; else o << ") {\n"; } o.indent(Indentation) << " MI.setOpcode(" << Opc << ");\n"; std::vector& InsnOperands = Operands[Opc]; for (std::vector::iterator I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) { // If a custom instruction decoder was specified, use that. if (I->FieldBase == ~0U && I->FieldLength == ~0U) { o.indent(Indentation) << " " << I->Decoder << "(MI, insn, Address, Decoder);\n"; break; } o.indent(Indentation) << " tmp = fieldFromInstruction" << BitWidth << "(insn, " << I->FieldBase << ", " << I->FieldLength << ");\n"; if (I->Decoder != "") { o.indent(Indentation) << " " << I->Decoder << "(MI, tmp, Address, Decoder);\n"; } else { o.indent(Indentation) << " MI.addOperand(MCOperand::CreateImm(tmp));\n"; } } o.indent(Indentation) << " return true; // " << nameWithID(Opc) << '\n'; o.indent(Indentation) << "}\n"; return false; } // Emits code to decode the singleton, and then to decode the rest. void FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation, Filter &Best) { unsigned Opc = Best.getSingletonOpc(); emitSingletonDecoder(o, Indentation, Opc); // Emit code for the rest. o.indent(Indentation) << "else\n"; Indentation += 2; Best.getVariableFC().emit(o, Indentation); Indentation -= 2; } // Assign a single filter and run with it. Top level API client can initialize // with a single filter to start the filtering process. void FilterChooser::runSingleFilter(FilterChooser &owner, unsigned startBit, unsigned numBit, bool mixed) { Filters.clear(); Filter F(*this, startBit, numBit, true); Filters.push_back(F); BestIndex = 0; // Sole Filter instance to choose from. bestFilter().recurse(); } // reportRegion is a helper function for filterProcessor to mark a region as // eligible for use as a filter region. void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex, bool AllowMixed) { if (RA == ATTR_MIXED && AllowMixed) Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, true)); else if (RA == ATTR_ALL_SET && !AllowMixed) Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, false)); } // FilterProcessor scans the well-known encoding bits of the instructions and // builds up a list of candidate filters. It chooses the best filter and // recursively descends down the decoding tree. bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) { Filters.clear(); BestIndex = -1; unsigned numInstructions = Opcodes.size(); assert(numInstructions && "Filter created with no instructions"); // No further filtering is necessary. if (numInstructions == 1) return true; // Heuristics. See also doFilter()'s "Heuristics" comment when num of // instructions is 3. if (AllowMixed && !Greedy) { assert(numInstructions == 3); for (unsigned i = 0; i < Opcodes.size(); ++i) { std::vector StartBits; std::vector EndBits; std::vector FieldVals; insn_t Insn; insnWithID(Insn, Opcodes[i]); // Look for islands of undecoded bits of any instruction. if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) { // Found an instruction with island(s). Now just assign a filter. runSingleFilter(*this, StartBits[0], EndBits[0] - StartBits[0] + 1, true); return true; } } } unsigned BitIndex, InsnIndex; // We maintain BIT_WIDTH copies of the bitAttrs automaton. // The automaton consumes the corresponding bit from each // instruction. // // Input symbols: 0, 1, and _ (unset). // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED. // Initial state: NONE. // // (NONE) ------- [01] -> (ALL_SET) // (NONE) ------- _ ----> (ALL_UNSET) // (ALL_SET) ---- [01] -> (ALL_SET) // (ALL_SET) ---- _ ----> (MIXED) // (ALL_UNSET) -- [01] -> (MIXED) // (ALL_UNSET) -- _ ----> (ALL_UNSET) // (MIXED) ------ . ----> (MIXED) // (FILTERED)---- . ----> (FILTERED) std::vector bitAttrs; // FILTERED bit positions provide no entropy and are not worthy of pursuing. // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position. for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) if (FilterBitValues[BitIndex] == BIT_TRUE || FilterBitValues[BitIndex] == BIT_FALSE) bitAttrs.push_back(ATTR_FILTERED); else bitAttrs.push_back(ATTR_NONE); for (InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) { insn_t insn; insnWithID(insn, Opcodes[InsnIndex]); for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) { switch (bitAttrs[BitIndex]) { case ATTR_NONE: if (insn[BitIndex] == BIT_UNSET) bitAttrs[BitIndex] = ATTR_ALL_UNSET; else bitAttrs[BitIndex] = ATTR_ALL_SET; break; case ATTR_ALL_SET: if (insn[BitIndex] == BIT_UNSET) bitAttrs[BitIndex] = ATTR_MIXED; break; case ATTR_ALL_UNSET: if (insn[BitIndex] != BIT_UNSET) bitAttrs[BitIndex] = ATTR_MIXED; break; case ATTR_MIXED: case ATTR_FILTERED: break; } } } // The regionAttr automaton consumes the bitAttrs automatons' state, // lowest-to-highest. // // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed) // States: NONE, ALL_SET, MIXED // Initial state: NONE // // (NONE) ----- F --> (NONE) // (NONE) ----- S --> (ALL_SET) ; and set region start // (NONE) ----- U --> (NONE) // (NONE) ----- M --> (MIXED) ; and set region start // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region // (ALL_SET) -- S --> (ALL_SET) // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region // (MIXED) ---- F --> (NONE) ; and report a MIXED region // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region // (MIXED) ---- U --> (NONE) ; and report a MIXED region // (MIXED) ---- M --> (MIXED) bitAttr_t RA = ATTR_NONE; unsigned StartBit = 0; for (BitIndex = 0; BitIndex < BitWidth; BitIndex++) { bitAttr_t bitAttr = bitAttrs[BitIndex]; assert(bitAttr != ATTR_NONE && "Bit without attributes"); switch (RA) { case ATTR_NONE: switch (bitAttr) { case ATTR_FILTERED: break; case ATTR_ALL_SET: StartBit = BitIndex; RA = ATTR_ALL_SET; break; case ATTR_ALL_UNSET: break; case ATTR_MIXED: StartBit = BitIndex; RA = ATTR_MIXED; break; default: assert(0 && "Unexpected bitAttr!"); } break; case ATTR_ALL_SET: switch (bitAttr) { case ATTR_FILTERED: reportRegion(RA, StartBit, BitIndex, AllowMixed); RA = ATTR_NONE; break; case ATTR_ALL_SET: break; case ATTR_ALL_UNSET: reportRegion(RA, StartBit, BitIndex, AllowMixed); RA = ATTR_NONE; break; case ATTR_MIXED: reportRegion(RA, StartBit, BitIndex, AllowMixed); StartBit = BitIndex; RA = ATTR_MIXED; break; default: assert(0 && "Unexpected bitAttr!"); } break; case ATTR_MIXED: switch (bitAttr) { case ATTR_FILTERED: reportRegion(RA, StartBit, BitIndex, AllowMixed); StartBit = BitIndex; RA = ATTR_NONE; break; case ATTR_ALL_SET: reportRegion(RA, StartBit, BitIndex, AllowMixed); StartBit = BitIndex; RA = ATTR_ALL_SET; break; case ATTR_ALL_UNSET: reportRegion(RA, StartBit, BitIndex, AllowMixed); RA = ATTR_NONE; break; case ATTR_MIXED: break; default: assert(0 && "Unexpected bitAttr!"); } break; case ATTR_ALL_UNSET: assert(0 && "regionAttr state machine has no ATTR_UNSET state"); case ATTR_FILTERED: assert(0 && "regionAttr state machine has no ATTR_FILTERED state"); } } // At the end, if we're still in ALL_SET or MIXED states, report a region switch (RA) { case ATTR_NONE: break; case ATTR_FILTERED: break; case ATTR_ALL_SET: reportRegion(RA, StartBit, BitIndex, AllowMixed); break; case ATTR_ALL_UNSET: break; case ATTR_MIXED: reportRegion(RA, StartBit, BitIndex, AllowMixed); break; } // We have finished with the filter processings. Now it's time to choose // the best performing filter. BestIndex = 0; bool AllUseless = true; unsigned BestScore = 0; for (unsigned i = 0, e = Filters.size(); i != e; ++i) { unsigned Usefulness = Filters[i].usefulness(); if (Usefulness) AllUseless = false; if (Usefulness > BestScore) { BestIndex = i; BestScore = Usefulness; } } if (!AllUseless) bestFilter().recurse(); return !AllUseless; } // end of FilterChooser::filterProcessor(bool) // Decides on the best configuration of filter(s) to use in order to decode // the instructions. A conflict of instructions may occur, in which case we // dump the conflict set to the standard error. void FilterChooser::doFilter() { unsigned Num = Opcodes.size(); assert(Num && "FilterChooser created with no instructions"); // Try regions of consecutive known bit values first. if (filterProcessor(false)) return; // Then regions of mixed bits (both known and unitialized bit values allowed). if (filterProcessor(true)) return; // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a // well-known encoding pattern. In such case, we backtrack and scan for the // the very first consecutive ATTR_ALL_SET region and assign a filter to it. if (Num == 3 && filterProcessor(true, false)) return; // If we come to here, the instruction decoding has failed. // Set the BestIndex to -1 to indicate so. BestIndex = -1; } // Emits code to decode our share of instructions. Returns true if the // emitted code causes a return, which occurs if we know how to decode // the instruction at this level or the instruction is not decodeable. bool FilterChooser::emit(raw_ostream &o, unsigned &Indentation) { if (Opcodes.size() == 1) // There is only one instruction in the set, which is great! // Call emitSingletonDecoder() to see whether there are any remaining // encodings bits. return emitSingletonDecoder(o, Indentation, Opcodes[0]); // Choose the best filter to do the decodings! if (BestIndex != -1) { Filter &Best = bestFilter(); if (Best.getNumFiltered() == 1) emitSingletonDecoder(o, Indentation, Best); else bestFilter().emit(o, Indentation); return false; } // We don't know how to decode these instructions! Return 0 and dump the // conflict set! o.indent(Indentation) << "return 0;" << " // Conflict set: "; for (int i = 0, N = Opcodes.size(); i < N; ++i) { o << nameWithID(Opcodes[i]); if (i < (N - 1)) o << ", "; else o << '\n'; } // Print out useful conflict information for postmortem analysis. errs() << "Decoding Conflict:\n"; dumpStack(errs(), "\t\t"); for (unsigned i = 0; i < Opcodes.size(); i++) { const std::string &Name = nameWithID(Opcodes[i]); errs() << '\t' << Name << " "; dumpBits(errs(), getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst")); errs() << '\n'; } return true; } static bool populateInstruction(const CodeGenInstruction &CGI, unsigned Opc, std::map >& Operands){ const Record &Def = *CGI.TheDef; // If all the bit positions are not specified; do not decode this instruction. // We are bound to fail! For proper disassembly, the well-known encoding bits // of the instruction must be fully specified. // // This also removes pseudo instructions from considerations of disassembly, // which is a better design and less fragile than the name matchings. // Ignore "asm parser only" instructions. if (Def.getValueAsBit("isAsmParserOnly") || Def.getValueAsBit("isCodeGenOnly")) return false; BitsInit &Bits = getBitsField(Def, "Inst"); if (Bits.allInComplete()) return false; std::vector InsnOperands; // If the instruction has specified a custom decoding hook, use that instead // of trying to auto-generate the decoder. std::string InstDecoder = Def.getValueAsString("DecoderMethod"); if (InstDecoder != "") { InsnOperands.push_back(OperandInfo(~0U, ~0U, InstDecoder)); Operands[Opc] = InsnOperands; return true; } // Generate a description of the operand of the instruction that we know // how to decode automatically. // FIXME: We'll need to have a way to manually override this as needed. // Gather the outputs/inputs of the instruction, so we can find their // positions in the encoding. This assumes for now that they appear in the // MCInst in the order that they're listed. std::vector > InOutOperands; DagInit *Out = Def.getValueAsDag("OutOperandList"); DagInit *In = Def.getValueAsDag("InOperandList"); for (unsigned i = 0; i < Out->getNumArgs(); ++i) InOutOperands.push_back(std::make_pair(Out->getArg(i), Out->getArgName(i))); for (unsigned i = 0; i < In->getNumArgs(); ++i) InOutOperands.push_back(std::make_pair(In->getArg(i), In->getArgName(i))); // For each operand, see if we can figure out where it is encoded. for (std::vector >::iterator NI = InOutOperands.begin(), NE = InOutOperands.end(); NI != NE; ++NI) { unsigned PrevBit = ~0; unsigned Base = ~0; unsigned PrevPos = ~0; std::string Decoder = ""; for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) { VarBitInit *BI = dynamic_cast(Bits.getBit(bi)); if (!BI) continue; VarInit *Var = dynamic_cast(BI->getVariable()); assert(Var); unsigned CurrBit = BI->getBitNum(); if (Var->getName() != NI->second) continue; // Figure out the lowest bit of the value, and the width of the field. // Deliberately don't try to handle cases where the field is scattered, // or where not all bits of the the field are explicit. if (Base == ~0U && PrevBit == ~0U && PrevPos == ~0U) { if (CurrBit == 0) Base = bi; else continue; } if ((PrevPos != ~0U && bi-1 != PrevPos) || (CurrBit != ~0U && CurrBit-1 != PrevBit)) { PrevBit = ~0; Base = ~0; PrevPos = ~0; } PrevPos = bi; PrevBit = CurrBit; // At this point, we can locate the field, but we need to know how to // interpret it. As a first step, require the target to provide callbacks // for decoding register classes. // FIXME: This need to be extended to handle instructions with custom // decoder methods, and operands with (simple) MIOperandInfo's. TypedInit *TI = dynamic_cast(NI->first); RecordRecTy *Type = dynamic_cast(TI->getType()); Record *TypeRecord = Type->getRecord(); bool isReg = false; if (TypeRecord->isSubClassOf("RegisterOperand")) TypeRecord = TypeRecord->getValueAsDef("RegClass"); if (TypeRecord->isSubClassOf("RegisterClass")) { Decoder = "Decode" + TypeRecord->getName() + "RegisterClass"; isReg = true; } RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod"); StringInit *String = DecoderString ? dynamic_cast(DecoderString->getValue()) : 0; if (!isReg && String && String->getValue() != "") Decoder = String->getValue(); } if (Base != ~0U) { InsnOperands.push_back(OperandInfo(Base, PrevBit+1, Decoder)); DEBUG(errs() << "ENCODED OPERAND: $" << NI->second << " @ (" << utostr(Base+PrevBit) << ", " << utostr(Base) << ")\n"); } } Operands[Opc] = InsnOperands; #if 0 DEBUG({ // Dumps the instruction encoding bits. dumpBits(errs(), Bits); errs() << '\n'; // Dumps the list of operand info. for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) { const CGIOperandList::OperandInfo &Info = CGI.Operands[i]; const std::string &OperandName = Info.Name; const Record &OperandDef = *Info.Rec; errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n"; } }); #endif return true; } static void emitHelper(llvm::raw_ostream &o, unsigned BitWidth) { unsigned Indentation = 0; std::string WidthStr = "uint" + utostr(BitWidth) + "_t"; o << '\n'; o.indent(Indentation) << "static " << WidthStr << " fieldFromInstruction" << BitWidth << "(" << WidthStr <<" insn, unsigned startBit, unsigned numBits)\n"; o.indent(Indentation) << "{\n"; ++Indentation; ++Indentation; o.indent(Indentation) << "assert(startBit + numBits <= " << BitWidth << " && \"Instruction field out of bounds!\");\n"; o << '\n'; o.indent(Indentation) << WidthStr << " fieldMask;\n"; o << '\n'; o.indent(Indentation) << "if (numBits == " << BitWidth << ")\n"; ++Indentation; ++Indentation; o.indent(Indentation) << "fieldMask = (" << WidthStr << ")-1;\n"; --Indentation; --Indentation; o.indent(Indentation) << "else\n"; ++Indentation; ++Indentation; o.indent(Indentation) << "fieldMask = ((1 << numBits) - 1) << startBit;\n"; --Indentation; --Indentation; o << '\n'; o.indent(Indentation) << "return (insn & fieldMask) >> startBit;\n"; --Indentation; --Indentation; o.indent(Indentation) << "}\n"; o << '\n'; } // Emits disassembler code for instruction decoding. void FixedLenDecoderEmitter::run(raw_ostream &o) { o << "#include \"llvm/MC/MCInst.h\"\n"; o << "#include \"llvm/Support/DataTypes.h\"\n"; o << "#include \n"; o << '\n'; o << "namespace llvm {\n\n"; // Parameterize the decoders based on namespace and instruction width. NumberedInstructions = Target.getInstructionsByEnumValue(); std::map, std::vector > OpcMap; std::map > Operands; for (unsigned i = 0; i < NumberedInstructions.size(); ++i) { const CodeGenInstruction *Inst = NumberedInstructions[i]; Record *Def = Inst->TheDef; unsigned Size = Def->getValueAsInt("Size"); if (Def->getValueAsString("Namespace") == "TargetOpcode" || Def->getValueAsBit("isPseudo") || Def->getValueAsBit("isAsmParserOnly") || Def->getValueAsBit("isCodeGenOnly")) continue; std::string DecoderNamespace = Def->getValueAsString("DecoderNamespace"); if (Size) { if (populateInstruction(*Inst, i, Operands)) { OpcMap[std::make_pair(DecoderNamespace, Size)].push_back(i); } } } std::set Sizes; for (std::map, std::vector >::iterator I = OpcMap.begin(), E = OpcMap.end(); I != E; ++I) { // If we haven't visited this instruction width before, emit the // helper method to extract fields. if (!Sizes.count(I->first.second)) { emitHelper(o, 8*I->first.second); Sizes.insert(I->first.second); } // Emit the decoder for this namespace+width combination. FilterChooser FC(NumberedInstructions, I->second, Operands, 8*I->first.second); FC.emitTop(o, 0, I->first.first); } o << "\n} // End llvm namespace \n"; }