/*--------------------------------------------------------------------*/ /*--- malloc/free wrappers for detecting errors and updating bits. ---*/ /*--- mc_malloc_wrappers.c ---*/ /*--------------------------------------------------------------------*/ /* This file is part of MemCheck, a heavyweight Valgrind tool for detecting memory errors. Copyright (C) 2000-2010 Julian Seward jseward@acm.org This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. The GNU General Public License is contained in the file COPYING. */ #include "pub_tool_basics.h" #include "pub_tool_execontext.h" #include "pub_tool_hashtable.h" #include "pub_tool_libcbase.h" #include "pub_tool_libcassert.h" #include "pub_tool_libcprint.h" #include "pub_tool_mallocfree.h" #include "pub_tool_options.h" #include "pub_tool_replacemalloc.h" #include "pub_tool_threadstate.h" #include "pub_tool_tooliface.h" // Needed for mc_include.h #include "pub_tool_stacktrace.h" // For VG_(get_and_pp_StackTrace) #include "mc_include.h" /*------------------------------------------------------------*/ /*--- Defns ---*/ /*------------------------------------------------------------*/ /* Stats ... */ static SizeT cmalloc_n_mallocs = 0; static SizeT cmalloc_n_frees = 0; static ULong cmalloc_bs_mallocd = 0; /* For debug printing to do with mempools: what stack trace depth to show. */ #define MEMPOOL_DEBUG_STACKTRACE_DEPTH 16 /*------------------------------------------------------------*/ /*--- Tracking malloc'd and free'd blocks ---*/ /*------------------------------------------------------------*/ /* Record malloc'd blocks. */ VgHashTable MC_(malloc_list) = NULL; /* Memory pools: a hash table of MC_Mempools. Search key is MC_Mempool::pool. */ VgHashTable MC_(mempool_list) = NULL; /* Records blocks after freeing. */ static MC_Chunk* freed_list_start = NULL; static MC_Chunk* freed_list_end = NULL; /* Put a shadow chunk on the freed blocks queue, possibly freeing up some of the oldest blocks in the queue at the same time. */ static void add_to_freed_queue ( MC_Chunk* mc ) { const Bool show = False; /* Put it at the end of the freed list */ if (freed_list_end == NULL) { tl_assert(freed_list_start == NULL); freed_list_end = freed_list_start = mc; VG_(free_queue_volume) = (Long)mc->szB; } else { tl_assert(freed_list_end->next == NULL); freed_list_end->next = mc; freed_list_end = mc; VG_(free_queue_volume) += (Long)mc->szB; if (show) VG_(printf)("mc_freelist: acquire: volume now %lld\n", VG_(free_queue_volume)); } VG_(free_queue_length)++; mc->next = NULL; /* Release enough of the oldest blocks to bring the free queue volume below vg_clo_freelist_vol. */ while (VG_(free_queue_volume) > MC_(clo_freelist_vol)) { MC_Chunk* mc1; tl_assert(freed_list_start != NULL); tl_assert(freed_list_end != NULL); mc1 = freed_list_start; VG_(free_queue_volume) -= (Long)mc1->szB; VG_(free_queue_length)--; if (show) VG_(printf)("mc_freelist: discard: volume now %lld\n", VG_(free_queue_volume)); tl_assert(VG_(free_queue_volume) >= 0); if (freed_list_start == freed_list_end) { freed_list_start = freed_list_end = NULL; } else { freed_list_start = mc1->next; } mc1->next = NULL; /* just paranoia */ /* free MC_Chunk */ if (MC_AllocCustom != mc1->allockind) { VG_(cli_free) ( (void*)(mc1->data) ); } VG_(free) ( mc1 ); } } MC_Chunk* MC_(get_freed_list_head)(void) { return freed_list_start; } /* Allocate its shadow chunk, put it on the appropriate list. */ static MC_Chunk* create_MC_Chunk ( ExeContext* ec, Addr p, SizeT szB, MC_AllocKind kind) { MC_Chunk* mc = VG_(malloc)("mc.cMC.1 (a MC_Chunk)", sizeof(MC_Chunk)); mc->data = p; mc->szB = szB; mc->allockind = kind; mc->where = ec; /* Paranoia ... ensure the MC_Chunk is off-limits to the client, so the mc->data field isn't visible to the leak checker. If memory management is working correctly, any pointer returned by VG_(malloc) should be noaccess as far as the client is concerned. */ if (!MC_(check_mem_is_noaccess)( (Addr)mc, sizeof(MC_Chunk), NULL )) { VG_(tool_panic)("create_MC_Chunk: shadow area is accessible"); } return mc; } /*------------------------------------------------------------*/ /*--- client_malloc(), etc ---*/ /*------------------------------------------------------------*/ // XXX: should make this a proper error (bug #79311). static Bool complain_about_silly_args(SizeT sizeB, Char* fn) { // Cast to a signed type to catch any unexpectedly negative args. We're // assuming here that the size asked for is not greater than 2^31 bytes // (for 32-bit platforms) or 2^63 bytes (for 64-bit platforms). if ((SSizeT)sizeB < 0) { if (!VG_(clo_xml)) VG_(message)(Vg_UserMsg, "Warning: silly arg (%ld) to %s()\n", (SSizeT)sizeB, fn ); return True; } return False; } static Bool complain_about_silly_args2(SizeT n, SizeT sizeB) { if ((SSizeT)n < 0 || (SSizeT)sizeB < 0) { if (!VG_(clo_xml)) VG_(message)(Vg_UserMsg, "Warning: silly args (%ld,%ld) to calloc()\n", (SSizeT)n, (SSizeT)sizeB); return True; } return False; } /* Allocate memory and note change in memory available */ void* MC_(new_block) ( ThreadId tid, Addr p, SizeT szB, SizeT alignB, Bool is_zeroed, MC_AllocKind kind, VgHashTable table) { ExeContext* ec; cmalloc_n_mallocs ++; // Allocate and zero if necessary if (p) { tl_assert(MC_AllocCustom == kind); } else { tl_assert(MC_AllocCustom != kind); p = (Addr)VG_(cli_malloc)( alignB, szB ); if (!p) { return NULL; } if (is_zeroed) { VG_(memset)((void*)p, 0, szB); } else if (MC_(clo_malloc_fill) != -1) { tl_assert(MC_(clo_malloc_fill) >= 0x00 && MC_(clo_malloc_fill) <= 0xFF); VG_(memset)((void*)p, MC_(clo_malloc_fill), szB); } } // Only update this stat if allocation succeeded. cmalloc_bs_mallocd += (ULong)szB; ec = VG_(record_ExeContext)(tid, 0/*first_ip_delta*/); tl_assert(ec); VG_(HT_add_node)( table, create_MC_Chunk(ec, p, szB, kind) ); if (is_zeroed) MC_(make_mem_defined)( p, szB ); else { UInt ecu = VG_(get_ECU_from_ExeContext)(ec); tl_assert(VG_(is_plausible_ECU)(ecu)); MC_(make_mem_undefined_w_otag)( p, szB, ecu | MC_OKIND_HEAP ); } return (void*)p; } void* MC_(malloc) ( ThreadId tid, SizeT n ) { if (complain_about_silly_args(n, "malloc")) { return NULL; } else { return MC_(new_block) ( tid, 0, n, VG_(clo_alignment), /*is_zeroed*/False, MC_AllocMalloc, MC_(malloc_list)); } } void* MC_(__builtin_new) ( ThreadId tid, SizeT n ) { if (complain_about_silly_args(n, "__builtin_new")) { return NULL; } else { return MC_(new_block) ( tid, 0, n, VG_(clo_alignment), /*is_zeroed*/False, MC_AllocNew, MC_(malloc_list)); } } void* MC_(__builtin_vec_new) ( ThreadId tid, SizeT n ) { if (complain_about_silly_args(n, "__builtin_vec_new")) { return NULL; } else { return MC_(new_block) ( tid, 0, n, VG_(clo_alignment), /*is_zeroed*/False, MC_AllocNewVec, MC_(malloc_list)); } } void* MC_(memalign) ( ThreadId tid, SizeT alignB, SizeT n ) { if (complain_about_silly_args(n, "memalign")) { return NULL; } else { return MC_(new_block) ( tid, 0, n, alignB, /*is_zeroed*/False, MC_AllocMalloc, MC_(malloc_list)); } } void* MC_(calloc) ( ThreadId tid, SizeT nmemb, SizeT size1 ) { if (complain_about_silly_args2(nmemb, size1)) { return NULL; } else { return MC_(new_block) ( tid, 0, nmemb*size1, VG_(clo_alignment), /*is_zeroed*/True, MC_AllocMalloc, MC_(malloc_list)); } } static void die_and_free_mem ( ThreadId tid, MC_Chunk* mc, SizeT rzB ) { if (MC_(clo_free_fill) != -1) { tl_assert(MC_(clo_free_fill) >= 0x00 && MC_(clo_free_fill) <= 0xFF); VG_(memset)((void*)mc->data, MC_(clo_free_fill), mc->szB); } /* Note: make redzones noaccess again -- just in case user made them accessible with a client request... */ MC_(make_mem_noaccess)( mc->data-rzB, mc->szB + 2*rzB ); /* Record where freed */ mc->where = VG_(record_ExeContext) ( tid, 0/*first_ip_delta*/ ); /* Put it out of harm's way for a while */ add_to_freed_queue ( mc ); } void MC_(handle_free) ( ThreadId tid, Addr p, UInt rzB, MC_AllocKind kind ) { MC_Chunk* mc; cmalloc_n_frees++; mc = VG_(HT_remove) ( MC_(malloc_list), (UWord)p ); if (mc == NULL) { MC_(record_free_error) ( tid, p ); } else { /* check if it is a matching free() / delete / delete [] */ if (kind != mc->allockind) { tl_assert(p == mc->data); MC_(record_freemismatch_error) ( tid, mc ); } die_and_free_mem ( tid, mc, rzB ); } } void MC_(free) ( ThreadId tid, void* p ) { MC_(handle_free)( tid, (Addr)p, MC_MALLOC_REDZONE_SZB, MC_AllocMalloc ); } void MC_(__builtin_delete) ( ThreadId tid, void* p ) { MC_(handle_free)( tid, (Addr)p, MC_MALLOC_REDZONE_SZB, MC_AllocNew); } void MC_(__builtin_vec_delete) ( ThreadId tid, void* p ) { MC_(handle_free)( tid, (Addr)p, MC_MALLOC_REDZONE_SZB, MC_AllocNewVec); } void* MC_(realloc) ( ThreadId tid, void* p_old, SizeT new_szB ) { MC_Chunk* mc; void* p_new; SizeT old_szB; cmalloc_n_frees ++; cmalloc_n_mallocs ++; cmalloc_bs_mallocd += (ULong)new_szB; if (complain_about_silly_args(new_szB, "realloc")) return NULL; /* Remove the old block */ mc = VG_(HT_remove) ( MC_(malloc_list), (UWord)p_old ); if (mc == NULL) { MC_(record_free_error) ( tid, (Addr)p_old ); /* We return to the program regardless. */ return NULL; } /* check if its a matching free() / delete / delete [] */ if (MC_AllocMalloc != mc->allockind) { /* can not realloc a range that was allocated with new or new [] */ tl_assert((Addr)p_old == mc->data); MC_(record_freemismatch_error) ( tid, mc ); /* but keep going anyway */ } old_szB = mc->szB; /* In all cases, even when the new size is smaller or unchanged, we reallocate and copy the contents, and make the old block inaccessible. This is so as to guarantee to catch all cases of accesses via the old address after reallocation, regardless of the change in size. (Of course the ability to detect accesses to the old block also depends on the size of the freed blocks queue). */ if (new_szB <= old_szB) { /* new size is smaller or the same */ Addr a_new; /* Get new memory */ a_new = (Addr)VG_(cli_malloc)(VG_(clo_alignment), new_szB); if (a_new) { ExeContext* ec; ec = VG_(record_ExeContext)(tid, 0/*first_ip_delta*/); tl_assert(ec); /* Retained part is copied, red zones set as normal */ MC_(make_mem_noaccess)( a_new-MC_MALLOC_REDZONE_SZB, MC_MALLOC_REDZONE_SZB ); MC_(copy_address_range_state) ( (Addr)p_old, a_new, new_szB ); MC_(make_mem_noaccess) ( a_new+new_szB, MC_MALLOC_REDZONE_SZB ); /* Copy from old to new */ VG_(memcpy)((void*)a_new, p_old, new_szB); /* Possibly fill freed area with specified junk. */ if (MC_(clo_free_fill) != -1) { tl_assert(MC_(clo_free_fill) >= 0x00 && MC_(clo_free_fill) <= 0xFF); VG_(memset)((void*)p_old, MC_(clo_free_fill), old_szB); } /* Free old memory */ /* Nb: we have to allocate a new MC_Chunk for the new memory rather than recycling the old one, so that any erroneous accesses to the old memory are reported. */ die_and_free_mem ( tid, mc, MC_MALLOC_REDZONE_SZB ); // Allocate a new chunk. mc = create_MC_Chunk( ec, a_new, new_szB, MC_AllocMalloc ); } p_new = (void*)a_new; } else { /* new size is bigger */ Addr a_new; tl_assert(old_szB < new_szB); /* Get new memory */ a_new = (Addr)VG_(cli_malloc)(VG_(clo_alignment), new_szB); if (a_new) { UInt ecu; ExeContext* ec; ec = VG_(record_ExeContext)(tid, 0/*first_ip_delta*/); tl_assert(ec); ecu = VG_(get_ECU_from_ExeContext)(ec); tl_assert(VG_(is_plausible_ECU)(ecu)); /* First half kept and copied, second half new, red zones as normal */ MC_(make_mem_noaccess)( a_new-MC_MALLOC_REDZONE_SZB, MC_MALLOC_REDZONE_SZB ); MC_(copy_address_range_state) ( (Addr)p_old, a_new, mc->szB ); MC_(make_mem_undefined_w_otag)( a_new+mc->szB, new_szB-mc->szB, ecu | MC_OKIND_HEAP ); MC_(make_mem_noaccess) ( a_new+new_szB, MC_MALLOC_REDZONE_SZB ); /* Possibly fill new area with specified junk */ if (MC_(clo_malloc_fill) != -1) { tl_assert(MC_(clo_malloc_fill) >= 0x00 && MC_(clo_malloc_fill) <= 0xFF); VG_(memset)((void*)(a_new+old_szB), MC_(clo_malloc_fill), new_szB-old_szB); } /* Copy from old to new */ VG_(memcpy)((void*)a_new, p_old, mc->szB); /* Possibly fill freed area with specified junk. */ if (MC_(clo_free_fill) != -1) { tl_assert(MC_(clo_free_fill) >= 0x00 && MC_(clo_free_fill) <= 0xFF); VG_(memset)((void*)p_old, MC_(clo_free_fill), old_szB); } /* Free old memory */ /* Nb: we have to allocate a new MC_Chunk for the new memory rather than recycling the old one, so that any erroneous accesses to the old memory are reported. */ die_and_free_mem ( tid, mc, MC_MALLOC_REDZONE_SZB ); // Allocate a new chunk. mc = create_MC_Chunk( ec, a_new, new_szB, MC_AllocMalloc ); } p_new = (void*)a_new; } // Now insert the new mc (with a possibly new 'data' field) into // malloc_list. If this realloc() did not increase the memory size, we // will have removed and then re-added mc unnecessarily. But that's ok // because shrinking a block with realloc() is (presumably) much rarer // than growing it, and this way simplifies the growing case. VG_(HT_add_node)( MC_(malloc_list), mc ); return p_new; } SizeT MC_(malloc_usable_size) ( ThreadId tid, void* p ) { MC_Chunk* mc = VG_(HT_lookup) ( MC_(malloc_list), (UWord)p ); // There may be slop, but pretend there isn't because only the asked-for // area will be marked as addressable. return ( mc ? mc->szB : 0 ); } /*------------------------------------------------------------*/ /*--- Memory pool stuff. ---*/ /*------------------------------------------------------------*/ /* Set to 1 for intensive sanity checking. Is very expensive though and should not be used in production scenarios. See #255966. */ #define MP_DETAILED_SANITY_CHECKS 0 static void check_mempool_sane(MC_Mempool* mp); /*forward*/ void MC_(create_mempool)(Addr pool, UInt rzB, Bool is_zeroed) { MC_Mempool* mp; if (VG_(clo_verbosity) > 2) { VG_(message)(Vg_UserMsg, "create_mempool(0x%lx, %d, %d)\n", pool, rzB, is_zeroed); VG_(get_and_pp_StackTrace) (VG_(get_running_tid)(), MEMPOOL_DEBUG_STACKTRACE_DEPTH); } mp = VG_(HT_lookup)(MC_(mempool_list), (UWord)pool); if (mp != NULL) { VG_(tool_panic)("MC_(create_mempool): duplicate pool creation"); } mp = VG_(malloc)("mc.cm.1", sizeof(MC_Mempool)); mp->pool = pool; mp->rzB = rzB; mp->is_zeroed = is_zeroed; mp->chunks = VG_(HT_construct)( "MC_(create_mempool)" ); check_mempool_sane(mp); /* Paranoia ... ensure this area is off-limits to the client, so the mp->data field isn't visible to the leak checker. If memory management is working correctly, anything pointer returned by VG_(malloc) should be noaccess as far as the client is concerned. */ if (!MC_(check_mem_is_noaccess)( (Addr)mp, sizeof(MC_Mempool), NULL )) { VG_(tool_panic)("MC_(create_mempool): shadow area is accessible"); } VG_(HT_add_node)( MC_(mempool_list), mp ); } void MC_(destroy_mempool)(Addr pool) { MC_Chunk* mc; MC_Mempool* mp; if (VG_(clo_verbosity) > 2) { VG_(message)(Vg_UserMsg, "destroy_mempool(0x%lx)\n", pool); VG_(get_and_pp_StackTrace) (VG_(get_running_tid)(), MEMPOOL_DEBUG_STACKTRACE_DEPTH); } mp = VG_(HT_remove) ( MC_(mempool_list), (UWord)pool ); if (mp == NULL) { ThreadId tid = VG_(get_running_tid)(); MC_(record_illegal_mempool_error) ( tid, pool ); return; } check_mempool_sane(mp); // Clean up the chunks, one by one VG_(HT_ResetIter)(mp->chunks); while ( (mc = VG_(HT_Next)(mp->chunks)) ) { /* Note: make redzones noaccess again -- just in case user made them accessible with a client request... */ MC_(make_mem_noaccess)(mc->data-mp->rzB, mc->szB + 2*mp->rzB ); } // Destroy the chunk table VG_(HT_destruct)(mp->chunks); VG_(free)(mp); } static Int mp_compar(void* n1, void* n2) { MC_Chunk* mc1 = *(MC_Chunk**)n1; MC_Chunk* mc2 = *(MC_Chunk**)n2; if (mc1->data < mc2->data) return -1; if (mc1->data > mc2->data) return 1; return 0; } static void check_mempool_sane(MC_Mempool* mp) { UInt n_chunks, i, bad = 0; static UInt tick = 0; MC_Chunk **chunks = (MC_Chunk**) VG_(HT_to_array)( mp->chunks, &n_chunks ); if (!chunks) return; if (VG_(clo_verbosity) > 1) { if (tick++ >= 10000) { UInt total_pools = 0, total_chunks = 0; MC_Mempool* mp2; VG_(HT_ResetIter)(MC_(mempool_list)); while ( (mp2 = VG_(HT_Next)(MC_(mempool_list))) ) { total_pools++; VG_(HT_ResetIter)(mp2->chunks); while (VG_(HT_Next)(mp2->chunks)) { total_chunks++; } } VG_(message)(Vg_UserMsg, "Total mempools active: %d pools, %d chunks\n", total_pools, total_chunks); tick = 0; } } VG_(ssort)((void*)chunks, n_chunks, sizeof(VgHashNode*), mp_compar); /* Sanity check; assert that the blocks are now in order */ for (i = 0; i < n_chunks-1; i++) { if (chunks[i]->data > chunks[i+1]->data) { VG_(message)(Vg_UserMsg, "Mempool chunk %d / %d is out of order " "wrt. its successor\n", i+1, n_chunks); bad = 1; } } /* Sanity check -- make sure they don't overlap */ for (i = 0; i < n_chunks-1; i++) { if (chunks[i]->data + chunks[i]->szB > chunks[i+1]->data ) { VG_(message)(Vg_UserMsg, "Mempool chunk %d / %d overlaps with its successor\n", i+1, n_chunks); bad = 1; } } if (bad) { VG_(message)(Vg_UserMsg, "Bad mempool (%d chunks), dumping chunks for inspection:\n", n_chunks); for (i = 0; i < n_chunks; ++i) { VG_(message)(Vg_UserMsg, "Mempool chunk %d / %d: %ld bytes " "[%lx,%lx), allocated:\n", i+1, n_chunks, chunks[i]->szB + 0UL, chunks[i]->data, chunks[i]->data + chunks[i]->szB); VG_(pp_ExeContext)(chunks[i]->where); } } VG_(free)(chunks); } void MC_(mempool_alloc)(ThreadId tid, Addr pool, Addr addr, SizeT szB) { MC_Mempool* mp; if (VG_(clo_verbosity) > 2) { VG_(message)(Vg_UserMsg, "mempool_alloc(0x%lx, 0x%lx, %ld)\n", pool, addr, szB); VG_(get_and_pp_StackTrace) (tid, MEMPOOL_DEBUG_STACKTRACE_DEPTH); } mp = VG_(HT_lookup) ( MC_(mempool_list), (UWord)pool ); if (mp == NULL) { MC_(record_illegal_mempool_error) ( tid, pool ); } else { if (MP_DETAILED_SANITY_CHECKS) check_mempool_sane(mp); MC_(new_block)(tid, addr, szB, /*ignored*/0, mp->is_zeroed, MC_AllocCustom, mp->chunks); if (MP_DETAILED_SANITY_CHECKS) check_mempool_sane(mp); } } void MC_(mempool_free)(Addr pool, Addr addr) { MC_Mempool* mp; MC_Chunk* mc; ThreadId tid = VG_(get_running_tid)(); mp = VG_(HT_lookup)(MC_(mempool_list), (UWord)pool); if (mp == NULL) { MC_(record_illegal_mempool_error)(tid, pool); return; } if (VG_(clo_verbosity) > 2) { VG_(message)(Vg_UserMsg, "mempool_free(0x%lx, 0x%lx)\n", pool, addr); VG_(get_and_pp_StackTrace) (tid, MEMPOOL_DEBUG_STACKTRACE_DEPTH); } if (MP_DETAILED_SANITY_CHECKS) check_mempool_sane(mp); mc = VG_(HT_remove)(mp->chunks, (UWord)addr); if (mc == NULL) { MC_(record_free_error)(tid, (Addr)addr); return; } if (VG_(clo_verbosity) > 2) { VG_(message)(Vg_UserMsg, "mempool_free(0x%lx, 0x%lx) freed chunk of %ld bytes\n", pool, addr, mc->szB + 0UL); } die_and_free_mem ( tid, mc, mp->rzB ); if (MP_DETAILED_SANITY_CHECKS) check_mempool_sane(mp); } void MC_(mempool_trim)(Addr pool, Addr addr, SizeT szB) { MC_Mempool* mp; MC_Chunk* mc; ThreadId tid = VG_(get_running_tid)(); UInt n_shadows, i; VgHashNode** chunks; if (VG_(clo_verbosity) > 2) { VG_(message)(Vg_UserMsg, "mempool_trim(0x%lx, 0x%lx, %ld)\n", pool, addr, szB); VG_(get_and_pp_StackTrace) (tid, MEMPOOL_DEBUG_STACKTRACE_DEPTH); } mp = VG_(HT_lookup)(MC_(mempool_list), (UWord)pool); if (mp == NULL) { MC_(record_illegal_mempool_error)(tid, pool); return; } check_mempool_sane(mp); chunks = VG_(HT_to_array) ( mp->chunks, &n_shadows ); if (n_shadows == 0) { tl_assert(chunks == NULL); return; } tl_assert(chunks != NULL); for (i = 0; i < n_shadows; ++i) { Addr lo, hi, min, max; mc = (MC_Chunk*) chunks[i]; lo = mc->data; hi = mc->szB == 0 ? mc->data : mc->data + mc->szB - 1; #define EXTENT_CONTAINS(x) ((addr <= (x)) && ((x) < addr + szB)) if (EXTENT_CONTAINS(lo) && EXTENT_CONTAINS(hi)) { /* The current chunk is entirely within the trim extent: keep it. */ continue; } else if ( (! EXTENT_CONTAINS(lo)) && (! EXTENT_CONTAINS(hi)) ) { /* The current chunk is entirely outside the trim extent: delete it. */ if (VG_(HT_remove)(mp->chunks, (UWord)mc->data) == NULL) { MC_(record_free_error)(tid, (Addr)mc->data); VG_(free)(chunks); if (MP_DETAILED_SANITY_CHECKS) check_mempool_sane(mp); return; } die_and_free_mem ( tid, mc, mp->rzB ); } else { /* The current chunk intersects the trim extent: remove, trim, and reinsert it. */ tl_assert(EXTENT_CONTAINS(lo) || EXTENT_CONTAINS(hi)); if (VG_(HT_remove)(mp->chunks, (UWord)mc->data) == NULL) { MC_(record_free_error)(tid, (Addr)mc->data); VG_(free)(chunks); if (MP_DETAILED_SANITY_CHECKS) check_mempool_sane(mp); return; } if (mc->data < addr) { min = mc->data; lo = addr; } else { min = addr; lo = mc->data; } if (mc->data + szB > addr + szB) { max = mc->data + szB; hi = addr + szB; } else { max = addr + szB; hi = mc->data + szB; } tl_assert(min <= lo); tl_assert(lo < hi); tl_assert(hi <= max); if (min < lo && !EXTENT_CONTAINS(min)) { MC_(make_mem_noaccess)( min, lo - min); } if (hi < max && !EXTENT_CONTAINS(max)) { MC_(make_mem_noaccess)( hi, max - hi ); } mc->data = lo; mc->szB = (UInt) (hi - lo); VG_(HT_add_node)( mp->chunks, mc ); } #undef EXTENT_CONTAINS } check_mempool_sane(mp); VG_(free)(chunks); } void MC_(move_mempool)(Addr poolA, Addr poolB) { MC_Mempool* mp; if (VG_(clo_verbosity) > 2) { VG_(message)(Vg_UserMsg, "move_mempool(0x%lx, 0x%lx)\n", poolA, poolB); VG_(get_and_pp_StackTrace) (VG_(get_running_tid)(), MEMPOOL_DEBUG_STACKTRACE_DEPTH); } mp = VG_(HT_remove) ( MC_(mempool_list), (UWord)poolA ); if (mp == NULL) { ThreadId tid = VG_(get_running_tid)(); MC_(record_illegal_mempool_error) ( tid, poolA ); return; } mp->pool = poolB; VG_(HT_add_node)( MC_(mempool_list), mp ); } void MC_(mempool_change)(Addr pool, Addr addrA, Addr addrB, SizeT szB) { MC_Mempool* mp; MC_Chunk* mc; ThreadId tid = VG_(get_running_tid)(); if (VG_(clo_verbosity) > 2) { VG_(message)(Vg_UserMsg, "mempool_change(0x%lx, 0x%lx, 0x%lx, %ld)\n", pool, addrA, addrB, szB); VG_(get_and_pp_StackTrace) (tid, MEMPOOL_DEBUG_STACKTRACE_DEPTH); } mp = VG_(HT_lookup)(MC_(mempool_list), (UWord)pool); if (mp == NULL) { MC_(record_illegal_mempool_error)(tid, pool); return; } check_mempool_sane(mp); mc = VG_(HT_remove)(mp->chunks, (UWord)addrA); if (mc == NULL) { MC_(record_free_error)(tid, (Addr)addrA); return; } mc->data = addrB; mc->szB = szB; VG_(HT_add_node)( mp->chunks, mc ); check_mempool_sane(mp); } Bool MC_(mempool_exists)(Addr pool) { MC_Mempool* mp; mp = VG_(HT_lookup)(MC_(mempool_list), (UWord)pool); if (mp == NULL) { return False; } return True; } /*------------------------------------------------------------*/ /*--- Statistics printing ---*/ /*------------------------------------------------------------*/ void MC_(print_malloc_stats) ( void ) { MC_Chunk* mc; SizeT nblocks = 0; ULong nbytes = 0; if (VG_(clo_verbosity) == 0) return; if (VG_(clo_xml)) return; /* Count memory still in use. */ VG_(HT_ResetIter)(MC_(malloc_list)); while ( (mc = VG_(HT_Next)(MC_(malloc_list))) ) { nblocks++; nbytes += (ULong)mc->szB; } VG_(umsg)( "HEAP SUMMARY:\n" " in use at exit: %'llu bytes in %'lu blocks\n" " total heap usage: %'lu allocs, %'lu frees, %'llu bytes allocated\n" "\n", nbytes, nblocks, cmalloc_n_mallocs, cmalloc_n_frees, cmalloc_bs_mallocd ); } /*--------------------------------------------------------------------*/ /*--- end ---*/ /*--------------------------------------------------------------------*/